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ABSTRACT Mobile Edge Computing Caching System (MECCS) realizes low-latency and high-bandwidth
content access and enables seamless 4K Ultra High Definition (UHD) video streaming by caching content in
advance at edge-servers of a cellular network. The objective of MECCS is to maximize cache hit by caching
highly popular video content while utilizing the storage capacity efficiently in edge-servers. Most of existing
caching schemes estimate the popularity of each content based on content request history in off-line or
on-line manners, considering the characteristics of Video-on-Demand (VoD) content which has long-term
time-varying popularity. However, since live streaming follows Short-term Time-Varying (STV) character-
istics, estimating popularity based on content request history do not guarantee acceptable performance on
cache hit for live streaming. In this paper, we propose a request model to estimate the popularity distribution
considering STV characteristics. Also, we propose a STV request model-based chunk caching scheme to
cache highly popular content and enhance cache hit in multiple live channels, utilizing the storage capacity
of collaborative edge-servers efficiently. Experimental results show that the proposed scheme outperforms
existing schemes regarding cache hit and backhaul traffic.

INDEX TERMS Mobile edge computing, content caching, content popularity, live streaming.

I. INTRODUCTION
The mobile traffic is expected to reach 40 exabytes per
month by 2021 [1]. Because of the centralized mobile net-
work architecture, the growth of mobile traffic will exert
more pressure on the capacity of backhaul links connecting
the core and Radio Access Network (RAN) [2]. This is a
bottleneck that challenges the efficiency of backhaul links.
While most of the mobile traffic, expected to occur in the
future, is caused by content delivery such as video stream-
ing [1], the conventional Content Delivery Network (CDN),
provided by CDN operators such as Akamai and Google
Global Cache, cannot relieve the backhaul traffic load. The
rationale is that the content delivery of CDN is performed
from the Internet to mobile end-users through several core
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networks and backhaul links [3]. Since these issues cause
network latency and throughput degradation for futuremobile
video streaming, a future architecture is required for CDN to
relieve the backhaul traffic load and satisfy Quality of Expe-
rience (QoE) for future mobile video streaming. Meanwhile,
with the advent of advanced mobile services such as Virtual
and Augmented Reality (VR/AR), supporting the 4K Ultra
High Definition (UHD) video streaming for mobile end-users
is required for future CDN architectures [4]. Recently,
social-media service providers such as Twitch, YouTube and
Facebook are trying to provide live streaming as well as
video-on-Demand (VoD) streaming service in 4KUHD video
quality for mobile end-users [5]. The social-media service
typically utilizes HTTP live streaming, which operates based
on the TCP protocol over the end-to-end (E2E) content deliv-
ery path involving both RAN and backhaul links including the
internet for mobile edge-users. Due to the characteristics of
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the E2E content delivery path: fluctuating RAN latency com-
bined with long-latency backhaul, typical 4K video stream
scenarios do not satisfy 15Mbps bitrate, which is required to
provide seamless QoE with high video quality and minimal
interruption to playback [5]. Causing the slow increase of
TCP congestion window in TCP slow-start phase, this char-
acteristics deteriorates TCP throughput over the E2E content
delivery path [5]. In order to provide seamless 4K video
streaming, it is necessary to resolve these issues on the poor
TCP performance caused by the long-latency E2E content
delivery.

In this regard, Mobile Edge Computing (MEC) has been
identified as one of the most promising solutions to address
these issues. The MEC places cloud-computing capabilities
on the RAN, which gets locally closer to end users [6].
This proximity of the MEC not only reduces the service
latency but also alleviates the heavy load of the backhaul
network. Hence, it can provide a good solution for the future
CDN architecture enabling seamless 4K UHD video stream-
ing by caching and/or prefetching content on edge-servers
called Mobile Edge Computing Caching System (MECCS).
Including this proximity, MECCS inherits characteristics
of MEC: collaboration with other edge-servers, location-
awareness, supporting mobility, etc. [7], [8]. These charac-
teristics make MECCS provide more sophisticated caching
scheme and guarantee the service QoE. Furthermore, since
MEC providers, such as telecommunication companies [9],
may charge content providers for storage usage, it is also
necessary for MECCS to utilize the storage efficiently for
caching [10].

Recently, there have been several previous works on
how to design an efficient content caching scheme in
MECCS. Most of these previous works tried to increase
cache hit for VoD streaming, estimating the popular-
ity of each VoD content based on content request
history.

However, their works have limitation to apply to live
streaming. In live streaming, estimating popularity based on
content request history does not work properly and results in
low accuracy since it quickly becomes invalid in a short-term
period due to the characteristics of live streaming called as
Short-term Time-Varying (STV) in this paper. Consequently,
they cannot achieve the acceptable performance on cache
hit and increase the cache management cost including the
MEC storage cost and the backhaul network traffic cost.
It is necessary to propose a new model for popularity esti-
mation applicable to STV characteristics of live streaming.
In order to resolve these problems, we propose a request
model to estimate the popularity distribution considering
STV characteristics. Based on this model, we propose a
caching scheme for multiple live channels in live stream-
ing, in order to maximize cache hit for satisfying the QoE
of end-users and reduce the backhaul traffic load. Further-
more, the proposed scheme benefits from the potential of
increasing cache hit more using collaboration between nearby
edge-servers.

II. DESIGN OF CACHING SCHEME FOR LIVE STREAMING
IN MEC ENVIRONMENT
In this section, we describe the cache management in
MEC environment and the static popularity characteristics
of its previous works for VoD streaming. We describe the
characteristics of live streaming regarding content generation
time and user request pattern compared to VoD streaming.
Also, we address the limitation of static popularity model,
utilized by previous works, when applied to live streaming of
which popularity distribution follows STV characteristics.

