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ABSTRACT This paper presents a control method intended to suppress the effects of manufacturing varia-
tions on nanomechanical systems. Often, the resonance characteristics of nanoscale devices are inconsistent,
due to unavoidable variations in the fabrication process. This is important because resonant vibrations
enhance the sensitivities of the devices. As such, the sensitivities of these systems can be degraded if
the device characteristics are not identified. To address this fundamental problem, this paper presents
a multidisciplinary method based on control theory, nanotechnology, and communication technology. A
stochastic optimal feedback controller is employed to enhance an average sensitivity by regarding the
variations as stochastic parameters. This method is applied to nanoscale receivers that detect transmitted
binary data based on binary phase-shift keying in communication systems. The proposed method controls
the vibrations of carbon nanotubes (CNTs) that serve as the antennas of the receiver. The proposed method
is demonstrated via a numerical simulation using nanoscale receivers with the manufacturing variation.
The simulation based on experimental data obtained from CNTs shows that the average performance of
the devices is enhanced.

INDEX TERMS Nanoelectromechanical systems, optimal control, stochastic systems.

I. INTRODUCTION
Nano- and micro-electromechanical systems (NEMS and
MEMS) both represent promising platforms for high sensi-
tivity sensing applications [1]–[7]. Resonant mode vibrations
are known to enhance the sensitivity of NEMS/MEMS, and
the associated nonlinear behavior can allow signal process-
ing devices to be miniaturized [8]–[14]. However, nanoscale
devices are difficult to fabricate exactly as designed, and
unavoidable manufacturing variations can cause changes in
the various characteristics of NEMS/MEMS, with potentially
significant effects on response [15]–[17]. The present work
demonstrates a simple control scheme to suppress the effects
of such variations. The aim of this process is to secure the
desired performance, especially in the case of the future
mass-production of NEMS/MEMS.
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Variation in these devices is often found in geometrical
properties, such as length and width, and/or the mass of the
vibrating point [15]–[17]. A typical example is presented
in Fig. 1, which shows a nanoscale cantilever (Fig. 1(a))
formed from a multi-walled carbon nanotube (CNT) on a
SiO2 wafer, together with electrodes produced using electron
beam lithography. Unfortunately, in the case of the fabricated
samples shown in Fig. 1(b), the cantilever length, L, and the
gap, h0, between the CNT tip and the anode are significantly
different from the design. The statistical variations are sum-
marized in Fig. 1(c), based on the distributions of the two
parameters among 108 fabricated samples. The fabrication
method is found in [18].

There have been many attempts employing control meth-
ods to achieve the required level of performance in such
devices. Unfortunately, the methods require the tuning
of controllers based on training sequences (see details
in Section II). Thus, it would be desirable to design
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FIGURE 1. An example of variations from design in a nanomechanical system. A CNT cantilever was designed (a) and 108 samples were fabricated
using a semiconductor process. Typical specimens of this device demonstrating production variation are presented in (b) and the statistical variations
are summarized in (c).

controllers for the devices that do not require costly tuning
processes.

The present work provides a simple control method
intended to suppress the effects of manufacturing variations
on nanomechanical systems. The proposed method is based
on our framework that exploits the statistics of stochastic
parameters [19]. Essentially, a parameter affected by manu-
facturing variation can be treated as a stochastic parameter
because the variations result from an unpredictable process
and/or environment. Although the exact value of the parame-
ter for each device may be unknown, statistics such as those
in Fig. 1(c) can be obtained based on taking measurements
from a sample of the fabricated devices. Following such
measurements, a feedback gain associated with the proposed
control method is calculated from the statistics. This tech-
nique results in a simple method because the gain can be
preset such that a tuning process is not required.

The remainder of this paper is organized as follows.
Section II reviews other control approaches related to this
subject. Section III describes a generalized problem that is
the focus of this paper. As a means of addressing the stated
problem, Section IV presents the proposed method, which is
based on our stochastic control method [19]. The proposed
method is applied to a nanoscale receiver [11] in Section V.
A numerical simulation based on experimental data obtained
from CNTs is performed to evaluate the proposed method
in Section V-C. Finally, conclusions are presented and future
work is discussed in Section VI.

