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ABSTRACT Taking care of individual pigs is important in the management of a group-housed pig farm.
However, this is nearly impossible in a large-scale pig farm owing to the shortage of farm workers.
Therefore, we propose an automatic monitoring method in this study to solve the management problem
of a large-scale pig farm. Particularly, we aim to detect undergrown pigs in group-housed pig rooms
by using deep-learning-based computer vision techniques. Because the typical deep learning techniques
require a large computational overhead (i.e., Mask-R-CNN), fast and accurate detection of undergrown
pigs on an IoT-based embedded device is very challenging. We first obtain the video monitoring data of
group-housed pigs by using a top-view camera that is installed in the pig room, and then detect each moving
pig by combining image processing and deep learning techniques. Gaussian Mixture Model is used to
detect moving frames and moving objects. In embedded device implementations, by applying deep learning
(i.e., TinyYOLO3) to a few frames only with a large number of pixel changes, embedded GPUs can be used
efficiently, satisfying the real-time requirement. As a subsequent step, we check the acceptable conditions of
the posture and separability from each video frame of the continuous video stream. Finally, to compute the
relative size of each pig quickly and accurately, we develop image processing steps to complement the result
of deep learning with minimum computational overhead. Furthermore, by pipelining the CPU and GPU steps
of a continuous video stream, we can hide the additional image processing time. Based on the experimental
results obtained from an embedded device, we confirm that the proposed method can automatically detect
undergrown pigs in real-time, by working as an early warning system without any human inspection or
measurement of actual weight by a farm worker.

INDEX TERMS Smart farm, pig monitoring, computer vision, image processing, deep learning.

I. INTRODUCTION
IoT techniques have been used widely for several mon-
itoring applications. For example, IoT-based monitoring
techniques have been applied to pig farms to control the
temperature and humidity automatically [1], [2]. As a sub-
sequent step, the Korean government has planned to upgrade
this first-generation smart pig farm by providing additional
intelligence with a camera and deep learning techniques. The
goal of this upgrade is to take care of every pig with the help
of intelligent monitoring techniques. During our survey, we
visited a large-scale pig farm in Korea. This farm consisted
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of more than 20,000 pigs (in approximately 1,000 pig rooms)
and 10 farm workers. Because the work at a pig farm is labor-
intensive, it is very difficult to hire the required number of
farm workers in Korea. Therefore, each farm worker in a
Korean pig farm is so highly occupied that taking care of
every pig is nearly impossible.

According to statistics published by the Korean govern-
ment, approximately 5 million out of 20 million pigs die
every ‘‘typical’’ year. In addition, in a ‘‘special’’ year, addi-
tional pigs die because of a specific disease. For example,
approximately 3 million pigs died from the foot-and-mouth
disease (FMD) in 2010. In Korea, typical reasons such as the
wasting disease and aggressive behavior caused by the closed
environment of group-housed pig rooms are the main reasons
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for pig death, when compared with special reasons such as
FMD. However, unlike with FMD, if these cases are detected
early, we can save the sick pigs.

Early detection of diseases in pigs is possible by monitor-
ing individual pigs. However, as each farm worker is highly
occupied, human inspection of 2,000 pigs (the average num-
ber of pigs per farm worker was approximately 2,000 for the
five Korean pig farms we had visited) is nearly impossible.
The goal of the second-generation smart pig farm is to mon-
itor every pig continuously without any human inspection.
As we have already reported the monitoring methods for the
wasting disease [3], aggressive behavior [4], and touching-
pigs [5] previously, this study focuses on detecting under-
grown pigs. In several cases, the undergrown pigs die if the
necessary care is not provided at the right time.

Detecting undergrowth in pigs by using computer vision
techniques requires highly accurate detection of each pig in
a group-housed pig room (known as instance segmentation
used to detect each object in pixel-level accuracy). The recent
developments in deep learning techniques can be applied
to several computer vision tasks, including a complicated
task such as instance segmentation. Thus, detecting under-
grown pigs by using deep-learning-based computer vision
techniques becomes possible. However, we need to provide
an automatic monitoring method that is cost-effective for
large-scale pig farms.

