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ABSTRACT Tremendous strides have been made in face detection thanks to convolutional neural network.
However, the performance of previous face detectors deteriorates dramatically as the face scale shrinks.
In this paper, we propose a novel scale-invariant face detector, named Small Faces Attention (SFA) face
detector, for better detecting small faces.We first present multi-branch face detection architecture which pays
more attention to faces with small scale. Then, feature maps of neighbouring branches is fused so that the
features coming from large scale can auxiliary detect hard faces with small scale. Finally, we simultaneously
adopt multi-scale training and testing to make our model robust towards various scale. Comprehensive
experiments show that SFA significantly improves face detection performance, especially on small faces.
Our method achieves promising detection performance on challenging face detection benchmarks, including
WIDER FACE and FDDB datasets, with competitive runtime speed. Both our code and model will be
available at https://github.com/shiluo1990/SFA.

INDEX TERMS Face detection, small face, convolutional neural network, deep learning.

I. INTRODUCTION
Face detection is a fundamental step of many face related
applications, such as face alignment [1], [2], face recogni-
tion [3], [4], face verification [5], [6] and face expression
analysis. Excellent face detectors can exactly classify and
locate faces from an image. In recent years, deep learning
methods especially convolutional neural networks (CNN)
have achieved remarkable successes in a variety of com-
puter vision tasks, ranging from image classification [7],
[8] to object detection [9]–[12], which also inspire face
detection. Unlike traditional methods of hand-crafted fea-
tures, CNN-based method can extract face features automat-
ically. Anchor-based face detectors play a dominant role in
CNN-based face detectors. They detect faces by classifying
and regressing a series of pre-set anchors, which are gener-
ated by regularly tiling a collection of boxes with different
scale on the images.

Small faces are difficult to be detected due to its small
scale. Faces with high detection difficulty are categorized
as hard faces. Most of small faces belong to hard faces.
However, small scale is just one of those variations making
faces hard to be detected. Better tackling hard faces is helpful
for detecting small faces.
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Despite significant progress, there are still relevant open
questions in face detection. Specifically, the performance of
anchor-based face detectors drops dramatically as the face
scale reduces. To solve this problem, some improvements are
applied in our method to better detect small faces. That is our
initial motivation.

In this paper, we propose the Small Faces Attention (SFA)
face detector to seek out more faces with small scale. We first
present multi-branch face detection network to deal with
large, medium and small faces respectively. In particular, two
branches in SFA focus on small faces. Then, we redesign
the anchors, named small faces sensitive anchor design,
by adding more anchors to match small faces. Besides, fea-
ture map fusion is applied in SFA by combining high-level
features into low-level features. We fuse the feature maps of
neighboring branches and employ the features coming from
large scale to auxiliary detect hard faces with small scale.
Note that only two branches for small faces mentioned above
use feature map fusion. Finally, we adopt multi-scale training
and testing to enhance the performance of face detection.
Though previous face detectors are scale-invariant by design,
image pyramid can also improve the performance in both
training and testing phase.

SFA performs face detection in a single stage via scanning
the entire image with a sliding window fashion. It detects
faces directly from the early feature maps by classifying a
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set of predefined anchors and regressing them at the same
time. More importantly, SFA can find faces from images with
arbitrary size and the runtime of our method is independent
of the number of faces. This is in contrast to proposal-based
two stage detectors such as Faster R-CNN [12], whose scale
linearly with the number of proposals. Meanwhile, SFA is
scale-invariant by design. We simultaneously detect faces
with multiple scale from different layers in a single forward
pass of the network. For clarity, the main contributions of this
paper can be summarized as:

(1) We present multi-branch face detection architecture
which pays more attention to small faces.

(2) Feature map fusion is applied by fusing the feature
maps of neighbouring branches and employ the features
coming from large scale to auxiliary detect hard faces with
small scale.

(3) We simultaneously adopt multi-scale training and test-
ing to make our model robust towards various scale.

(4) Our method achieves promising detection performance
on challenging face detection benchmarks, includingWIDER
FACE and FDDB datasets, with competitive runtime speed.

The rest of the paper is organized as follows. Section II
briefly reviews the related work in face detection. Section III
presents the proposed SFA face detector. Section IV shows
our experimental results. Section V concludes this paper.