II. LITERATURE REVIEW
Control methods intended to allow NEMS/MEMS to exhibit
the required level of performance are herein briefly reviewed.
One prior study researched means of controlling resonator
vibrations in nanomechanical systems, exhibiting manufac-
turing variations [20]. Along with optimal control crite-
ria [21], a variety of methods focusing on the control of
microscopic systems have been investigated [22]. These tech-
niques often incorporate a feedback control framework that is
effective if the feedback gain is optimized via tuning with a

training sequence [23]–[25]. However, these procedures are
extremely costly because of the tuning systems involved. In
contrast to these previous approaches, our proposed method
can preset a feedback gain without requiring tuning.

Our method presented in this paper is developed based
on our stochastic optimal control theory [19]. This theory
focuses on linear dynamical systems with time-invariant
stochastic parameters. Controlling the systems with such
parameters is as an important topic in the field of con-
trol theory (e.g., [26]–[28]). The time-invariant stochas-
tic parameters associated with this theory are defined as
static random variables that do not vary depending on time.
This time-invariant characteristic is well-suited to the rep-
resentation of manufacturing variations in physical param-
eters. Various control methods have also been proposed for
time-varying stochastic parameters (e.g., [29]–[34]). Param-
eters that vary over time are applicable to cases in which noise
has an effect on the parameters, in contrast to static man-
ufacturing variations. Also, some types of the time-varying
stochastic parameters are independent and identically dis-
tributed. Such a property simplifies control problems com-
pared with those of the time-invariant parameters. Although
several methods [29], [35] may treat both types of stochas-
tic parameters, the designed controllers are not state feed-
back laws or the parameters are assumed to be observable.
The method [19] employed in the present paper can design
state feedback controllers even for unobservable stochastic
parameters.

III. PROBLEM STATEMENT
The problem to be addressed in this paper is described herein
in a general form based on the equation of motion for a
nanomechanical system. In addition, to simplify the discus-
sion, we focus on a linear vibrational mode. The vibration is
excited by a force f (t) that is continuous and periodic with the
period Tf > 0. This vibration is characterized by the linear
equation:

m̃ẍ + γ̃ ẋ + k̃x = f − u(t), (1)
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where x is the oscillator coordinate, m̃ is the effective mass,
γ̃ is the friction coefficient, and k̃ is the spring constant [36].
The notation ˜ indicates a stochastic parameter. The three
parameters m̃, γ̃ and k̃ take bounded positive values that
are unknown and also stochastic because of manufacturing
variations. The motion reflected in x is unpredictable due to
its dependence on the stochastic parameter α := [m̃, γ̃ , k̃].
To reduce the effect of the variations, we employ feedback
control by adding the input variable u.
Traditional control theory states that the feedback gain,

which is included in the control input, can be determined by
maximizing a performance index [21]. This index, which is
denoted herein as J , depends on both the input and the state
variable of the system. In the case of (1), the state variable is
the coordinate x. Hence, the index can be written as:

Jα(u) =
1
T

∫ T

0
φ(xα)dt, (2)

where φ is a continuously differentiable predefined function
and T is the focused time interval. The subscript α indicates
that the corresponding variable/function is affected by the
stochastic parameter. The form of (2) allows us to consider
various types of performance indices because the choice of
the function φ determines the physical meaning of the index.
As an example, Jα(u) represents a power (mean square) of a
periodic x when φ(x)= x2 and T is the period of x.

Unfortunately, when maximizing the index Jα(u), two dif-
ficulties are associated with calculating the index. One issue
is that the index depends on the unknown parameter α, which
means that the value of the index is difficult to compute.
In addition, the calculation is affected by the form of the
control input. As an example, employing a nonlinear form
with higher-order terms of the state variable would result in
difficulty in finding the optimal gain.

IV. PROPOSED METHOD
In this section, we propose a control method for nanome-
chanical systems to solve the problem stated in Section III.
Section IV-A presents an overview of the proposed method.
The proposed method requires the use of two techniques
to estimate the probability distribution of the stochastic
parameter α and to solve an optimization problem regarding
the control input u. The two techniques are described in
Sections IV-B and IV-C. Finally, stability and robustness for
the proposed control method are analyzed in Section IV-D.

A. OVERVIEW
The proposed method addresses the two difficulties noted
in the last paragraph of Section III. To mitigate the first
issue, we focus on the optimization of an average value.
Specifically, the expected value of Jα(u) with respect to α.
The optimal feedback input is then determined using the
maximization:

max
u

∫
α

p(α)Jα(u)dα. (3)

Data-driven approaches estimate the probability density func-
tion (PDF) p(α) of α based on the measurement data obtained
from actual test samples. Example of estimated PDFs are
presented in Fig. 1(c). The details of the method used to
estimate the PDF are provided in Section IV-B.