A. CACHE MANAGEMENT SCHEMES IN MEC
ENVIRONMENT
The current telco networks cannot satisfy the bandwidth
requirements of future bandwidth-hungry mobile video
streaming services that may require guaranteed 4K UHD
quality at all time, due to backhaul network congestion caused
by the future aggregated service demand which exceeds the
capacity of the centralized mobile network [11]. It makes
end-users objectionable due to poor QoE with low video
quality and frequent interruption to playback. It discourages
the use of emerging services and increases the QoE manage-
ment cost. In order to resolve the congestion problem and
satisfy the performance required by the emerging services,
one approach is to locate the services closer to end-users in
MEC environment. In this regard, MECCS has been intro-
duced as a good solution for the explosive demand on
video streaming service to save the congestion cost and pro-
vide assured QoE to end-users with low-latency and high-
bandwidth by caching content at edge-servers. While the
storage usage cost at a cloud environment is cheaper com-
pared to a MEC environment considering the economy of
scale, the incurred bandwidth usage cost is higher for services
located at a cloud compared to a MEC [11]. Considering this
trade-off, it is essential for MECCS to maximize cache hit by
caching highly popular content while utilizing the MEC stor-
age capacity efficiently for the cache management, as shown
in Figure 1 [10]. We discuss with previous works propos-
ing the caching schemes to increase cache hit by caching
popular content in MECCS. Ahlehagh, Hasti, and Sujit Dey.
[3] proposed RAN-aware reactive and proactive caching poli-
cies based on user preference profiles of active users in a
small cell. Tran et al. [12] proposed a collaborative hierar-
chical caching scheme in multiple edge servers to alleviate
backhaul usage and minimize average delay with the known
popularity of each VoD content. They assumed the popularity
distribution of content is stationary in Zipf-like distribution
for a long-term period, which is commonly used for VoD
content popularity with high accuracy and can be estimated
based on request history [13], [14]. Lee et al. [15] and
Guo et al. [16] focused on caching segments derived
from VoD content. They proposed a caching scheme based
on chunk popularity with VCR-like interactive operations
(e.g. jump, pause, fast forward) for VoD content. They
also assumed the popularity distribution of chunks in VoD
content is stationary for a long-term period. In practice,

VOLUME 7, 2019 177149



W.-J. Kim et al.: STV Request Model-Based Chunk Caching Scheme for Live Streaming in Mobile Edge-Cloud Environment

FIGURE 1. Problem of cache management in MEC environment: Maximizing cost-effectiveness on cache hit by caching highly popular content, utilizing
MEC storage capacity efficiently.

the popularity distribution of chunks forms around the
beginning chunks or the specific popular chunks statically
in VoD content. Leconte et al. [17] proposed an age-
based threshold scheme using learning-based popularity esti-
mation in order to overcome the difficulty in estimating
popularity with small population of small cells. Their scheme
is based on a dynamic request model, the recently pro-
posed Poisson shot noise model, which fits well real data of
long-term time-varying VoD content requests in cellular net-
works [17]. Most of these previous works tried to estimate the
popularity of each content based on content request history in
off-line or on-line manners. Considering the characteristics
of VoD content which has long-term time-varying popularity,
they assumed that the requests on each content would con-
tinue to be generated and the estimated popularity based on
content request history is fairly valid for each content in a
long-term period. They showed the quite good performance
on cache hit for VoD content.

B. LIMITATION OF CACHE MANAGEMENT SCHEMES
IN LIVE STREAMING
However, these previous works have limitation to apply to
live streaming, which has different characteristics with VoD
streaming regarding content generation time and user request
pattern [14]. InVoD streaming, a sequence of chunks has been
generated in advance before streaming to end-users and the
popularity distribution of chunks forms around the beginning
chunks or the specific popular chunks statically in a long-term
period [15], [16]. In live streaming, content is generated on-
the-fly as a chunk, which is a short-term video, from a live
channel and is requested mostly near its generation time [14].
In addition, with a shift of requests in a short time, the next
generated chunk is requested. The reason is that end-users
watching a live channel are more likely to request the recent
chunks and then continually request the subsequent chunks.
Therefore, the popularity distribution of chunks forms
around the recent chunks being most likely to be requested

by end-users and is shifted over time to the chunks gen-
erated recently [14], [16]. Each chunk popularity increases
and decreases over time dynamically with the shift of the
distribution. Each chunk becomes outdated in a short-term
period, and its chunk popularity disappears rapidly. For that
reason, the chunks that are already heavily requested in the
previous period are hardly requested anymore. As described
in Figure 2, if {H11} is requested frequently in the last
period, {H11} is unlikely to be requested again from this
time onward. In addition, the recently generated chunks,
which have not been requested yet, such as {H16} and {H17}
have a high request probability in a short-term period. These
characteristics of live streaming is called Short-Term Time-
Varying (STV) in this paper. Due to STV characteristics,
the estimated popularity based on content request history,
utilized by previous works, become invalid in a short-term
period and shows low accuracy for each chunk in a live
channel. Besides, the width of this popularity distribution
is determined by live latency, which is the time difference
between the actual live event and the video viewed by the
user. It ranges from several seconds to several tens of sec-
onds depending on various factors such as buffering time
(including the initial delay) [18]. As described in Figure 2,
the chunks requested in a short-term period is concen-
trated on several chunks limited by min/max live latency.
In order to resolve the limitation of previous works and reflect
STV characteristics of live streaming, we analyze a request
model-based on chunk requests of end-users in each short-
term period to estimate the chunk popularity distribution in
the next period. We consider the shift of the distribution
occurred by the fact that end-users watching a live channel
have the high probability to request the chunks sequentially
over time periods. We refer to a dynamic request model,
Poisson shot noise model utilized by Leconte et al. [17], [33].
It formulates the popularity occurred by content l as a
shot, which represents the request rate pattern characterized
by a shape (λl), a duration (L), an arrival time (tl), and
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FIGURE 2. Sketch of popularity distribution in the unit of chunk for live streaming. The popularity distribution of chunks forms around the recent chunks
being most likely to be requested by end-users and is shifted over time to the chunks generated recently.

FIGURE 3. Time-varying request model for popularity distribution
estimation regarding VoD Content [17].

a volume (Vl). The request rate is treated as the popularity
of content l. Since it is reported that the shape and dura-
tion have a smaller impact to the hit probability for VoD
content of which popularity is long-term time-varying rela-
tively, previous works mainly use simple rectangular pulses
of fixed long durations for mathematical simplicity as shown
in Figure 3 [17], [33]. A time-inhomogeneous Poisson pro-
cess describes the request process for a given content l.

rl = Vlλl(t − tl),

where λl(t) =

{
1 if tl ≤ t ≤ tl + L
0 if otherwise

(1)

However, the static shape and long duration are not suitable
for live streaming. In the next section, we define a new
dynamic request model adapt to STV characteristics in a
unit of chunk discussed in this subsection and then, based
on it, we propose the heuristic model, called chunk score,
which is practical to be applied to a caching scheme for live
streaming.

III. COLLABORATIVE CACHING SCHEME BASED
ON STV REQUEST MODEL FOR LIVE STREAMING
IN MEC ENVIRONMENT
In this section, we describe the target MEC environment and
system with several assumptions and conditions and define
the problem with an objective function to maximize cache
hit for the multiple live channels. Then, in order to resolve
the problem, we propose the STV request model to precisely
estimate the popularity distribution in live streaming. Lastly,
we propose STV request model-based collaborative chunk
caching scheme to cache highly popular chunks for multiple
live channels in order to maximize cache hit for satisfying
the QoE of live streaming even in 4K UHD video quality and
reduce the backhaul traffic load.