II. RELATED WORKS
Face detection is a critical and fundamental step to all facial
analysis applications, and has been extensively studied over
the past few decades. The existing algorithms can be roughly
divided into two categories as follows.
Traditional Approaches: The milestone work of Viola and

Jones [13] used Haar-like features and AdaBoost to train
a cascade of face detectors that achieved a good accuracy.
After that, many approaches have been proposed based on
the Viola-Jones detectors to advance the state-of-the-art in
face detection. LBP [14] and its extension methods intro-
duced local texture features for face detection. These fea-
tures have been proved to be robust to illumination variation.
NPDFace [12] was to address challenges in unconstrained
face detection, such as arbitrary pose and heavy occlusion. All
of these detectors extract hand-crafted features and optimize
each component separately, which makes these traditional
face detectors less optimal.
CNN-Based Approaches: In contrast to traditional face

detection approaches, CNN-based face detectors greatly
improve the detecting performance in recent years. These
methods can train on huge and challenging face datasets and
automatically extract discriminative features. Furthermore,
they can be easily parallelized on GPU cores for accelera-
tion in testing phase. CascadeCNN [16] developed a cascade
architecture built on CNNs to detect face coarse to fine.
Faceness [17] trained a series of CNNs for facial attribute
recognition to detect partially occluded faces. MTCNN [18]
proposed to jointly solve face detection and alignment
using several multi-task CNNs. FaceHunter [19] proposed

a new multi-task CNNs based face detector to discriminate
face/non-face and regress face box.

Anchor was first proposed by Faster R-CNN, and then
it was widely used in both two stage and single stage
object detectors. Later, anchor-based detecting methods were
applied in face detection leading to a remarkable progress.
SSH [20] introduced a single stage headless face detec-
tor and modelled the context information by large fil-
ters on each prediction module. S3FD [21] presented a
scale-equitable framework to handle different scales of faces.
FaceBoxes [22] introduced anchor densification to ensure
different types of anchors have the same density on the image.
Face R-CNN [23] employed a new multi-task loss func-
tion based on Faster R-CNN framework. CMS-RCNN [24]
exploited contextual information to enhance performance.
Face R-FCN [25] re-weighted embedding responses on score
maps and eliminated the effect of non-uniformed contribution
in each facial part.

Despite its great achievement, the main drawback of these
frameworks is their poor detection performance for faces
with small scale. To address this problem, great efforts have
been done in this aspect. HR [26] built multi-level image
pyramids to find upscaled small faces. S3FD [21] proposed
anchor matching strategy to improve the recall rate of small
faces. Shrivastava et al. [27] introduced a novel anchor design
to guarantee high overlaps between small faces and anchor
boxes.

Although many face detectors are developed, the detection
accuracy is still not satisfied, especially for small faces. In this
paper, we are interested in developing efficient face detector
to better deal with small faces. To this end, SFA face detector
is proposed extending from SSH which is an elegant and
efficient detection architecture.

III. PROPOSED METHOD
A. GENERAL ARCHITECTURE
The pipeline of face detection using SFA is illustrated
in Fig. 1(a). The input image I with arbitrary size is resized
to form an image collection P = {P1,P2, · · · ,Pi, · · · ,Pn}
according to scale S = {S1, S2, · · · , Si, · · · , Sn} in
Multi-scale Testing. Each image Pi uses SFA to generate
detection result Di. We merge these detection results to get
image Df as our final detection result of input image I.
Fig. 1(b) shows the network architecture of SFA. First of

all, VGG-16 [7] is deployed to extract feature maps from
resized image Pi. Then, Feature Map Fusion is applied to
fuse feature maps from Conv3_3, Conv4_3, and Conv5_3.
Finally, we use a set of multi-branch detection modules to
classify face/non-face and regress the bounding boxes. Detec-
tion module M0, M1, M2, and M3 detect faces with small,
medium, and large scale respectively. We exploit NMS to
generate detection result Di of image Pi.

B. MULTI-BRANCH DETECTION ARCHITECTURE
CNN-based face detectors exploit convolution and pooling
operation to extract discriminative features with different
receptive fields (RF). Specifically, the size of RF enlarges
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FIGURE 1. (a) The pipeline of face detection using SFA. (b) The network architecture of SFA. It consists of VGG-16, feature map fusion,
Multi-branch Detection Module and Multi-scale Testing.