An approximate solution to the optimization problem (3)
can be obtained based on our stochastic optimal control
theory [19]. Fortunately, this theory also solves the second
problem, by allowing the control input to be expressed in
terms of the linear equation:

uL(x, ẋ) = kgx + γgẋ, (4)

where kg and γg are the feedback gains, both of which should
be optimized. The controller in (4) is applied to the input u of
the oscillator in (1). After transposing u(t) in (1), substituting
u(t) = uL(x(t), ẋ(t)) and (4) into (1) yields the following
feedback system:

m̃ẍ + (γ̃ + γg)ẋ + (k̃ + kg)x = f . (5)

Let us assume that kg>− k̃ and γg>− γ̃ are satisfied for any
α = [m̃, γ̃ , k̃]. Stability and robustness of the feedback sys-
tem (5) are then guaranteed that are shown in Section IV-D.

The optimization problem (3) is considered with regard
to the feedback system (5). Unfortunately, straightforward
calculation of the performance index Jα(uL) is computation-
ally difficult because Jα(uL) contains the integral

∫ T
0 . . . dt ,

as shown in (2). Based on the form of the feedback sys-
tem (5), the index Jα(uL) can be approximated using a simple
function. Recall that f (t) is continuous and periodic with the
period Tf . If f (t) = 0 for any t , the feedback system (5) has no
periodic solution apart from the trivial one (x(t) = 0) because
(γ̃ +γg) > 0 and (k̃+ kg) > 0 for any α. Consequently, there
exists a unique periodic solution x̄α(t) with the period Tf to
the feedback system (5) that satisfies x̄α(t) = x̄α(t + Tf ) [37,
Theorem 2.1.1]. Using this periodic solution, in the case that
T = sTf for a natural number s ∈ {1, 2, . . . }, the index Jα(uL)
can be suitably approximated by:

Jα(uL) ≈ Ĵα(uL) := Jα(uL)|xα=x̄α,T=Tf

=
1
Tf

∫ Tf

0
φ(x̄α|u=uL )dt. (6)

The approximated index Ĵα(uL) can be readily calculated by
considering the periodic solution x̄α with the single period Tf .
The approximation in (6) is based on our prior work [38], and
the derivation of this approximation is provided in Appendix.

The proposed control method is summarized in Fig. 2 and
Algorithm 1. For the stochastic parameter α that is affected
by the manufacturing variation, the PDF p(α) can be obtained
by measurements of test samples. Based on the resulting
information, the two sub-optimal feedback gains k̆g and γ̆g
are calculated by solving the optimization problem:

(k̆g, γ̆g) = arg max
kg,γg

∫
α

p(α)Ĵα(uL)dα. (7)
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FIGURE 2. Proposed control framework for manufacturing variations.

Algorithm 1 Stochastic Optimal Control to Suppress the Manufacturing Variation in a Nanomechanical System
Input: N fabricated samples of a nanomechanical system
Output: Mass production of the nanomechanical system controlled using the preset of feedback gains
1: Definiton of the stochastic parameter α (e.g., α := [m̃, γ̃ , k̃])
2: Measurement of the stochastic parameter αn of the n-th sample (n = 1, . . . ,N )
3: Estimation of the PDF p(α) for α based on the measurement data α1, α2, . . . , and αN (see Section IV-B)
4: Definition of the feedback controller uL(x, ẋ) as the linear form in (4)
5: Determination of the feedback gains k̆g and γ̆g by solving the optimization problem (7) (see Section IV-C)
6: Mass production of the nanomechanical system employing the feedback controller uL(x, ẋ) = k̆gx + γ̆gẋ

Section IV-C explains the approach to solving the optimiza-
tion problem (7). The vibrations of the devices are controlled
using linear feedback control inputs in association with the
resulting gains. These gains can be preset on the devices
during the mass production process, meaning that online
tuning of the gain is not required.

B. ESTIMATION OF THE PDF OF THE STOCHASTIC
PARAMETER
This section describes our approach to estimating the PDF
of the stochastic parameter α. Initially, the values of the
stochastic parameters are obtained through measurements of
N fabricated samples. This provides the set of measurement
data {α1, α2, . . . , αN }. The PDF p(α) is estimated using these
data in conjunction with a statistical method. In this paper,
we focus on the kernel density estimation (KDE) approach,
which is a promising method for estimating PDFs [39]. In
the following text, the KDE method is briefly reviewed in the
case that α is simply a scalar.