A. SYSTEM MODEL AND ENVIRONMENT
Figure 4 presents MECCS architecture for live streaming.
We consider that a single edge server, called as MEC server
interchangeably in the rest of this paper, is attached to a base
station in a small cell area. This architecture consists of end-
users, MEC server, Cloud Central Unit (CCU) and CDN.
Live streams of live channels broadcasted by streamers
are uploaded to CDN from live sources. CDN transcodes
each live stream into a sequence of chunks with various
bitrates, which are short-term videos. Chunks are represented
as A = {ai,j} where i is channel index, and j is chunk index.
In addition, we denote that b(ai,j) is the file size of ai,j.
MEC server acts as a cache server based on a caching scheme
for live streaming. It periodically determines which chunks
to be evicted or cached from CDN in advance. We denote
C = {ai,j} as a set of cached chunks in a MEC server. It has
a constraint on cache size represented as Csize. End-users
watching a live channel transfer their chunk requests to
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FIGURE 4. Collaborative hierarchical MECCS architecture for live streaming in MEC environment.

MEC server directly through a nearby base station in a
cell area. If the requested chunks are not cached in the
MEC server, CDN responds the chunks to end-users through
backhaul links. Otherwise, they are responded directly from
the MEC server with faster latency. We denote d as delay
occurred by transferring a unit-size file from MEC server
to end-users through RAN and denote db as delay occurred
by transferring a unit-size file from CDN to end-users
through backhaul links. We assume d � db. Furthermore,
MEC server has a hierarchical topology in which nearby
MEC servers can communicate and collaborate with each
other in front-haul links through CCU1 with faster latency
than the latency between the MEC server and CDN [12].
If the requested chunks are not cached in the nearest MEC
server but cached in nearby MEC servers, the chunks are
responded from the nearby MEC servers in front-haul links
through CCU with additional delay dm occurred by transfer-
ring a unit-size file between nearby MEC servers. Otherwise,
if the requested chunks are not cached in any MEC servers,
the requests are responded from CDN through backhaul links
with delay db. Hence, a MEC server can decide not to cache
some of the chunks if other nearbyMEC servers can share the
corresponding chunks within an acceptable latency in order
to save the storage of MEC server. The saved storage space

1CCU is a central collaboration controller hosted in a Cloud RAN,
connected to all the BSs through low-latency and high capacity fronthaul
links [12]. In this paper, CCUplays only a role in supporting the collaboration
between BSs, although it is also able to cache some contents.

can be used for storing other chunks to increase cache hit
ratiomore.We considerN MEC servers collaborate with each
other. We assume they are located in close within k hops
and dm � db − d .

B. STV REQUEST MODEL AND CHUNK SCORE FOR
ESTIMATING POPULARITY DISTRIBUTION IN LIVE
STREAMING
In this section, we propose a new dynamic request model
considering STV characteristics of live streaming based on
Equation (1) discussed in Section II-B. The model estimates
the request rate of a group of live streaming chunks for the
next period, based on requests arrived beforehand. In this
model, we define the time period as τ and the discrete time
instance t mapped to continuous time interval [tτ, (t + 1)τ ].
In the end, τ is used as a chunk update period of our proposed
algorithm. In order to estimate the request rate, we need
to analyze the STV characteristics discussed in Section II.
We observed that end-users watching chunk ai,j are more
likely to continually request the subsequent chunks while the
certain percentage of them are possible to leave live channel i
and do not request the subsequent chunks [19]. In order to
reflect this possibility, we use exponential distribution for
λj(t) with window size L representing the continuity of end-
users and aging factor α representing the departure rate of
end-users for the subsequent chunks. The exponential shape
is determined based on the user behavior model on viewing
duration in a mobile live streaming system [19]. We showed
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FIGURE 5. A model for popularity distribution estimation in live streaming : (a) A new operation model for STV characteristics, Equation (2), along to
chunk index in a live channel, (b) Sketch of the procedure to estimate chunk popularity distribution for a live channel. The grey box represents the
chunk popularity distribution based on requests arrived at time instance t − 1 and the black box represents the chunk popularity distribution estimated
Equation (5) for time instance t .

that our proposed STV request model based on this expo-
nential shape estimate the popularity of chunks in a twitch.tv
live channel with high accuracy in section IV-B. Thus, the
STV request model can be formulated by Equation (2).

r̂i,j(x; t) = Vi,j(t − 1)λ(x),

where λ(x) =

{
αx−j if j ≤ x ≤ j+ L
0 if otherwise

(2)

r̂i,j(x; t) is the estimated request rate of a chunk ai,x
considering only a single chunk ai,j at time instance t .
Vi,j(t − 1) is the volume which means the observed request
rate of chunk ai.j at time instance t − 1, which is the most
recent time instance. The window size L is the number of
subsequent chunks to be predicted, defined as [τ/tch] where
tch is the chunk duration. The shape λ(x) is the function
starting from 1 and decreasing exponentially by α over the
window size L. Figure 5(a) represents the STV request model
for the estimated request rates of chunk ai,j and ai,j+1 at
time instance t , where Vi,j(t − 1) and Vi,j+1(t − 1) are the
observed request rates of chunk ai,j and ai,j+1 at time instance
t − 1, respectively. In practice, since multiple chunks in mul-
tiple live channels are requested simultaneously at each time
instance with live latency, their STV request models must be
combined and organized to estimate the request rate for the
next time instance. In order to resolve this issue, we propose a
chunk score model heuristically to distinguish highly popular
chunks in multiple live channels. The chunk score model
estimates the popularity of chunks in multiple live channels
for time instance t via the observation of requests at time
instance t − 1. The chunk score consists of the estimated
channel popularity of live channel i, p̂(ai; t), and the estimated
chunk popularity of chunk ai,j, p̂(ai,j|ai; t), at time instance t .
Especially, the estimated chunk popularity is constructed
based on the STV request model.