TABLE 1. The detection layer, receptive field and attention scale of each
detection module in SFA. DL: detection layer, RF: receptive field, AS:
attention scale of faces, DM: detection module.

gradually as the feature maps are extracted from low-level to
high-level layers as listed in Tab. 1. Thus, the size of RF chal-
lenges the scale of faces. Low-level features are lost gradually
when CNN-based feature extraction method is applied. In the
end, minority feature information is preserved for small faces,
which leads to poor performance in detecting small faces.
Therefore, it is necessary to detect small faces from early
detection layers where still maintain more low-level features.

To this end, we propose a new scale-invariant face detec-
tion architecture, named multi-branch detection architecture
as shown in Fig. 1(b). Inspired by the divide and con-
quer strategy, we detect faces from four different layers of
VGG-16 using detection modules M0, M1, M2, and M3.
Conv3_3, Conv4_3, Conv5_3, and Pool5 are selected to con-
nect to the detection modules M0, M1, M2, and M3 sepa-
rately. These modules have strides of 4, 8, 16, and 32. And
they are designed to detect small, medium, and large faces

respectively. In particular, two branches ofM0 andM1 in SFA
focus on faces with small scale.

During the training phase, each detection module is trained
to detect faces from target scale. To specialize each of the
four detection modules for a specific range of scale, we only
back-propagate the loss for the anchors which are assigned
to faces in the corresponding range. This is implemented by
distributing the anchors based on their size to these four mod-
ules as discussed in Section III-C. Unlike S3FDwhichmerges
different scale feature maps and forms a comprehensive face
features, our work indicates that multi-branch detection mod-
ules in scale can be optimally learned separately. In this way,
different scale of faces can be automatically divided into
different detection modules. This is the divide and conquer
strategy to tackle unconstrained face detection in a single
detector.

During inference, the predicted boxes from the different
branches are joined together followed by Non-Maximum
Suppression (NMS) to form the final detection result.

C. SMALL FACES SENSITIVE ANCHOR DESIGN
Anchor-based face detection methods can be regarded as a
binary classification problem, which determine if an anchor
is face or not. However, few anchors in previous face
detectors are offered to match small faces. For example,
the size of smallest anchors in SSH [20], S3FD [21] and
Shrivastava et al. [27] is 16.
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TABLE 2. Small faces sensitive anchor design. DM: detection module, AR:
anchor rate, BS: base size, AS: attention scale.

To better detect small faces, we propose small faces sensi-
tive (SFS) anchor design. We tile anchors on a wide range
of size varying from 4 to 512 (i.e., 4, 8, 16, 32, 64, 128,
256, 512 in our method), which guarantees that various scale
of faces have enough features for detection. More precisely,
the smallest anchor in our method is 4 as listed in Tab. 2.
And the anchors of 4, 8, 16, and 32 are applied for faces
with small scale. Benefit from the multi-branch detection
architecture as discussed in Section III-B, SFA reasonably
arranges small faces sensitive anchors into these detection
modules and forms our SFS anchor design, which improves
the robustness to face scale.

For implementation, we use anchor ratio (AR) and base
size (BS) to form anchor design. AR multiple BS is the size
of anchor. The AR of {1, 2} inM0, {4, 8} inM1, {16, 32} in
M2, and {64, 128} inM3 is denoted as 4-branch AR. As listed
in Tab. 2, we form the SFS anchor design using 4-branch AR
with the BS of 4. Thus, plenty of small anchors are densely
tiled on the image. However, these small anchors inevitably
lead to a sharp increase in the number of negative anchors on
the background. Thanks to OHEM [28], SFA can balance the
positive and negative anchors with a ratio of 1:3 in each mini-
batch.Mining hard samples in training is critical to strengthen
the power of detector.

D. FEATURE MAP FUSION
Small faces are difficult to be detected not only because
of their small scale. Atypical pose, heavy occlusion,
extreme illumination, low resolution and other variations in
unconstrained scenarios always make CNN-based feature
extraction hard to obtain sufficient and complete features for
detecting small faces. Therefore, most of small faces become
hard faces.