Using the Gaussian kernel function K (z) := (1/
√
2π )×

exp(−z2/2), the PDF p(α) is:

p(α) ≈
1

Nwb

N∑
n=1

K
(α − αn

wb

)
, (−∞ < α <∞), (8)

wherewb is the constant bandwidth determined by an existing
method [40, Section 2.4.2]. The PDF in (8) can be extended
for a multi-dimensional stochastic parameter α using a mul-
tivariate kernel function [39, Chapter 4]. Since the possi-
ble stochastic parameters include physical quantities such
as length and mass, these are often positive. In this case,

we can take the logarithm of (8) to give the following form
[39, Section2.10]:

p(α) ≈
1

αNwb

N∑
n=1

K
( (lnα)− (lnαn)

wb

)
, (0 < α <∞).

(9)

In the demonstration in Section V, the PDF is calculated
based on (9).

Other statistical methods for estimating the PDF may be
employed. When the mathematical model of the PDF is
known but the values of parameters included in the model
are unknown, the PDF can be obtained by estimating only the
values. As an example, if the PDF is known to follow a normal
distribution, its mean and variance should be estimated. One
may also employ a simple method in which the PDF is
regarded as a histogram constructed from the measurement
data.

C. SOLVING THE OPTIMIZATION PROBLEM
This section presents the process used to solve the opti-
mization problem (7). If the value of

∫
α
p(α)Ĵα(uL)dα in

(7) can be obtained for various uL, the problem is numer-
ically solved in a local optimal sense by utilizing vari-
ous optimization tools, such as the Nelder-Mead simplex
method [41]. Unfortunately, it is typically not feasible to inte-
grate

∫
α
p(α)Ĵα(uL)dα in an analytical sense. Thus, to enable

the calculation, we approximate this expression using the
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numerical integrations:∫
α

p(α)Ĵα(uL)dα ≈
S∑
s=1

wsĴα(uL)|α=αs , (10)

where S is the number of sample parameters αs. The val-
ues of the sample parameters αs and coefficients ws are
defined depending on the types of approximations such as
the trapezoidal rule and the Monte Carlo approximation. In
the demonstration in Section V, the well-known trapezoidal
rule is used.

The performance index Jα(u) in (2) takes a general nonlin-
ear form with respect to the control input u. It should also be
noted that the feedback gains obtained from the optimization
problem (7) may be different from those obtained by linear
and quadratic indices. The index Jα(u) is widely acceptable
with regard to nanomechanical systems because it can reflect
various types of control objectives.

D. STABILITY AND ROBUSTNESS
Here, we first analyze stability of the feedback system (5)
based on the work in [37]. Because the oscillator coordinate
xα(t) is expected to converge to the periodic solution x̄α(t) to
(5), the stability is analyzed for the difference eα(t) := xα(t)−
x̄α(t) between them. Using this difference eα(t), the feedback
system (5) can be rewritten as:[

ėα
ëα

]
= Acl

[
eα
ėα

]
, (11)

Acl :=
[

0 1
−(k̃ + kg)/m̃ −(γ̃ + γg)/m̃

]
. (12)

The eigenvalues of Acl are then:

−
γ̃ + γg

2m̃
±

√
(γ̃ + γg)2 − 4m̃(k̃ + kg)

2m̃
. (13)

The eigenvalues take negative real numbers if (γ̃ + γg)2 −
4m̃(k̃ + kg) ≥ 0 holds. Otherwise, the real parts of the eigen-
values are −(γ̃ + γg)/2m̃ that are also negative. Because the
real parts of all the eigenvalues of Acl are negative for any α,
the difference eα is asymptotically stable [37, Corollary 1.4.2,
Corollary 1.4.3, Theorem 1.4.4], such that:

lim
t→∞

eα(t) = 0. (14)

This asymptotic stability indicates that the oscillator coordi-
nate xα(t) converges to the periodic solution x̄α(t) for any α.
These analysis and result for a fixed α are provided in
[37, Example 2.1.1].