To provide a practical method, we should consider an
embedded device and the concept of ‘‘on-device’’ comput-
ing [6]–[9]. However, an embedded device has a limited
computing power than the typical PCs, and the instance
segmentation requires a large computational overhead. This
conflicting situation is not a special case, but a general
case in applying complicated deep learning techniques to
IoT-based applications. To solve this conflicting situation,
we first select a very fast deep learning technique for object
detection (i.e., detecting each object in bounding box-level
accuracy), which is a less complicated computer vision task
than the instance segmentation, and thus, it can be executed
on an embedded device. Then, to compute the size of each pig
quickly and accurately, we develop image processing steps
to complement the result of the very fast deep learning, with
minimum computational overhead. Ultimately, we compare
the relative size of each pig in a closed pig room to detect
the undergrown pigs and send alarms to the farm worker.
Figure 1 shows an overview of the proposed monitoring
system.

This paper is organized as follows: Section 2 summa-
rizes the previous methods; Section 3 describes the proposed
method that was used to detect the undergrown pigs effi-
ciently; Section 4 explains the details of the experimental
results; and Section 5 presents the conclusion.

II. RELATED WORKS
Several studies on monitoring pigs automatically have
recently been reported [1]–[5]. In a group-housed pig room,
there are several pigs, and there is a high possibility of them

FIGURE 1. Overview of the proposed monitoring system.

touching each other; these touching-pigs need to be separated
to achieve the final goal of tracking individual pigs for 24 h.
Ju et al. reported a method for separating two touching-pigs
to analyze individual pig’s behavior without ID switch. How-
ever, in addition to this behavior monitoring, we need to
monitor the pig’s size automatically to detect undergrown
pigs in a large-scale farm.

Continuous weight control of each pig is important in pig
farms. Because pigs are essentially non-cooperative, measur-
ing the actual sizes or weights of pigs manually is highly
labor-intensive. For example, the manual measurement of
weights of heavy pigs consumed approximately 3–5 min per
pig with two farm workers [10]. This procedure stresses both
farm workers and pigs. Therefore, an effective method that
can measure or compute the pig’s size/weight on a regular
basis is necessary. The first method is to use RFID tech-
niques to measure the actual weight of each pig, with the
aid of a special facility (see Figure 2 (a)). In this method,
a facility that allows only a single pig to enter at a time is
provided in front of the feeding area, and the weight of the
pig is measured during feeding, along with the RFID infor-
mation [11]. However, the cost of this facility is relatively
high (>$10,000 per pig room). Furthermore, because of the
shortage of the farmworkers inKorea, only the sows are being
managedwith RFID in several pig farms. In fact, this situation
is same in other countries. Therefore, researchers have been
studying the computer vision techniques to compute the size
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FIGURE 2. Previous methods used for pig’s weight measurement (direct)
or image-based computation (indirect). (a) Measurement of a single pig
with a high-cost facility [11]. (b) Image-based computation of a single pig
with a special facility and an aid from human [13]. (c) Image-based
computation of group-housed pigs with an aid from human [25].

of each pig indirectly (rather than the actual weight of each
pig) since 1990 [12], and some commercial systems such
as Weight-Detect, eYeScan, and Pigwei have been released
recently.

Most of the previous methods and commercial systems
computed the size of a single pig by assuming a single pig in
a specially organized measurement area [13]–[23]. However,
this assumption either requires a large number of labor hours

or a special facility to obtain an image of a single pig at a
time (see Figure 2 (b)). Therefore, our goal is to compute the
sizes of group-housed pigs in a cost-effective way without
any human intervention or a special facility.

Only a few studies have computed the size of each pig in a
group-housed pig room without a special facility [24]–[27].
These methods do not incur any managing overhead costs
after a top-view camera is installed. However, they use dif-
ferent ‘‘markers’’ (done by humans) on the back of each pig
to identify them (see Figure 2 (c)). Although this marking
assumption is feasible for small experiments, it is infeasible
for commercial farm environments. As pigs grow rapidly,
the farm workers need to maintain these markers regularly;
this stresses both farm workers and pigs. Therefore, we need
a ‘‘markerless’’ solution to compute the size of each pig
in a group-housed room, without any human intervention.
Furthermore, all the previous methods (except the ones that
are not specified) are PC-based solutions, which may not
be viable for farm owners because of their costs. We have
summarized some of the previous methods that were used to
compute the size of a pig in Table 1. The main contributions
of this study are as follows:

• Because the proposed method uses computer vision
techniques, it does not incur any managing overhead
costs after a top-view camera is installed. Furthermore,
the proposed method is a ‘‘markerless’’ solution and
does not require any human intervention. To the best
of our knowledge, this is the first study to detect under-
grown pigs without any human intervention, and it oper-
ates by comparing the relative size of each pig in a
group-housed room.