To further improve the ability of detecting hard faces with
small scale, we use the Feature Map Fusion (FMF) strategy.
FMF is applied in SFA by combining high-level features into
low-level features. We fuse the feature maps of neighboring
branches and apply the features coming from large scale to
auxiliary detect small faces according to a bold guess that
faces with neighboring scale have similar features.We use the
FMF strategy in branchM0 andM1 as seen in Fig. 1(b), which
receive the early extracted feature maps from Conv3_3 and
Conv4_3. Fig. 2 shows the architecture of FMFmodule.More
precisely, feature maps Fi+1 are upsampled and summed
up with feature maps Fi where i ∈ {0, 1}, followed by a
3×3 convolutional layer. We used bilinear upsampling in the
fusion process.

FIGURE 2. The architecture of feature map fusion module.

By using FMF strategy, SFA is robust to different kinds of
variations for small faces to some extent, including occlusion,
illumination, low resolution, blur, etc. Benefit from the fea-
ture maps coming from neighboring branch with large scale,
SFA can also detect small faces well even though the feature
maps in current branch are insufficient and incomplete due
to different kinds of variations. From the results of ablation
study in Section IV-C3, we can see that FMF strategy signif-
icantly improves the detection performance on the hard set
of WIDER FACE [29] dataset which includes a lot of small
faces.

In fact, medium scale faces can achieve sufficient and
complete features extracted by CNN-based face detector.
Therefore, there is no need to fuse the feature maps between
medium and large faces. Ablation study in Section IV-C3
also shows that FMF strategy is not fit for medium
faces.

E. MULTI-SCALE TRAINING AND TESTING
Instead of using a fixed scale in both training and test-
ing phase, we perform Multi-scale Training (MS-Training)
and Multi-scale testing (MS-Testing) strategy to learn more
features across a wide range of scale, which makes our
model more robust towards different scale and significantly
improves the detection performance.

In the training phase, we first resize the shortest side of
the input image I up to Si (Si ∈ S) while keeping the largest
side below Max Size (1600 in our method). Then, we scale
the image according to S in MS-Training. For example, when
the scale S of MS-Training is set to 500, 800, 1200, and
1500, denoted as 4-scale, the input image I is first resized
to 1200×1600, then we scale the resized image with the size
of 500, 800, 1200, and 1500 in the pyramid. In the testing
phase, MS-Testing is performed accordingly. We build an
image pyramid with a wider range of scale for each test
image. Limited to the capacity of GPU memory, the scale
of 500, 600, 700, 800, 900, 1000, 1100, 1200, and 1600,
denoted as wide-scale, are applied in multi-scale testing
phase. Each scale in the pyramid is independently tested. The
detection results from various scale are eventually merged
together as the final result Df of the input image I as shown
in Fig. 1(a).
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MS-Training makes parameters of four detection modules
(detection module M0, M1, M2, and M3) in SFA robust to
detect faces with various scale as illustrated in Tab. 2. Dif-
ferent detection modules focus on its own attention scale
of faces. As MS-Testing is used in the testing phase, each
face of input image I will be rescaled accordingly. These
rescaled faces may be detected by SFA from different detec-
tion modules whose attention scale match with the size of
rescaled faces. When at least one rescaled face is found by
certain detection module, the original face in input image I is
successfully detected.

Benefit from MS-Training and MS-Testing, SFA enlarges
small faces and easily detect them in medium and large
anchors. Fig. 3 shows an example of using MS-Testing.
The table in Fig. 3 lists different detection result Di of
rescaled Pi. These detection results are merged to generate
the left image as its final detection result Df . We denote f =
{f1, f2, f3, f4, f5, f6} as the face collection of final detection
result Df . Faces f3 and f4 are small faces while they can be
detected from rescaled image P4 by using detection module
M2 whose anchors attention faces with medium scale. At the
same time, SFA shrinks large faces and better detects them
in small and medium anchors as well as rescales and finds
medium faces with the help of small and large anchors to
some extent. As seen in Fig. 3, face f5 is medium face but they
can be detected from rescaled image P4 by using detection
module M3 whose anchors attention faces with large scale.

FIGURE 3. An example of using multi-scale testing.

Though SFA is scale-invariant by design, image pyra-
mid can also improve the performance in both training and
testing phase. Ablation study in Section IV-C3 shows that
MS-Training can enhance the detection performance on all
subsets, especially on the hard set. Surprisingly, the runtime
of SFA will not increase if we adopt MS-Training. Hence,
we denoted it as our real-time SFA face detector which adopts
MS-Training strategy only. Besides, MS-Testing can improve
the detection performance on all subsets by a large margin.
Therefore, we deploy both MS-Training and MS-Testing
strategy in our final SFA face detector model.