We next analyze robustness of the feedback system (5).
In this analysis, we assume that the feedback system (5) is
subjected to the disturbance d(t), meaning that:

m̃ẍ + (γ̃ + γg)ẋ + (k̃ + kg)x = f + d(t). (15)

Here, suppose that d(t) is bounded and continuous in the time
t and satisfies 0 <

∫
∞

0 d(t)2dt < ∞. Using the difference
eα(t), the disturbed feedback system (15) is rewritten as:

m̃ëα + (γ̃ + γg)ėα + (k̃ + kg)eα = d(t). (16)

The robustness of (16) can be evaluated based on a popular
metric in robust control theory [21, Section 9.2]. This metric
is the L2 gain from d to eα under eα(0) = 0. The gain is
denoted by 0(d) and defined as:

0(d) :=

( ∫
∞

0 eα(t)2dt
)1/2( ∫

∞

0 d(t)2dt
)1/2 . (17)

The gain 0(d) indicates the ratio of the difference eα to the
disturbance d in power. A small L2 gain implies the high
robustness of the feedback system. In contrast, if the gain
is infinite, the system is no longer robust. It is well known
that 0(d) is bounded from above using the system transfer
function G from d to eα as follows [21, Section 9.2]:

0(d) ≤ max
ω̂∈R

σmax(G(jω̂)), ∀ d, (18)

G(jω̂) :=
1

m̃(jω̂)2 + (γ̃ + γg)(jω̂)+ (k̃ + kg)
, (19)

where σmax(G(jω̂)) is the maximum singular value of G(jω̂)
and j is the imaginary number. Solving (18) gives

0(d) ≤ max
ω̂∈R

√
G(−jω̂)TG(jω̂)

= max
ω̂∈R

(
m̃2ω̂4

+ ((γ̃ + γg)2 − 2m̃(k̃ + kg))ω̂2

+ (k̃ + kg)2
)−1/2

=


1/(k̃ + kg) ((γ̃ + γg)2 ≥ 2m̃(k̃ + kg))

2m̃
/√

(γ̃ + γg)2(4m̃(k̃ + kg)− (γ̃ + γg)2)

(Otherwise)
< ∞. (20)

Clearly, the gain0(d) in (20) never goes to infinity. The effect
of the disturbance d is bounded by the upper bounds in (20).

The physical meaning of the gain 0(d) in (20) can be
understood based on relationships between physical parame-
ters. As an example, the relationship employed in the demon-
stration in Section V is:

(γ̃ + γg) =

√
m̃(k̃ + kg)

Q
, (21)

where Q >
√
1/2 is the quality factor. Substituting the

relationship (21) into (20) yields

0(d) ≤
2Q

(k̃ + kg)
√
(4− Q−2)

<

√
2Q

(k̃ + kg)
. (22)

Thus, it is indicated that the gain 0(d) is characterized by the
quality factor Q and the spring constant (k̃ + kg). A small Q
and/or large (k̃ + kg) value will result in a small value for the
gain, i.e., the small effect of the disturbance d .
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V. DEMONSTRATION IN NANOSCALE RECEIVERS
In this section, we employ a state-of-the-art nanoscale
receiver [11] as a model case to demonstrate the effectiveness
of the proposed control method. The structure and working
principle of this receiver are briefly reviewed in Section V-A.
The proposed control method is applied to the nanoscale
receiver in Section V-B. A numerical simulation based on
experimental data obtained from CNTs is demonstrated in
Section V-C to evaluate the proposed method.

A. REVIEW OF NANOSCALE RECEIVERS
The nanoscale receiver used as a test case [11] is briefly
reviewed in this subsection. Using the vibration of a CNT can-
tilever, the receiver detects a data transmitted via an incoming
electric wave. The receiver is composed of a phase detector
and demodulator as illustrated in Fig. 3. The incoming wave
Ein(t, θ) contains a phase data θ that the receiver attempts to
detect. In the phase detector, the incoming wave Ein(t, θ) is
converted into a field emission current Iα(t) via the vibration
of the CNT. The demodulator extracts the data θ as the
signal Dα(θ ) from the current Iα(t). The details of these
components are reviewed in the following two parts, while
the variables and functions associated with the receiver are
provided in Table 1.

FIGURE 3. Configuration of the nanoscale receiver with the proposed
control method applied.

1) PHASE DETECTOR
The incoming electric wave Ein(t, θ) and reference electric
wave Er(t) are given as

Ein(t, θ) := A cos(ωt + θ ) (23)

Er(t) := bA cos(ωt), (24)

where A and ω are the amplitude and angular frequency
of the waves, respectively. The symbol b is a predefined
parameter. The transmitted phase data θ takes θ+ or θ− value
and corresponds to one bit information.