• The proposed method can be executed on an embedded
device, such as NVIDIA TX-2 [28]. Although many
PC-based methods have been proposed to compute the
size of each pig, an embedded device-based method is
proposed for the first time, to the best of our knowledge.
Thus, the total cost of the proposed method (including a
camera) is less than $1,000 per pig room, and therefore,
this method can be applied to large-scale pig farms.
Because the embedded devices have a limited comput-
ing power than the typical PCs, we combine the image
processing and deep learning techniques carefully to
satisfy the requirements of both accuracy and execution
time.

III. PROPOSED METHOD
To provide a practical method, we should consider an
embedded device and the concept of ‘‘on-device’’ com-
puting [6]–[9]. That is, the data should be collected and
analyzed in embedded device systems such as edge comput-
ing. Edge computing supports an efficient data processing
in high-volume data processing systems, and thus, it can
reduce the installation and management costs of smart farm
systems, which in turn reduces the network bandwidth and
analysis workload of the server. For example, an edge device
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TABLE 1. Some of the previous methods that compute the size of a pig (published during 2010–2019).

requires only a small size of text data (i.e., relative pig’s
size), whereas a server requires a large size of image data
(i.e., video stream). In this study, we propose an embedded
device-based method to detect undergrown pigs in real-
time using the image processing and deep learning tech-
niques to realize IoT-based smart pig farms. In other words,
we propose a hybrid method with a deep learning technique
(i.e., TinyYOLO3) to detect individual pigs, and an image
processing technique (i.e., GMM, binarization with Othsu,
and connected component) to compute the pig size, instead
of the end-to-end deep learning based-method for instance
segmentation (i.e., Mask-R-CNN).

Because group-housed pigs can be located at the same
position in a room (i.e., one on top of another), the estimation
of the actual weight of each pig may not be accurate in
such complicated cases. Therefore, the goal of this study is
to develop an automatic alarm system (without any human
intervention or a high-cost facility) by analyzing the relative
size and not the actual weight of each pig in a group-housed
pig room. Furthermore, the technique proposed to detect the
abnormality in growth rate should be considered as an aid
(i.e., sending alarms) rather than as a replacement for farm
workers.

To accurately compute the relative size of each pig in
a group-housed room, the complicated cases (i.e., touch-
ing/overlapping pigs) should be considered. Therefore,

we first check the acceptable conditions of the posture
(i.e., walking pigs) and separability (i.e., separated pigs and
not touching/overlapping pigs) from each video frame of the
continuous video stream. Then, if the check passes, the rel-
ative size of the pig satisfying the acceptable conditions is
analyzed. In addition, a solution for the resource-constrained
IoT devices such as edge computing should be considered.
Thus, by considering both accuracy and speed, we compute
the size of each pig that satisfies the acceptable conditions by
using the combination of image processing and deep learning
techniques. Especially, to make the best use of the resources
(i.e., a multi-core CPU and a many-core GPU) of the embed-
ded device, the heterogeneous computing is exploited by
pipelining the image processing and deep learning steps.

The proposed method consists of two image processing
modules (denoted as pre- and post-processing) and a deep
learning processing module (denoted as mid-processing) as
shown in Figure 3. Note that, in this study, we use the infrared
information to compute the size of each ‘‘markerless’’ pig,
which is used to detect undergrown pigs. As shown in
Figure 4, the quality of the depth information obtained from
Intel RealSense camera is not adequate to compute the size of
each pig. Note that, in the depth image of pig room 2, the pigs
are indistinguishable by sight.

In the pre-processing module, we first extract an infrared
frame from a video stream obtained from an infrared sensor
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FIGURE 3. Three modules of the proposed method.

FIGURE 4. Infrared and depth images obtained from Intel RealSense
camera. (a) Infrared image and (b) depth image.