We assumed that the channel popularity p̂(ai; t) follows the
Zipf-like distribution. In fact, even in live streaming, the Zipf-
like distribution is also used effectively for the popularity

model of live channel i [20]2. Let Ui denote the set of chunk
requests arrived for live channel i during time instance t − 1.
Let n(·) denote the number of element in a set. Then, the esti-
mated channel popularity of live channel i at time instance t
can be defined as follows:

p̂(ai; t) ≈ p(ai; t − 1) =
n(Ui)∑
k n(Uk )

(3)

The chunk popularity p̂(ai,j|ai; t) is calculated based on the
distribution of chunk requests arrived for live channel i during
time instance t − 1. We apply the STV request model to Ui
and predicts the request rate of chunks at time instance t . Let
n(ai,j) be the number of requests arrived for chunk ai,j during
instance t − 1. Then, the request rate of chunk ai,j at time
instance t − 1 can be defined as follows:

Vi,j(t − 1) =
n(ai,j)
n(Ui)

. (4)

By applying the STV request model with the window size
of L = [τ/tch], we can obtain the estimated request rate
of chunk ai,j+k considering only a single chunk ai,j at time
instance t , defined as follows:

r̂i,j(j+ k; t) =
n(ai,j)
n(Ui)

αk ,

where k ∈
{
1, . . . ,

[
τ

tch

]}
. (5)

There are several estimated request rates of the chunks
requested for live channel i at time instance t − 1 simulta-
neously with live latency. The estimated request rates of the
chunks may be overlapped each other. In order to combine
and organize them, we take the maximum value of the esti-
mated request rates on each chunk ai,x , defined as follows:

r̂i(x; t) = max(αk ·
n(ai,x−k )
n(Ui)

),

where k ∈
{
1, . . . ,

[
τ

tch

]}
. (6)

2In live streaming service, Pires, K.,& Simon, G. concluded that the
popularity of live channels follows a zipf-like distribution
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Finally, by normalizing the estimated request rate of
chunk ai,x , we can obtain the estimated chunk popularity of
chunk ai,x at time instance t , defined as follows.

p̂(ai,x |ai; t) =
r̂i(x; t)∑
j r̂i(j; t)

(7)

Figure 3 (b) depicts the procedure of estimating the request
rate until just before normalization. The request rate is pre-
dicted by applying the STV request model to the observed
request rate Vi,j(t − 1) at time instance t − 1, represented
as a grey box. We obtain the estimated request rate r̂i(x; t) by
taking the maximum value when overlapped, represented as a
black box. Finally, we can figure out the chunk score for time
instance t by multiplying the estimated channel popularity
and the estimated chunk popularity.
Definition 1: Chunk Score of Chunk ai,j at time instance t

We define it as a multiplication of the estimated channel pop-
ularity at time instance t , denoted by p̂(ai; t) and the estimated
chunk popularity at time instance t , denoted by p̂(ai,j|ai; t).

p(ai,j; t) = p̂(ai; t) · p̂(ai,j|ai; t) (8)

In live streaming, each request makes a joint decision on
live channel and chunk. The chunk popularity is defined as
the conditional probability that chunk ai,j is requested by
end-users watching live channel i. Therefore, by multiplying
the channel popularity defined as the probability that live
channel i is requested by end-users, we can calculate the
probability that chunk ai,j is requested by end-users, which
enables comparing the popularities of chunks in different
channels and distinguishing highly popular chunks in mul-
tiple live channels.

C. COLLABORATIVE CHUNK CACHING SCHEME BASED
ON STV REQUEST MODEL FOR MULTIPLE LIVE CHANNELS
In this section, we formulate the chunk caching problem for
a single MEC server in an integer linear programming (ILP)
form. Its objective is to determine an optimal caching strategy
C(t) ⊂ A at time instance t to maximize the instantaneous
cache byte hit ratio, utilizing the cache of Csize. The problem
is formulated as follows:

maximize
∑

ai,j∈C(t)

b(ai,j)p(ai,j; t)

subject to
∑

ai,j∈C(t)

b(ai,j) ≤ Csize. (9)

In order to resolve the problem, we propose a new chunk
caching scheme to cache highly popular chunks based on
chunk score until the cache of Csize become full. We prove
the problem can be solved in near-optimal with the proposed
scheme by Corollary 1.
Corollary 1: If b(ai,j) ≤ ε · Csize for all i, j, the proposed

strategy gives (1− ε) approximation to the optimal solution
Proof: Equation (9) can be interpreted as a 0-1 Knap-

sack problem with item size sk = b(ai,j), and item price
prk = p(ai,j; t)·b(ai,j). In other words, the size of item k is the

size of the chunk, the price of item k is the response time, and
knapsack size is Csize. Equation (10) represents the modified
problem in the form of 0-1 knapsack problem.

maximize
∑
k

prk · xk

subject to
∑
k

sk · xk ≤ Csize

xk ∈ {0, 1} for all k (10)

The Equation (10) is a form of ILP which is proven
to be NP-complete. There is no known algorithm to solve
the problem by both correct and fast in polynomial-time.
Thus, we approach to solve the 0-1 knapsack problem in a
greedy way by sorting items in decreasing order of prk

sk
and

caches high valued chunks preferentially. prksk is simplified to
equation (11)

prk
sk
= p(ai,j; t) (11)

Thus, the greedy solution is caching chunks with
high chunk score p(ai,j; t) with boundary condition∑

ai,j∈C(t) b(ai,j) < Csize. When b(ai,j) � Csize for all i, j,
it is proven to be close to optimal solution as following: Let
OPT be the optimal solution and prk

sk
≥

prK
sK

for all 1 ≤ k ≤ K .
Then, following equation holds:

pr1 + pr2 + · · · + prK ≥ (s1 + s2 + · · · + sK ) ·
prK
sK

≥ Csize ·
prK
sK

prK ≤ (pr1 + · · · + prK ) ·
sK
Csize

≤ ε(pr1 + · · · + prK )

Re-arrange the equation for prK

prK ≤
ε

1− ε
(pr1 + · · · + prK−1)

Since OPT is the optimal solution,

OPT ≤ pr1 + · · · + prK ≤
1

1− ε
(pr1 + · · · + prK−1) (12)

Which yields

(1− ε)OPT ≤ pr1 + · · · + prK−1 (13)

Therefore, the solution is (1 − ε) approximation to the
optimal solution. �
Through Corollary 1, we found that near-optimal solution

can be obtained by preferentially caching the chunk with the
high cache byte hit ratio first.