F. LOSS FUNCTION
During the training phase, SFA uses a multi-task loss func-
tion [9], [12], [20], [21]. This loss function Eq. (1) can be

formulated as follows:

L({pi}, {ti}) =
∑

k

1

N cls
k

∑
iεAk

Lcls(pi, p∗i )

+λ
∑

k

1

N reg
k

∑
iεAk

p∗i Lreg(bi, b
∗
i ) (1)

where index k goes over the detection modules {Mk}K1 (e.g.,
K = 4 in SFA with 4-branch detection modules) and i is the
index of an anchor in detection module Mk . Ak represents
the set of anchors defined in detection module Mk . The
classification loss Lcls is softmax loss over two classes (face
vs. background). pi is the predicted probability that anchor i is
a face. The ground-truth label p∗i is 1 if the anchor is positive,
and 0 if the anchor is negative. Nclsk is the number of anchors
in detection moduleMk which participate in the classification
loss computation. The regression loss Lreg is the smooth L1
loss defined in [9]. It can be formulated as seen in Eq. (2) and
Eq. (3):

Lreg(x, y) = smoothL1 (x − y) (2)

smoothL1 (x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

(3)

bi is a vector representing the 4 parameterized coordinates of
the predicted bounding box, and b∗i is that of the ground-truth
box associated with a positive anchor. p∗i Lreg means the
regression loss is activated only for positive anchors and
disabled otherwise, and N reg

k =
∑

iεAk p
∗
i . Besides, λ is used

to balance these two loss terms.

IV. EXPERIMENTS
In this section, we firstly analyze the effectiveness of our pro-
posed strategies with comprehensive ablative experiments.
Then, we evaluate the final optimal model and achieve
promising results on common face detection benchmarks.
The inference time is finally presented.

A. EXPERIMENTAL SETUP
The parameters of SFA network are initialized from a
pre-trained ImageNet classification model. Our method
fine-tunes the resulting model using stochastic gradient
descent (SGD) with 0.9 momentum and 0.0005 weight decay.
The maximum number of iterations is 54k and stepsize is
18k. The learning rate is firstly set to 0.004 and decreases
by a factor of 0.1. Anchors with IoU greater than 0.45 are
assigned to positive class and anchors which have IoU less
than 0.35 with all ground-truth faces are assigned to the neg-
ative class while the rest are ignored. For anchor generation,
we use AR of {1, 2} in M0, {4, 8} in M1, {16, 32} in M2,
and {64, 128} inM3 with a BS of 4. All anchors have aspect
ratio of one. Each training image uses horizontal flipping
with probability of 0.5 as our data augmentation strategy.
We employ the multi-task loss as our objective function.
Besides, online negative and positive mining (OHEM) [28] is
applied to balance the positive and negative training examples
with a ratio of 1:3. During training, 256 detections per module
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TABLE 3. The results of comprehensive ablation studies.

are selected for each image. During inference, each module
outputs 1000 best scoring anchors as detections and NMS
with a threshold of 0.3 is performed on the outputs of all
modules together. Our method is implemented in Caffe [30]
and all the experiments are trained on 2 NVIDIA GeForce
GTX 1080Ti GPUs in parallel.

B. DATASETS
WIDER FACE dataset [29]: This dataset contains 32,203

images with 393,703 labeled faces with a high degree of
variability in scale, pose and occlusion. It is organized based
on 61 event classes, which havemuchmore diversities and are
closer to the real-world scenarios. The images in this dataset
are split into training (40% and 12880 images), validation
(10% and 3226 images), and testing (50% and 16097 images)
set. Thus, 158989 labeled faces are in the training set, while
39496 in the validation set and the rest in the testing set. Faces
in this dataset are classified into Easy, Medium, and Hard
subsets according to the difficulties of detection. The hard
subset includes a lot of small faces. Average precision (AP)
score is used as the evaluation metric. Plotting scripts for
generating the precision-recall (PR) curves are provided to
evaluate the performance on the validation set online. While
evaluating on the testing set, the results are needed to be sent
to the dataset server for receiving the PR curves. We train all
models on the training set of the WIDER FACE dataset and
evaluate on its validation and test sets. Ablation studies are
also performed on the validation set.