A charge around the CNT tip is excited by the voltage
V applied between the cathode and anode. The CNT tip
then vibrates in response to an electric force that is invoked

via the Coulomb force associated with the incoming wave
Ein, the reference wave Er, and the charge, on the basis of
Coulomb’s law. This vibration is modeled by (1) with the
electric force applied and zero input:

m̃ẍ + γ̃ ẋ + k̃x = Q̃ext(Ein(t, θ)− Er(t)), (25)

where x is the coordinate of the CNT tip and Q̃ext is the charge
quantity. The field emission current Iα(t) is approximated by
assuming that xα(t) is sufficiently small, meaning that:

Iα(t) ≈ Ĩ0 + Ĩ1xα(t)2, (26)

where Ĩ0 and Ĩ1 are constants.

2) DEMODULATOR
The field emission current Iα(t) is combined with the carrier
signal fc(t) in the demodulator. The combined signal, together
with the noise componentwn(t), is integrated over the focused
time T to give:

Dα(θ ) :=
1
T

∫ T

0
(Iα(t)+ wn(t))fc(t)dt = Dα,0(θ )+ Dn, (27)

where Dα,0(θ ) denotes Dα(θ )|wn(t)=0 and T is set to 2πs/ω
for a predefined natural number s. Using the signal Dα(θ ),
an estimate of the phase data θ is obtained between θ+ and
θ−. If the value ofDα(θ ) is close to that ofDα,0(θ+), the phase
data θ is estimated as θ+ and vice versa.

B. IMPLEMENTATION FOR NANOSCALE RECEIVERS
Our newly developed controlmethod, as summarized in Fig. 2
and Algorithm 1, is herein applied to the nanoscale receiver
reviewed in Section V-A. The intent of the control method is
to suppress the effect of the variation of the parameter α :=
[L̃, h̃0]. The key PDFs are shown in Fig. 1(c). The cantilever
length L̃ and the gap h̃0 between the CNT tip and anode
were measured in 108 fabricated samples, where discrepant
samples had been excluded. The PDFs of both L̃ and h̃0 were
independently determined as p(α) = p(L̃, h̃0) ≈ p(L̃)p(h̃0)
using the measured data. The KDE method incorporating the
logarithms in (9) was employed to estimate p(L̃) and p(h̃0).

The generalized vibration in (1) assumes that the input
u(t) used to control the vibration can be applied, whereas the
vibration of the CNT in the actual device does not involve
such a control input in (25). As an alternative, a simple
method of changing the voltageV is possible, because the two
parameters k̃ and γ̃ affected by manufacturing variation can
be tuned by varying the voltage [12]. For a given reference
voltage V0, the associated elasticity and viscosity can be
expressed as k̃(V )= k̃(V0)+k̃g(V ) and γ̃ (V )= γ̃ (V0)+γ̃g(V ),
respectively. These expressions are used to insert a pseudo
feedback control input to (25) as:

m̃ẍ + γ̃ (V0)ẋ + k̃(V0)x = Q̃ext(Ein(t, θ)− Er(t))

− (k̃g(V )x + γ̃g(V )ẋ), (28)

where the force Q̃ext(Ein(t, θ)−Er(t)) depends on the stochas-
tic parameter h̃0 and the voltage V (see Table 1). In the
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TABLE 1. Variables and functions associated with the nanoscale receiver.

following discussion, x obeys (28). The optimal gains k̃g(V̆ )
and γ̃g(V̆ ) are obtained at the optimal voltage:

V̆ := arg max
V

∫
α

p(α)Ĵα(V )dα. (29)

Thus, applying a preset voltage V̆ can reduce the effects of
manufacturing variation.

To allow calculation of the feedback gain using (29),
we determine the performance index Jα(V ). Because the
receiver is meant to obtain the transmitted binary data accu-
rately, this index should represent the difference between the
output currents corresponding to the binary data points [45].
The performance index is given as follows:

Jα(V ) := |Dα,0(θ+)− Dα,0(θ−)|

=

∣∣∣ Ĩ1
T

∫ T

0
(x+α (t)

2
− x−α (t)

2)fc(t)dt
∣∣∣, (30)

where the equality is derived using (26) and (27). The super-
scripts + and − denote variables/functions corresponding to
the binary data points θ+ and θ−, respectively. The value
of this index can be used as an indicator of the reliability
of the data: if the current difference is sufficiently large,
the transmitted data should be received correctly.