In this paper, we assumed that multiple nearby
MEC servers are in a collaborative relationship. The
MEC servers can compensate for each other’s insufficient
caching chunks. If the requested chunks are not cached in
the nearest MEC server, the chunks can be received from
neighboring MEC servers through front-haul links as men-
tioned in Section III-A. They are responded with relative
fast latency since the delay of front-haul links is faster than

177154 VOLUME 7, 2019



W.-J. Kim et al.: STV Request Model-Based Chunk Caching Scheme for Live Streaming in Mobile Edge-Cloud Environment

that of back-haul links. Even in this case, end-users can
suffer from additional delay dm, so some chunks (especially,
mostly popular chunk) should be replicated on multiple MEC
servers in order to guarantee the acceptable average delay on
end-users. Hence, in order to reflect this issue, we formu-
late the collaborative chunk caching problem for N nearby
MEC servers in an ILP form. Its objective is to determine
an optimal caching strategy {Cn(t)|n = 1, . . . ,N } at time
instance t to maximize the instantaneous cache byte hit rate
with δ(ai,j), utilizing their caches of {Cn

size|n = 1, . . . ,N }.
The problem is formulated as follows:

maximize
∑

ai,j∈{∪Cn(t)}

b(ai,j)p(ai,j; t)δ(ai,j)

subject to
∑

ai,j∈Cn(t)

b(ai,j) ≤ Cn
size ∀n ∈ {1, · · · ,N } (14)

δ(ai,j) term, described in Equation (17), is added to com-
pensate b(ai,j)p(ai,j; t) depending on how many ai,j are
cached in multiple MEC servers totally, considering the delay
of ai,j on end-users. We derive δ(ai,j) from the average delay
on end-users, which enables to maximize the cache byte hit
ratio and minimize the average delay on end-users concur-
rently for arbitrary chunk requests.
d̄(t) is defined as an average service delay at time t when

a random request arrives. p(ai.j; t) is the chunk score defined
in Definition 1 which means the probability of chunk ai,j is
requested. We assumed that d � db. The average response
time of a single MEC server can be represented as:

d̄(t) =
∑

ai,j∈C(t)

b(ai,j)p(ai,j; t)d

+

∑
ai,j /∈C(t)

b(ai,j)p(ai,j; t)db

= Db −
∑

ai,j∈C(t)

b(ai,j)p(ai,j; t)(db − d),

where Db =
∑
ai,j∈A

b(ai,j)p(ai,j; t)db (15)

The average response time of N MEC servers can be
represented as:

d̄(t) =
1
N

N∑
n=1

( ∑
ai,j∈C(t)

b(ai,j)pn(ai,j; t)d

+

∑
ai,j /∈C(t)

b(ai,j)pn(ai,j; t)db

+

∑
ai,j∈(C(t)−Cn(t))

b(ai,j)pn(ai,j; t)kdm

)
(16)

Theorem 1: When N MEC servers are in a collaborative
relationship and have similar chunk score each other, the aver-
age response time is minimized if chunks with high pn(ai,j; t)·
δ(ai,j) value are cached, where δ(ai,j) is defined as:

δ(ai,j) =

{
d +

(
1− m(ai,j)

N

)
kdm if m(ai,j) > 0 &N > 1

db if otherwise
(17)

Proof: When we consider only a single MEC server
(N = 1), δ(ai,j) is fixed to db. Therefore, the net aver-
age response time is minimized by Corollary 1. When we
consider multiple MEC servers (N > 1) in a collaborative
relationship, chunks can be shared from nearby MEC servers
so that delay kdm + d occurs instead of db. The objective
function is to minimize the average response time described
in equation (15). Let m(ai,j) be the number of MEC servers
which have the chunk ai,j in their cache at time instance t .
If m(ai,j) = 0, there is no MEC server to share the chunks
so that requests should be delivered through backhaul. Thus,
the average response time can be written as:

d̄(t) =
1
N

N∑
n=1

b(ai,j)pn(ai,j; t)db

= b(ai,j)p(ai,j; t)db,

where p(ai,j; t) =
N∑
n=1

pn(ai,j; t) (18)

Ifm(ai,j) > 0,m(ai,j) MEC servers will directly respond to
the request since they have ai.j in the cache. Also, N −m(ai,j)
MEC servers will deliver ai.j via neighbor MEC servers. The
average response time can be formulated as:

d̄(t) =
1
N

N∑
n=1

b(ai,j)
( ∑
ai,j∈Cn

pn(ai,j; t)d

+

∑
ai,j /∈Cn

pn(ai,j; t)(d + kdm)
)

(19)

Assuming that each MEC server has the similar chunk
score, p(ai,j; t) ≈

∑
ai,j∈Cn(t) pn(ai,j; t) ≈

∑
ai,j /∈Cn(t) pn(ai,j; t)

holds and we can simplify the equation (18) by:

d̄(t) ≈
1
N
b(ai,j)

(
N · p(ai,j; t)d +

(
N − m(ai,j)

)
· p(ai,j; t)kdm

)
= b(ai,j)p(ai,j; t)

(
d +

(
1−

m(ai,j)
N

)
kdm

)
(20)

Therefore, the average response time can be simplified as:

d̄(t) =
∑
ai,j∈A

b(ai,j) · p(ai,j; t) · δ(ai,j) (21)

Based on Corollary 1, Equation (21) is minimized when
chunks with high pn(ai,j; t) · δ(ai,j) value are chunked. �
Based on Theorem 1, we propose STV request model-

based collaborative chunk caching scheme for multiple live
channels in collaborativeMEC servers. The proposed scheme
consists of two procedures: Chunk Caching and Popularity
Update. Chunk Caching procedure decides the caching strat-
egy periodically, and Popularity Update procedure updates
channel and chunk popularity when requests arrive.
Chunk Caching procedure determines which chunks to

be newly cached and which chunks to be removed from
cache with time period τ . At each time instance, it caches
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Algorithm 1 Collaborative Chunk Caching
Scheme Based on STV Request Model for Multiple
Live Channels in Each MEC Server
Input:
m(ai,j) : The number of MEC servers which have the
chunk ai,j in their cache currently,
ai,j : Chunk to calculate popularity,
Ui : Set of accumulated chunk requests for the last
period in live channel i
Output:
p(ai,j; t) : Chunk score of ai,j at current time t
Function PopularityUpdate(ai,j,Ui):

p(ai; t)← n(Ui)/
∑

k n(Uk )
if p(ai; t) < η then

return p(ai,j; t)← 0
end
for k = 1 to [τ/tch] do

r̂i(x; t) = max(αk · n(ai,x−k )/n(Ui))
end
p̂(ai,j|ai; t) = r̂i(x; t)/

∑
j r̂i(j; t)

return p(ai,j; t)← p̂(ai; t) · p̂(ai,j|ai; t) · δ(ai,j)
End Function
Input:
p(ai,j; t),∀ai,j ∈ A : All chunk scores at current time t
Output:
Cn(t) : A set of chunks to be cached for the next period
Function ChunkCaching(N):

M ← 0
Cn(t)← ∅
sort A in descending order of chunk score
for c ∈ A do

if M + b(c) < Cn
size then

M ← M + b(c)
Cn(t)← Cn(t) ∪ c

else
break

end
end
return Cn(t)

End Function

highly popular chunks by sorting chunk score in a descending
order. In this procedure, chunks with channel popularity less
than threshold η are not considered in order to utilize the
storage capacity efficiently and reduce the complexity of
the scheme. Popularity Update procedure updates channel
and chunk popularity at each time instance time of time
period τ based on Equation (3) and Equation (7) respectively.
Also, it calculates the collaborative relationship term δ(ai,j),
Equation (17), by receiving the information on cached chunks
from other collaborativeMEC servers. Then, it updates chunk
score of each chunk in multiple live channels. As a result,
the proposed scheme is described as Algorithm 1 in detail
and the entire process of the proposed scheme in MECCS is
shown in Figure 6.