(i.e., Intel RealSense camera). Then, the Gaussian Mixture
Model (GMM) [29] is applied to detect the moving frame

for 24 h. In the mid-processing module, the individual pigs
are detected using TinyYOLO [30]. Note that, TinyYOLO
is a deep learning-based object detector, which generates a
bounding box (BB) for each object. Especially, TinyYOLO
is applied only to the video frames that include moving
pigs (denoted as moving frames), so that it can be executed
efficiently on an embedded GPU. In the post-processing
module, Region of Interest (RoI) is selected by considering
the acceptable posture (i.e., walking pigs) and separability
(i.e., separated pigs). To select a moving frame and a reli-
able RoI for computing the pig’s size, we use the amount
of pixel changes of a BB (denoted as AF and AB, respec-
tively), the confidence score of each BB (denoted as CB),
and the minimum distance (denoted as MB) between adja-
cent BBs. Finally, the relative size of each pig is carefully
computed only for the pigs that satisfy acceptable conditions,
and thus, the smart farm monitoring system for detecting
undergrown pigs can be realized by using an embedded
device.

We summarize the definitions of AF, AB, CB, and MB in
Equation (1), (2), (3), and (4), respectively:

AF =
Amount of pixel changes

Amount of total pixels in a frame
, (1)

AB =
Amount of pixel changes

Amount of total pixels in a BB
, (2)

CB = Confidence score of a BB, (3)

MB =
Minimum distance of each BB
Length of frame width or height

, (4)

where AF is used to reduce the total execution time, and AB,
CB, andMB are used to detect the reliable RoI for the walking
and separated pigs.

A. DECISION OF MOVING FRAMES
GMM is widely used for background modeling where the
background is subtracted using each pixel modeled as mixed
Gaussian distributions [29]. In this study, GMM is used to
detect the moving frame to reduce the total execution time.
That is, TinyYOLO is executed only when AF is larger
than the threshold value (denoted as T1), and thus, we can
reduce the overall execution time. Figure 5 (b) illustrates a
moving frame detected by using GMM. In addition, GMM
is used to select reliable RoIs by considering the acceptable
posture. However, when several adjacent pigs are moving at
the same time, it is difficult to separate each pig accurately
(see Figure 5 (c)). Therefore, we need a way to detect sepa-
rated pigs to compute the size of each pig accurately, even
when two or more pigs are moving close to each other at the
same time.

B. DECISION OF RELIABLE ROI
To detect the individual pigs, we use TinyYOLO based on
deep learning. YOLO [31] is a CNN-based single-shot object
detector whose execution time is much faster than those
of many-shot object detectors such as R-CNN [32], Fast
R-CNN [33], and Faster R-CNN [34]. Because of its fast
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FIGURE 5. Illustration of moving frames obtained by using GMM.
(a) Frame with low AF (i.e., not moving frame). (b) Frame with high AF
(i.e., moving frame). (c) Frame with high AF (when two adjacent pigs are
moving).

execution time, YOLO is one of the most widely used object
detectors. Furthermore, TinyYOLO [30] is a light-weight
version of YOLO (i.e., TinyYOLO has a fewer convolu-
tional layers than YOLO) that is used for embedded device
implementations. The details of TinyYOLO can be found
in [30].

Although the pigs can be detected by TinyYOLO, it is
difficult to compute the size of each pig accurately because
of the inaccuracy in the size of each BB caused by the
pig’s posture and direction. Figure 6 displays the difference
between the BB and pixel sizes for various postures of the
same pig. In Figure 6, the sizes of BBs are 38,413 (i.e., posture
1 of vertically walking), 63,226 (i.e., posture 2 of diagonally
walking), and 34,882 (i.e., posture 3 of diagonally sitting),
respectively. In contrast, the pixel sizes of pigs are com-
puted as 20,903, 21,770, and 17,695, respectively. There-
fore, the size of each pig should be computed in pixel-level
accuracy and not in BB-level accuracy. Furthermore, CB and
MB are calculated for each BB detected by TinyYOLO. For
a low CB, the pigs may not be detected correctly because
of the possibility of touching pigs; however, for a high CB,
the pigs can be detected accurately. In other words, we can
compute the size of each pig accurately, if CB is larger than
the threshold value (i.e., T3). In this study, we use both CB
and MB to detect the separated pigs without the complicated
cases. That is, we select the BB with a high CB, and then
check MB. If MB is less than the threshold value (i.e., T4),
the detected BB is discarded.

FIGURE 6. Illustration of the difference between the BB and pixel sizes
for various postures and directions of the same pig. (a) Posture 1,
(b) posture 2, and (c) posture 3.