The proposed method approximates the index Jα(V ) in a
manner similar to (6), as:

Ĵα(V ) =
∣∣∣ωĨ1
2π

∫ 2π
ω

0
(x̄+α (t)

2
− x̄−α (t)

2)fc(t)dt
∣∣∣, (31)

where x̄α(t) is the periodic solution to (25) and (28). This
approximated index Ĵα(V ) is analytically calculated accord-
ing to the settings in Table 1 [38]. For the motion (28) of
the CNT, the stability in (14) and robustness in (22) can
be ensured, while the robustness depends on the value of
Q >
√
1/2.
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C. NUMERICAL RESULTS
We demonstrate the efficacy of the proposed method through
a numerical simulation in this section. The proposed method
is compared with another control law and a case without
control. The parameters of the receiver used in this simulation
are summarized in Table 1. TheNelder-Mead simplexmethod
[41] was employed to numerically solve the maximization
problem (29) in a local optimal sense. When performing
the numerical simulation, it was necessary to calculate the
integrals

∫
α
p(α) . . . dα, as an example, when solving the

maximization problem (29) and when evaluating average
performance values. The integrals were approximated using
the numerical integration shown in (10) in conjunction with
the trapezoidal rule. To avoid outliers, the ranges of L̃ and
h̃0 in the PDFs were limited to [0.6665µm, 1.5562µm] and
[0.0089µm, 0.6487µm], respectively, when performing the
numerical integration.

The proposed control method is compared to two other
approaches in the simulation. One is deterministic optimal
control, in which the performance index with the expected
value αE :=

∫
α
p(α)αdα of the stochastic parameter (i.e.,

Ĵα(V )|α=αE ) is maximized in the local optimal sense. The
other data were acquired without control (i.e., V =V0). The
voltages were determined to be 117V for the deterministic
optimal control and 493V for the proposed optimal con-
trol. Below, we evaluate the proposed control method from
three perspectives: the control performance for each sample,
the associated histogram, and a theoretical analysis regarding
the control performance.

Performance evaluation for each sample:Figure 4 shows
the numerical results for the performance index Jα(V ). These
values were obtained from calculations involving 30 CNT
samples for which the parameters L̃ and h̃0 were randomly
generated according to the PDFs. The green, blue, and red
bars in Fig. 4 indicate the cases without control, with the
deterministic optimal control and with the proposed stochas-
tic optimal control, respectively. It is evident that the per-
formance index values for the majority of samples were
improved by implementing the proposed stochastic optimal
control. The performance values with the sample numbers
of 18 and 30 were slightly degraded when using the pro-
posed method. This is believed to have occurred because
the proposed method focuses on enhancing the average per-
formance of the samples. Indeed, the average performance
value

∫
α
p(α)Jα(V )dαwas improved by the proposedmethod.

The average values without control, with the deterministic
optimal control and with the proposed stochastic optimal
control are indicated by green, blue, and red horizontal lines,
respectively. It can be seen that the proposed control method
increased the average performance.

In Fig. 4, the performance values with the sample numbers
of 14 and 15 are well below the others regardless of the con-
trol method. Such results are rare due to the extreme values of
the stochastic parameters. We subsequently investigated the
distributions of the performance values using histograms.

FIGURE 4. The performance of CNT samples. The horizontal lines
represent the average performance. The proposed stochastic optimal
control produced the best results. The length L̃ and gap h̃0 of the samples
were randomly generated according to the PDFs shown in Fig. 1(c).

Performance evaluation on histograms: We evaluated
the distribution of the control performance for 10, 000 CNT
samples numerically. The parameters L̃ and h̃0 for these
samples were randomly generated according to the PDFs.
Figures 5 (a), (b), and (c) show the histograms of the perfor-
mance in the cases without control, with the deterministic
optimal control, and with the proposed stochastic optimal
control, respectively. It is evident that the performance is
almost less than 1.0 × 10−6 [A] in the cases without con-
trol and with the deterministic optimal control. Meanwhile,
the performance greater than 1.0 × 10−6 [A] occurred more
frequentlywhen employing the proposedmethod. In addition,
although the samples with low performance (less than 1.0×
10−11 [A]) are found in Fig. 4, Fig. 5 indicates that such
samples were rare.