IV. PERFORMANCE EVALUATION
In this section, we evaluated the cache performance of STV
request model-based collaborative chunk caching for mul-
tiple live channels in collaborative MEC servers. Firstly,
we evaluated the estimation performance of STV request
model for the popularity of chunks in a live channel
(see section IV-B). Secondly, we implemented MECCS for
live DASH streaming and conducted real live streaming
experiments in a single MEC server scenario
(see section IV-C). Lastly, we also performed trace-driven
experiments with real trace data of Twitch.tv [21] in mul-
tiple MEC servers scenario (see section IV-D). In these
experiments, STV request model-based collaborative chunk
caching scheme was compared with existing well-known
caching schemes such as LRU3 and MPV, which have been
applied to MEC environment by previous works [3], for
several metrics such as join time, buffering ratio, cache
(bytes) hit ratio and back-haul bytes ratio.

A. EXPERIMENTAL ENVIRONMENT FOR PERFORMANCE
EVALUATION
We implemented MECCS for live DASH streaming illus-
trated in Figure 6. In MECCS, MEC servers and CDN nodes
are implemented as live DASH streaming servers and end-
users are implemented as live DASH streaming clients. The
implemented CDN node caches chunks of various bitrates
transcoded from live streams of live channels in public net-
work and send the requested chunks to MEC servers. The
implemented MEC server analyzes chunk requests of end-
users at each time instance t of time period τ while exchang-
ing the information on chunks cached in other MEC servers
throughCCU to getm(ai,j) and calculate δ(ai,j). Also, it calcu-
lates chunk scores of chunks in each live channel by estimat-
ing the channel popularity and the chunk popularity for the
next time instance. Finally, it caches popular chunks of live
channels from the CDN nodes through backhaul links or from
other MEC servers through CCU and fronthaul links and
discards chunks with low chunk score based on the updated
chunk score for the next time instance. The chunk requests
of end-users watching a live channel are satisfied by MEC
servers through radio access network and fronthaul links or by
CDN nodes through backhaul links. In order to evaluate the
estimation performance of STV request model, Equation (2),
for the popularity of chunks in a live channel, we measure
its accuracy by calculating Hellinger distance between the
estimated chunk popularity distribution and the real.
Hellinger distance [22]: represents the similarity between

two probability distributions in probability. It is defined for
two discrete probability distributions P = (p1, p2, , pk ) and
Q = (q1, q2, , qk )) as:

H (P,Q) =
1
√
2

√√√√ k∑
i=1

(
√
pi −
√
qi)2

subject to 0 ≤ H (P,Q) ≤ 1 (22)

3LRU (Least Recently Used) caches the contents requested recently
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FIGURE 6. Implemented mobile edge computing caching system for live DASH streaming.

In order to evaluate the cache performance of the collab-
orative chunk caching scheme for maximizing cache hit and
reducing the backhaul traffic, we measure cache (bytes) hit
ratio and backhaul bytes ratio. We also measure the QoS
of end-users on seamless playback without interruption by
calculating joint time and buffering ratio.
Join time [23]: represents the elapsed time until the

requested video actually starts to play. In DASH stream-
ing, it means the time spent to satisfy play-start conditions
(i.e. downloading MPD and several chunks to fill a video
buffer).
Buffering ratio [23]: represents the percentage of the

delayed time in video streaming, which is the time spent by
re-buffering in DASH streaming.
Cache (bytes) hit ratio [3]: represents the percent-

age of requests (request bytes) satisfied by the cache in
MEC servers.
Backhaul bytes ratio [24]: represents the percentage of

request bytes generated from CDN nodes through backhaul
links due to caching operations and cache miss.

For each time instance t , the number and bytes of chunk
requests satisfied by the cache are measured for cache (bytes)
hit ratio and the bytes of chunk requests generated from
CDN nodes are measured for backhaul bytes ratio.

B. EXPERIMENTAL ANALYSIS OF STV REQUEST MODEL
In order to evaluate the estimation performance of
STV request model for the popularity of chunks in a live

channel, We conducted the experiment based on the trace
data from Twitch.tv for the most popular live channel
(i.e. hanryang1125) in Korea [21]. The trace data provides the
number of viewers from 20:45 on August 26 2018 to 00:30 on
Aug 27 2018 in the live channel. For simplicity, we assume
the chunk duration is tch = 5s and there are no variants
(i.e. only the original video quality and bitrate is available)
for video quality. We also assume chunk requests for the live
channel are generatedwith the live latency randomly assigned
following a uniform distribution in the ranges [20, 30] (s).
The STV request model estimates the chunk popularity dis-
tribution for the next time instance at each time instance t of
time period τ . For each time instance t , the Hellinger distance
between the real chunk popularity distribution p(t) and the
chunk popularity distribution p̂(t) estimated by the STV
request model is measured. Since the STV request model
focuses only on the behavior of chunk requests in a given
live channel, the channel popularity is not considered in this
experiment. Figure 7 shows that the STV request model can
guarantee the small distance (i.e. H (p, p̂) < 0.1) in the small
window size (i.e. [τ/tch]= 1 or 2). Even in the bigger window
size (i.e. [τ/tch] = 3 or 4), it can guarantee the quite accept-
able distance (i.e. H (p, p̂) < 0.2). As the window size is big-
ger, the distance is bigger due to the short-term time-varying
characteristics of chunk popularity. Since small window sizes
are usual for MECCS to satisfy sequential chunk requests
seamlessly in live streaming, the STV request model is fully
applicable.
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FIGURE 7. Characteristics analysis of Hellinger distance in STV request
model: Hellinger distance between p(t) and p̂(t).

TABLE 1. Hardware specifications in experiment environment.

C. EXPERIMENTAL ANALYSIS OF COLLABORATIVE CHUNK
CACHING SCHEME WITH IMPLEMENTED MECCS FOR
LIVE DASH STREAMING
In this experiment, we evaluate the cache performance
of STV request model-based collaborative chunk caching
scheme for maximizing cache hit for satisfying the QoS
of end-users on seamless playback without interruption and
reducing the backhaul traffic in the implemented MECCS for
live DASH streaming system consisting of a MEC server,
a CDN node and end-users. We deploy them on the
physical or virtual machines with specifications described
in Table 1.