More specifically, in the post-processing module,
we decide whether each RoI can be used to compute the
pig size with the help of the constraints on the posture
and separability, i.e., AB, CB, and MB. Note that, CB is
calculated in the mid-processing module, whereas AB and
MB are calculated in the post-processing module. Figure 7
illustrates how a reliable RoI is decided using AB, CB, and
MB. In Figure 7 (a), the RoI corresponding to the current
BB is selected as a reliable RoI, because there are sufficient
pixel changes within the BB with a high CB (i.e., AB > T2
and CB > T3), and the two pigs are separated enough (i.e.,
MB > T4). In contrast, if any AB, CB, or MB is less than the
threshold (i.e., T2, T3, and T4, respectively), the RoI is not
selected (e.g., Figure 7 (b) where MB < T4). After selecting
the reliable RoI, the size of the pig inside the RoI is computed.
Note that, the post-processing module requires a relatively
small computational workload. Furthermore, it is executed
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FIGURE 7. Illustration of the reliable RoI decision using AB, CB, and MB.
(a) Selected RoI, and (b) discarded RoI.

FIGURE 8. Post-processing module for computing the size of each pig.

only when AF, AB, CB, and MB are larger than T1, T2, T3,
and T4, respectively. Thus, the post-processing module can
be executed on an embedded CPU cost effectively.

C. COMPUTATION OF THE SIZE OF EACH PIG
Finally, the size of each pig inside the reliable RoI is com-
puted. Figure 8 shows the procedure for computing the size
of each pig by using image processing techniques such as
the binarization and the connected component analysis. In the
reliable RoI, the infrared image is transformed into a binary
image, each connected component is analyzed to remove the
noise (i.e., relative small components), and then, the size of
each pig is computed. In general, the connected component
analysis requires a relatively large computational workload
to segment the foreground pixels. In our method, because the

connected component analysis is applied to a small RoI corre-
sponding to the moving pig, it can be executed an embedded
CPU.

Algorithm 1 Computing the Size of Each Pig
Input: A video frame from a video stream
Output: Size of each pig in the frame
/∗ Pre-processing on a CPU ∗/
Step 1: In_frame = Get_frame(Video stream);

GMM_result = GMM(In_frame );
If(AF(GMM_result) > T1) GO to Step 2
ELSE GO to Step 1

/∗ Mid-processing on a GPU ∗/
Step 2: BBs = TinyYOLO(In_frame)}
/∗ Post-processing on a CPU ∗/
Step 3: FOR(i = 1 to all BBs){

IF(AB(BBi) > T2 & CB(BBi) > T3 &
MB(BBi) > T4){
RoIi = Clipping(In_frame, BBi)
Binary_imgi = Binaization(RoIi)
Seg_imgi =Max_CC(Binary_imgi)
Pig_sizei = Amount_pixels(Seg _imgi)
RECORD Pig_sizei}}

GO to Step 1

Algorithm 1 summarizes the overall procedure of the
image processing and deep learning modules. First, a video
frame is obtained from the continuous video stream, and
then, GMM is used to check for moving frames in step 1
(i.e., pre-processing module). That is, if AF of the GMM
result is larger than T1, only then the mid-processing module
is executed. In step 2 (i.e., mid-processing module), indi-
vidual pigs are detected by TinyYOLO with BB informa-
tion (i.e., the position coordinates of each BB). In step 3
(i.e., post-processing module), each BB is checked for reli-
able RoIs. That is, if AB, CB, and MB of each BB are
larger than T2, T3 and T4, respectively, only then the size
of the pig in the BB (and hence the corresponding RoI) is
computed. To compute the size of each pig inside a reliable
RoI, the image processing techniques such as binarization
(i.e., Otsu) and segmentation (i.e., connected component
analysis) are applied. Although Otsu’s method is simple,
it works well for a pig room captured by a top-view cam-
era (i.e., simple background). Finally, the possible noise
is removed, and then the size of the pig in the RoI is
computed.

D. PIPELINING CPU AND GPU
By pipelining the CPU and GPU within an embedded device
in the continuous video stream, we can overlap the image
processing and deep learning modules, and thus, the total
execution time can be reduced on the embedded device. The
overall procedure for the undergrown pig detection consists
of the pre-processing, mid-processing, and post-processing
modules. However, there is a data dependency between the
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FIGURE 9. Comparison between sequential processing and pipeline processing.

modules for processing a video frame. Therefore, in this
study, the modules are executed in a pipelined fashion by
overlapping the processing of the previous, current, and next
frames under the data dependency.