FDDB dataset [31]: It contains the annotations for
5171 faces in a set of 2845 images taken from news articles on
Yahoowebsites.Most of the images in the FDDBdataset have
less than 3 faces that are clear or slightly occluded. The faces
generally have large sizes and high resolutions compared to
WIDER FACE. Instead of rectangle bounding boxes, faces
in FDDB are represented by bounding ellipses. We use the

same model of Experiment XIII presented in Section IV-C
which trained on WIDER FACE training set to perform the
evaluation on the FDDB dataset.

C. ABLATION STUDY
We conduct ablation experiments to examine how each of
these proposed strategies affects the final performance. The
detailed experimental results of the ablation studies are listed
in Tab. 3.

1) BASELINE SETUP
Our baseline detector consists of 3-branch detection architec-
ture (branchM1,M2, andM3) and 3-branch AR ({1, 2} inM1,
{4, 8} in M2, and {16, 32} in M3) with a BS of 16 into three
detection modules as listed in Tab. 3.

2) ABLATION SETTING
First of all, to better understand the impact of multi-branch
detection architecture, we add a new branch M0 on the base-
line to form 4-branch detection architecture and denote it as
Experiment I. To be fair, detection module M0 use the same
AR as detection moduleM1 does (e.g., {1, 2} in bothM0 and
M1). All other factors are the same.

Second, we evaluate the effect of SFS anchor design. For
anchor generation, we use 4-branch AR (e.g., {1, 2} in M0,
{4, 8} in M1, {16, 32} in M2, and {64, 128} in M3) but with
different BS of 16, 8, and 4 in Experiment II, III, and IV
separately. All of these experiments are based on 4-branch
detection architecture like Experiment I. Other parameters
remain the same.

Third, by further examining the impact of FMF strategy,
we add the FMF module M0, M1, M0M1, and M0M1M2
in experiment V, VI, VII, and VIII respectively. All of
these experiments are based on the detection architecture
of Experiment IV.
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Fourth, we evaluate the influence of MS-Training and
MS-Testing. At first, we exploit MS-Training in Experiment
IX, which is based on Experiment VII. Similar to SSH,
4-scale (e.g., 500, 800, 1200, and 1500) is used in MS-
Training. Next, we apply 4-scale MS-Testing in Experiment
X and XI based on Baseline and Experiment VII. Then,
both MS-Training and MS-Testing are deployed in Exper-
iment XII, also based on experiment VII, with the same
4-scale mentioned above. Finally, compared to Experiment
XII, a wider range of scale is used in Experiment XIII forMS-
Testing. Limited to the capacity of GPU memory, wide-scale
(e.g., 500, 600, 700, 800, 900, 1000, 1100, 1200, and 1600)
is selected.

3) ABLATION RESULTS
a: MULTI-BRANCH DETECTION ARCHITECTURE IS BETTER
Compared to the 3-branch baseline in Tab. 3, 4-branch detec-
tion architecture in Experiment I slightly improves the detec-
tion performance on the hard set (rising by 0.3%). The
result of Baseline and Experiment I show that 4-branch
detection architecture is better for improving the detection
performance, especially on the hard set. Therefore, the fol-
lowing ablation studies will adopt the 4-branch detection
architecture.

b: SMALL FACES SENSITIVE ANCHOR DESIGN IS CRUCIAL
FOR DETECTING SMALL FACES
The comparison among the result of Experiment II, III,
and IV in Tab. 3 indicates that the detection performance
gradually improves on the easy, medium, and hard set as
the decrease of BS in anchor design. Besides, compared to
Experiment I, the result in Experiment IV is slightly lower on
all validation sets. Though the same AR of {1, 2} in detection
module M0, BS is 16 in Experiment I but 4 in Experiment
IV, leading to different anchor sizes. Smaller anchors make
it possible to find some more small faces at the cost of the
rising of false positive. Thanks to the FMF strategymentioned
in Section III-D above, we can decrease the rate of false
positive in the following ablation studies. In order to achieve
an elegant anchor design, we will adopt SFS anchor design
like Experiment IV in the following ablation studies.