Theoretical analysis of performance bounds: Finally,
the control performance was theoretically analyzed to clar-
ify upper bounds of the performance. We derived prob-
abilistic upper bounds by applying Markov inequality
[46, Section 2.2.1] to Jα(V ) as:

Pr
(
Jα(V ) > Jref

)
≤ min

{∫
α
p(α)Jα(V )dα

Jref
, 1
}
, (32)

where Jref > 0 is a reference value. The numerator of the
right hand side in (32) is the average performance value that
was estimated as shown in Fig.4. The inequality (32) gives the
upper bound of the probability that the control performance
Jα(V ) is greater than each reference value Jref. Figure 6 plots
this upper bound. Here, the green, blue, and red lines indicate
the cases without control, with the deterministic optimal con-
trol, and with the proposed stochastic optimal control, respec-
tively. Figure 6 demonstrates that the control performance is
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FIGURE 5. Histograms of the performance index Jα(V ).

FIGURE 6. Upper bounds of the probability that the performance of a CNT
sample is better than the reference performance.

almost less than 1.0 × 10−6 [A] in the cases without control
andwith the deterministic optimal control. In contrast to these
results, the proposed method enhances the performance such
that higher values are obtained. These results corresponds to

those in Fig. 5: the performance for almost all samples is less
than 1.0× 10−6 [A] in the cases without control and with the
deterministic optimal control and is less than 1.0× 10−4 [A]
with the stochastic optimal control. The effectiveness of the
proposed method was therefore confirmed by both numerical
and theoretical evaluations.

VI. CONCLUSION
In conclusion, this paper presented a novel approach for sup-
pressing the impact of manufacturing variations on the per-
formance of NEMS/MEMS. The stochastic optimal control
method enhances the average performance of a system, even
with variations in the manufacturing process. The approach
described herein requires only the PDF of the stochastic
parameter, and the sub-optimal feedback gain in the con-
trol loop can be calculated in advance. The effectiveness
of the proposed approach was demonstrated via numeri-
cal simulations of a nanoscale CNT receiver. The proposed
method was found to improve the average performance com-
pared to the results obtained with deterministic control or no
control.

In future work, the proposed control approach will be
applied to other NEMS/MEMS in conjunction with prototype
testing. The proposed method will also be extended to take
into account the nonlinearity of the oscillator [13], [47].

APPENDIX: DERIVATION OF AN APPROXIMATION
This appendix presents the process used to derive the approx-
imation in (6). As explained in Section IV-A, the feedback
system (5) has a periodic solution x̄α(t) with the period Tf .
Recall the assumption that φ(x) is continuously differentiable
in x ∈ R. Let x́α(t) be a general solution to the homogeneous
equation corresponding to (5) such that the solution to (5)
reduces to xα(t) = x́α(t) + x̄α(t). Lagrange’s mean value
theorem gives:

φ(xα(t)) = φ(x̄α(t))+8(t)x́α(t), (33)

8(t) :=
∂φ

∂x
(x̄α(t)+ η(t)x́α(t)), (34)

where η(t) ∈ (0, 1) holds. Note that there exists a max-
imum value of 8(t) because x̄α(t) + η(t)x́α(t) is bounded
and ∂φ(x)/∂x is continuous. Because |x́α(t)| is bounded by
a exponentially decayed function á exp(−b́t) for some á > 0
and b́ > 0, |

∫ T
0 8x́αdt| is bounded as:

∣∣∣ ∫ T

0
8x́αdt

∣∣∣ ≤ ∫ T

0
|8x́α|dt

≤

∫ T

0
(max

t
|8(t)|)|x́α|dt

≤ (max
t
|8(t)|)

∫
∞

0
á exp(−b́t)dt

≤ (max
t
|8(t)|)(á/b́). (35)
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Let us consider the case of T = sTf for a natural number
s ∈ {1, 2, . . . }. Using the property (35) yields

Jα(uL)|T=sTf − Ĵα(uL)

=
1
sTf

∫ sTf

0
φ(xα)dt −

1
Tf

∫ Tf

0
φ(x̄α)dt

=
1
sTf

∫ sTf

0

(
φ(x̄α)+8x́α

)
dt −

1
sTf

∫ sTf

0
φ(x̄α)dt

=
1
sTf

∫ sTf

0
8x́αdt

= O(1/s), (s→∞). (36)

Therefore, Ĵα(uL) approximates Jα(uL) with an error on the
order of 1/s.
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