The live channels for the MEC server and CDN node
are implemented by 4K videos of H.264 format by ffmpeg,
each of which is encoded in 4K(17Mbps), 2K(8.5Mbps),
1080p(4.5Mbps), referring to the recommended settings
in YouTube [25]. MP4Box generates Media Presentation
Description (MPD) and chunks of each live channel for live
DASH streaming [26]. We assume live channels follows a
Zipf-like distribution (zipf parameter 1.2) [27], referring to
the work of Pires, K. et al [20] concluding that the popularity
of live channels follows a zipf-like distribution, and the num-
ber of them is set to 50. A Linux-based network tool, Traffic
Control (TC), is used to emulate each link in the MECCS.
The latency between the CDN node and the MEC server is
set to 40ms ± 4ms (uniform distribution). The latency and
peak data rate between the MEC server and the end-users
are set to 8ms ± 2ms (uniform distribution) and 300Mbps
(LTE-A spectral efficiency 3.75bps / Hz, Carrier Bandwidth
20Mhz, 4× 4 MIMO Antenna), respectively. We assume all
end-users share the corresponding radio link in a cell of the
MEC server, so the actual data rate of each end-user differs
depending on the number of connected end-users. Each end-
user is implemented by a virtual machine instance, created by

Openstack [28], including Google Shaka DASH player [29],
which download/read MPD and play a sequence of chunks in
a live DASH channel [30]. We assume that end-users arrive in
a Poisson process with an average inter-arrival time of 5 sec
andwatch the requesting live channel for 120 sec. Besides, for
the proposed scheme, the chunk duration tch and the window
size [τ/tch] is set to 5 sec and 2, respectively (i.e. the chunk
update period τ is set to 10s). The aging constant α and
the threshold value for popularity η is set to 0.5 and 0.05,
respectively. Figure 8 shows the results of cache performance
in terms of various cache sizes for NoCache, LRU, MPV, and
the proposed scheme. The cache sizes are set as [0.4, 0.6,
0.8, 1] (Gbit), which can store about 7.5%, 12%, 15%
and 19% of chunks generated by all live channels.
In Figure 8. (a) and (b), the proposed scheme shows more
than 15% performance improvement on cache bytes hit ratio
and more than 7% performance improvement on cache hit
ratio in comparison of existing schemes for all cache sizes.
In Figure 8. (c), the proposed scheme shows better perfor-
mance on backhaul bytes ratio in comparison of existing
schemes for all cache sizes. MPV shows the worst cache
performance because it caches highly popular chunks using
the estimated popularity based on chunk request history in
multiple live channels. Since watching end-users for a live
channel are more likely to request the recent chunks and
then continually request the subsequent chunks according
to STV characteristics of live streaming as mentioned in
Section II, the subsequent chunks rarely requested yet is
more likely to be requested by end-user than the outdated
chunks already heavily requested in the previous period.
However, MPV recognizes the outdated chunks, which are
hardly requested anymore, as more popular chunks than the
subsequent chunks since it caches preferentially the chunks
heavily requested in history. This is the reason why MPV
shows the worst cache performance. LRU shows the com-
parable performance because LRU caches preferentially the
chunk recently requested reactively even if it works reactively
after a cache miss. LRU can satisfy the chunk popularity
distribution of each live channel in part indirectly accord-
ing to STV characteristics of live streaming in which the
recent chunks are being most likely to be requested by end-
users. However, its simple heuristic policy does not support
the optimized performance to maximize cache hit. The pro-
posed scheme shows the best performance because it caches
highly popular chunks of live channels optimally considering
STV characteristics of live streaming. As a result, it increases
cache hit and reduces backhaul traffic more in comparison
of existing schemes by maximizing the reuse of chunks
in the cache. In addition, for the same reason, Figure 9
shows the results of QoS performance in terms of various
cache sizes for NoCache, LRU, MPV, and the proposed
scheme. All caching schemes improve the QoS performance
of NoCache considerably on average join time and buffering
ratio by caching and serving in a MEC server hosted close
to end-users. The proposed scheme shows more than 2.3s
performance improvement on average join time and more
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FIGURE 8. Cache performance of proposed chunk caching scheme in the implemented MECCS for live streaming.

FIGURE 9. QoS performance of proposed chunk caching scheme in the implemented MECCS for live streaming.

than 2% performance improvement on buffering ratio in
comparison of existing schemes for all cache sizes. Besides,
the proposed scheme has the high complexity to execute
in comparison of LRU. We measure the execution time of
the proposed scheme. The result of average execution time
is 1.18 ms, which is quite long in comparison of LRU whose
execution time is 0.18 ms. However, it is short enough in
comparison of a predetermined time interval τ which is in
a unit of seconds. Therefore, this overhead is negligible.

D. EXPERIMENTAL ANALYSIS OF COLLABORATIVE CHUNK
CACHING SCHEME WITH REAL TRACE DATA OF TWITCH.TV
In this experiment, we use the trace data from Twitch.tv
for our large-scale experiment [21]. The data provides the
duration of sessions4 in each channel and the number of
viewers in each session from 12:00 to 16:00 on October 7th.
2017 for 1280 sessions of 500 live channels in KOREA.5

However, it does not provide detail information of live chan-
nels, such as available variants, and viewers, such as network
condition, video quality, and location. Therefore, the deficient
information is complemented by some assumptions. For live

4A session is defined as a live channel in online
5Top-500 ranked channels in KOREA are used

channels, we assume five variants for video quality are avail-
able in all live channels: 4K, 2K, 1080p, 720p, and 480p class
whose bitrates are 17Mbps, 8.5Mbps, 4.6Mbps, 3.2Mbps, and
2.2Mbps respectively, referring to the recommended settings
in YouTube and Twitch.tv [25], [31]. For viewers, we assume
the viewers of each live channel choose one of the variants
uniformly at random for their chunk requests. This assump-
tion is the most difficult case to predict the popularity of
available variants in a given chunk. The case that the specific
variant is requested heavily in comparison of other variants
in a given chunk can be resolved more easily. In addition,
the chunk requests of viewers for each live channel are gen-
erated with the live latency randomly assigned following a
uniform distribution in the ranges [0, ζ ] (s) and are transferred
to one of MEC servers uniformly at random in a small local
area. We also assume there are only the two available chunks,
which have not been requested yet, at any time in CDN for
each live channel, referring to Akamai systems [32].