c: FEATURE MAP FUSION STRATEGY IS PROMISING FOR
DETECTING HARD FACES
From the results of Experiment VII in Tab. 3, we can see that
the detection performance has a great improvement, espe-
cially on hard set (about 0.9% compared to Experiment IV),
by using FMF module M0M1 simultaneously. Surprisingly,
the detector with FMF is robust to different kinds of variations
to some extent, including occlusion, illumination, blur, etc.
When FMF module M0M1M2 are used in Experiment VIII,
the detection performance sharply drops on the hard set.
Compared to Experiment IV without feature maps fusion,
the detection performance in Experiment VIII is worse on the
hard set (about 0.9%). Therefore, we will use FMF module
M0M1 in the following ablation studies.

d: MULTI-SCALE TRAINING AND TESTING CAN
SIGNIFICANTLY IMPROVE THE DETECTING PERFORMANCE
The result of Experiment IX shows that MS-Training is
helpful for enhancing the detection performance, especially
on the hard set. We denoted it as our real-time SFA face
detector which adopts MS-Training strategy. Benefit from
MS-Testing, the detection performance of Experiment X and
XI have a great improvement on all validation sets com-
pared to Baseline and Experiment VII. Later, Experiment
XII adopts both MS-Training and MS-Testing with the same
4-scale simultaneously and further improves the detection
performance. Finally, wide-scale is used in Experiment XIII
for MS-Testing. Compared to Experiment VII, the result of
Experiment XIII increases 2.2%, 2.1%, and 3.6% on the easy,
medium, and hard set separately, which demonstrates that
MS-Training and MS-Testing can significantly improve the
detecting performance.

Combining all the above strategies achieve the best detec-
tion performance (as shown in Experiment XIII) and denote
it as our final SFA detector model.

D. EVALUATION ON BENCHMARK
We evaluate our proposed method against state-of-the-
art methods on two public face detection benchmarks
(i.e. WIDER FACE [29] and FDDB [31]).

1) WIDER FACE DATASET
Our method is trained on the training set of the WIDER
FACE dataset and evaluate on its validation and test-
ing set against the recently published state-of-the-art
face detection methods including S3FD [21], SSH [20],
HR [26], MSCNN [32], CMS-RCNN [24], Multitask Cas-
cade CNN [18], LDCF+ [33] and Multiscale Cascade
CNN [29]. The precision-recall curves and AP values on
WIDER FACE validation and testing sets are presented
in Fig. 4. As can be seen, the proposed SFA approach con-
sistently achieves the impressive performance across all the
three subsets, especially on the hard subset which mainly
contains small faces. It achieves the promising average pre-
cision in all level faces, i.e. 0.949 (Easy), 0.936 (Medium),
and 0.866 (Hard) for validation set, and 0.941 (Easy), 0.930
(Medium), and 0.862 (Hard) for testing set. The result
in Fig. 4 not only demonstrates the effectiveness of the pro-
posed method but also strongly shows the superiority of the
proposed model in detecting small and hard faces.

2) FDDB DATASET
In these datasets, we resize the shortest side of the input
images to 400 pixels while keeping the larger side less
than 800 pixels, leading to an inference speed of more than
20 FPS. And we directly use our final SFA detector model
in Experiment XIII and compare SFA against the recently
published state-of-the-art methods including FD-CNN [34],
ICC-CNN [35], RSA [36], S3FD [21], FaceBoxes [22],
HR [26], HR-ER [26], DeepIR [37], LDCF+ [33],
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FIGURE 4. Precision-recall curves on WIDER FACE validation and test sets.

FIGURE 5. Evaluation on the FDDB dataset.

UnitBox [38], Conv3D [39], Faster RCNN [40] and
MTCNN [18] on FDDB dataset. For a more fair comparison,
the predicted bounding boxes are converted to bounding
ellipses. Fig. 5 show the discrete ROC curves and continuous
ROC curves of these methods on the FDDB dataset respec-
tively. The proposed SFA approach consistently achieves the
impressive performance in terms of both the discrete ROC
curves and continuous ROC curves. These results demon-
strate the effectiveness and good generalization capability of
SFA to detect unconstrained faces.

E. INFERENCE TIME
In this section, we report the inference time of our pro-
posed SFA face detector on the WIDER FACE validation
set. Benefit from the single stage of SFA, our inference time
is independent of the number of faces in an image. It can
detect faces from images with arbitrary size. Specifically,
the inference time of our proposed method is determined by

two aspects as follows: (1) The size of entry feature map
(W×H); (2) The number of scale Ns in MS-testing. A feature
map is a tensor of size C×W×H, where C is the number of
channels, W and H are the width and the height of feature
map respectively. When the max scale Smax in MS-Testing
and Max Size are set, the size of entry feature map in SFA is
determined at the same time. More precisely,W is set to Smax
and H is set to Max Size.