In this experiment, the MECCS for live DASH stream-
ing consists of 3 MEC servers hierarchically connected by
CCU within one hop (k = 1). We assume that the back-
haul/fronthaul links and radio access capacity are sufficient
to handle all the generated chunk requests. The latency trans-
ferring a unit-size file (i.e. 1 Gbit) from the MEC server to
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FIGURE 10. Comparision results on cache performance in terms of cache hit ratio (%), cache byte hit ratio (%) and backhaul byte
ratio (%) with ζ = 15,30,50 over cache sizes.

the end-user, between the MEC Servers, and from the CDN
node to the MEC server are randomly assigned following a
uniform distribution in the ranges [5, 10](ms), [20, 50](ms),
and [150, 200](ms), respectively [34]. We use one hundredth
of scale for the used trace data because it is too large for
this MECCS. Parameter settings of the proposed scheme are
same with Section IV-C. The average delay, which represents
the average time spent to transfer the chunk from the MEC
servers or the CDN to the requesting user, is measured instead
of joint time and buffering ratio in Section IV-C.

Figure 10 shows the results of cache performance on cache
(bytes) hit ratio and backhaul byte ratio with ζ = 15, 30, 50
over various cache sizes for LRU,MPV, the proposed scheme
and the proposed scheme with collaboration. The cache
sizes are set as [5, 7, 10, 20, 40, 80] (Gbit). As shown
in Figure 10(a)-10(f), the proposed scheme achieves better
performance on cache (bytes) hit ratio over cache sizes com-
pared to LRU entirely, as follows: {+2.4%, +1.5%, +1.1%,

+1.1%,+1.1%, 1%} with ζ = 15, {+6.5%,+4.1%,+2.3%,
+0.8%,+0.9%,+0.9%}with ζ = 30 and {+10.3%,+7.8%,
+5.1%, +1.6%, +1%, +1.1%} with ζ = 50. Note that
the performance of the proposed scheme get better as the
live latency ζ increases and the cache size decreases. This
indicates that the proposed scheme is more robust than LRU
for the variations of live latency. In the small live latency
ζ = 15 or in the large cache sizes [20, 40, 80] (Gbit),
the proposed scheme achieve very slight better performance
than LRU. The reason is that, in this scale-down experiment
environment, the cache sizes [20, 40, 80] are very sufficient
for LRU to cache all of available highly popular chunks and
the small live latency significantly reduces the range of highly
popular chunks to be cached. For that reason, the performance
of LRU get worse with decreasing the cache size or increasing
the live latency. As shown in Figure 10(g)-10(i), the proposed
scheme also achieve better performance in most cases but
slightly worse performance in some cases on backhaul byte
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FIGURE 11. Comparision results on cache hit bytes per backhaul bytes with ζ = 15,30,50 over cache sizes.

FIGURE 12. Comparision results on average delay with ζ = 15,30,50 over cache sizes.

ratio over cache sizes compared to LRU, as follows: {−1.4%,
−0.5%, +0.02%, −0.2%, −0.01%, +0.08%} with ζ = 15,
{−5.1%, −2.8%, −1.2%, +0.5%, +0.04%, +0.2} with ζ =
30 and {−9.2%,−6.8%, -4%,−0.6%,+0.2%,−0.1%} with
ζ = 50. However, as shown in Figure 11, the proposed
scheme outperforms LRU on cache hit bytes per backhaul
bytes for every case regardless of the live latency ζ and the
cache size, even though LRU shows slightly better backhaul
bytes ratio than the proposed scheme in some cases. Basically,
the proposed scheme generates the additional backhaul bytes
due to caching operations to download chunks in advance.
Therefore, if most of the chunks cached in advance are not
used enough, the proposed scheme can generate much bigger
backhaul bytes than LRU. The results show the proposed
scheme resolving these problems efficiently by maximizing
the reuse of chunks in the cache. Meanwhile, the proposed
scheme with collaboration achieve in average the higher
performance on cache (bytes) hit ratio about 12.7%, 13.2%,
13.8% over ζ = 15, 30, 50 in comparison of LRU. The
proposed scheme with collaboration also achieve in average
the lower performance on backhaul bytes ratio about 11.5%,
12%, 11.8% over ζ = 15, 30, 50 in comparison of LRU. Note
that the proposed scheme with collaboration outperforms
LRU on cache (bytes) hit ratio and backhaul byte ratio for
every case regardless of the live latency ζ and the cache
size. Since LRU and MPV are not aware of the collaboration
of MEC servers, they cannot benefit from the potential of
increasing cache hit and utilizing the storage capacity ofMEC
servers more efficiently. Finally, Figure 12 shows the results

of the average delay with ζ = 15, 30, 50 over various cache
sizes for LRU, MPV, the proposed scheme and the proposed
scheme with collaboration. The proposed scheme reduce the
average delay over cache sizes compared to LRU, as follows
in percentage: {1% 3.2%, 2.3%, 1.2%, 2%, 1.8%, 1.6%} with
ζ = 15, {7.7%,4.8%, 3%, 1.5%, 1.5%, 1.8%} with ζ = 30
and {11.5%, 9.1%, 6.3%, 2.4%, 1.4%, 1.7%} with ζ = 50.
The proposed scheme with collaboration also achieves in
average the reduction of average delay in percentage about
13.4%, 13.8%, 14% over ζ = 15, 30, 50 in comparison
of LRU. Note that the proposed scheme and the proposed
scheme with collaboration outperforms LRU on the average
delay for every case regardless of the live latency ζ and the
cache size.

V. CONCLUSION
In this paper, we addressed the limitation of static pop-
ularity estimation model when applied to live streaming
following STV characteristics. In live streaming, they can-
not achieve the acceptable performance on cache hit and
increase the cache management cost including MEC storage
cost and backhaul network traffic cost. In order to resolve
these problems, we proposed STV request model to esti-
mate the popularity distribution of live channels. We also
proposed STV request model-based collaborative caching
scheme to cache highly popular content in multiple live
channels, utilizing the storage capacity of collaborative edge-
servers efficiently. In order to evaluate the performance
of STV request model-based collaborative caching scheme,
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we implemented MECCS for live DASH streaming and con-
ducted real live streaming experiments in laboratory scale.
In addition, we also conducted trace-driven experiments with
real trace data of Twitch.tv in large scale. In these experi-
ments, the results showed that the proposed scheme outper-
forms the existing schemes on cache (bytes) hit ratio and
average delay (or join time and buffering ratio) for every
case regardless of the live latency ζ and the cache size, while
guaranteeing a reasonable backhaul bytes ratio. Especially,
the proposed scheme with collaboration improve the cache
(bytes) hit ratio about 12 ∼ 13% while reducing the back-
haul bytes ratio about 11 ∼ 12%, compared to the existing
schemes. It also reduces the average delay about 13 ∼ 14%.
As a result, we prove that the proposed scheme is able to
maximize cache hit for satisfying the QoE of end-users and
reduce the backhaul traffic for live streaming.
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