The speed is measured by using NVIDIA GeForce GTX
1080Ti GPU and cuDNN v5.1 with Intel Core i7-6850k
CPU@3.60GHz. Tab. 4 shows the inference time with respect
to the size of entry feature map (W×H) and the number of
scales Ns in MS-Testing. For the 1200×1600 entry feature
map, our real-time SFA face detector can run at 5 FPS as
well as maintain high performance, as the row 5 listed in
Tab. 4. Our final SFA detector as the last row of Tab. 4
described can take 1.4s to detect faces from an image with
1500×1600 entry feature map. From Experiment XII in
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FIGURE 6. Qualitative results of SFA on the WIDER FACE validation set. Red bounding boxes are the faces that annotated on the
WIDER FACE validation dataset. Green bounding boxes represent the detection results. Best viewed in color. Please zoom in to see
some small detections.

TABLE 4. SFA inference time with respect to the size of entry feature map
(W×H) and the number of scales Ns in MS-Testing.

Tab. 3 and the last second row in Tab. 4, we can see that
when using MS-Training and MS-Testing with the same
4-scale, our method can take 0.75s to detect faces from an

imagewith 1500×1600 entry featuremap. It achieves slightly
lower detection performance against our final SFA detector
but reduces half of inference time. Therefore, our SFA face
detector is fit for real applications by simultaneously using
MS-Training and MS-Testing with 4-scale.

F. QUALITATIVE RESULTS
Fig. 6 shows some examples of the face detection results
using the proposed SFA on the WIDER FACE validation
dataset. Fig. 6(a) lists some difficult cases. Our method is
able to detect faces with different scales, especially for small
faces (see the first row in Fig. 6(a)). Besides, SFA can

VOLUME 7, 2019 171617



S. Luo et al.: SFA: SFA Attention Face Detector

FIGURE 7. Qualitative results of SFA on the FDDB dataset. Red bounding ellipses are the faces that FDDB labeled; Green bounding
boxes are the detection results. Best viewed in color. Please zoom in to see some small detections.

also achieve satisfied detection results on hard faces caused
by atypical pose, heavy occlusion, exaggerated expression,
make up, extreme illumination and blur (see the last two
rows in Fig. 6(a)). Fig. 6(b) lists some selected false posi-
tives. In fact, most of the false positives in SFA are actually
human faces caused by missing labels (see the first two rows
in Fig. 6(b)). For other false positives, we find errors made
by our model are rather reasonable. They all have the pattern
of human face and fool our model to treat it as a face (see the
last row in Fig. 6(b)).

Fig. 7 shows some examples of the face detection results
generated by SFA on the FDDB dataset. Fig. 7(a) lists some
difficult cases including faces with different scale, atypical
pose, heavy occlusion, exaggerated expression, and blur.
Benefit from excellent performance of SFA in detecting small
faces and hard faces, we can find a lot of faces from human
perspective but lack of labels on the FDDB dataset, as seen
in Fig. 7(b). Our method is able to find extra faces with small
scale which are not labeled (see the first row in Fig. 7(b)).
Besides, some faces with atypical pose can also be detected
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(see the second row in Fig. 7(b)). The detection results of
faces with heavy occlusion, blur, and wrong label are shown
in the last row of Fig. 7(b).

V. CONCLUSION
In this paper, we propose a novel face detector, named Small
Faces Attention (SFA) face detector, to deal with the open
problem of anchor-based detection methods whose perfor-
mance drops sharply as the faces becoming small. Multiple
strategies are deployed in SFA for the sake of better detect-
ing small faces, such as multi-branch detection architecture,
small faces sensitive anchors design, feature map fusion
strategy, multi-scale training, and multi-scale testing strategy.
These strategies make SFA rapid, efficient, and robust to
detect faces in unconstrained settings, especially for small
faces. Extensive experiments demonstrate that our method
outperforms most of the recently published face detectors
and achieves promising performance on challenging face
detection benchmarks likeWIDERFACE and FDDBdatasets
with competitive inference speed.
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