Figure 9 shows a comparison between the sequential and
pipeline processing. Note that, in Figure 9, we illustrate a case
where all video frames require all the three modules, for the
purpose of simplicity. If the conditions of AF, AB, CB, and
MB are not satisfied, then the correspondingmid- and/or post-
processing modules can be skipped. First, the pre-processing
module of #1 frame is executed. After the 1st barrier syn-
chronization, the pre-processing module of #2 frame and
the mid-processing module of #1 frame are executed con-
currently. Note that, after the 2nd barrier synchronization,
(i+1)-th pre-processing, i-th mid-processing, and (i−1)-th
post-processing modules are executed concurrently. In order
words, the pre- and post-processing modules (executed on the
CPU) are overlapped with the mid-processing module (on the
GPU) in the pipeline. As shown in Figure 9, the proposed
method can reduce the idle time of the sequential process-
ing through the pipelined execution of the continuous video
frames across the CPU and GPU.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL ENVIRONMENT AND DATABASES
The experiments for detecting undergrown pigs were con-
ducted on the following embedded device NVIDIA TX-2
(NVIDIA, Santa Clara, CA, USA) [28] under the environ-
ment of Dual-core Denver 2 64-bit CPU and quad-core
ARM A57 complex, NVIDIA Pascal architecture with
256 NVIDIA CUDA cores, 8 GB 128-bit LPDDR4, and
Ubuntu 16.04.2 LTS (Canonical Ltd, London, UK).

We conducted the experiment in two pig rooms of 3.2 m
tall and 2.0 m wide × 4.9 m long (denoted as pig room 1,
see Figure 10 (a)), and 3.2 m tall and 2.0 m wide × 2.0 m
long (denoted as pig room 2, see Figure 10 (b)), respectively,
at Chungbuk National University. In pig room 1, there were
nine pigs (86.6–98.4 kg) that were 148 days old (born from a
sow). As shown in Figure 10 (a), the nine pigs had similar
sizes. In pig room 2, there were five pigs (18.7–33.8 kg)
that were 62 days old (born from another sow). Note that,
in pig room 2, the upper and lower parts of the room were
separated by a fence. Because a water pipe was located over
the room, a pig captured by the top-view camera could be
divided into two body parts, as shown in Figure 10 (b).
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FIGURE 10. The two pig rooms that were monitored. (a) Nine normal-growth pigs (86.6–98.4 kg) in pig room 1. (b) Three normal-growth pigs
(24.2–27.8 kg), one overgrown pig (33.8 kg), and one undergrown pig (18.7 kg) in pig room 2.

In addition, the top three pigs (in the upper room) had similar
sizes, but the bottom two pigs (in the lower room) were
relatively larger and smaller than the top three pigs. Because
the five pigs in pig room 2 were born from the same sow
(and hence the same ages), we can consider the top three pigs
(24.2–27.8 kg), larger pig (33.8 kg), and smaller pig (18.7 kg)
as normal-growth pigs, an overgrown pig, and an undergrown
pig, respectively. Note that, to avoid the complicated cases
(shown on the right side of Figure 10), we considered only
the acceptable conditions of posture (i.e., walking pings) and
separability, and then computed the relative size of pigs.

Furthermore, we installed two Intel RealSense cameras
(D435 model, Intel, Santa Clara, CA, USA) [35] on the
ceiling to obtain the images. We acquired infrared images
through the camera, and each image had a resolution
of 1280 × 720, 30 frames per second (fps). To analyze the
monitoring results for 24 h, ground truth (GT) data was
constructed for each 1min at 10min intervals in the pig rooms
1 and 2, respectively. In other words, 4,320 frame data for
each 1 min (30 fps) were obtained for pig rooms 1 and 2,
respectively. Note that, the GT data was manually computed
only for moving pigs. Finally, we acquired 3,320 training
images and then trained TinyYOLO (with learning rate
of 0.001, decay of 0.0005, momentum of 0.5, leaky ReLU

as the activation function, default anchor parameter, and the
iterations of 20,000). Then, we obtained 1,000 test images
and conducted the test with pre-processing, TinyYOLO
processing, and post-processing modules. TinyYOLO and
image processing steps we used were of TinyYOLO version
3 [36] and OpenCV 3.4 [37], respectively. In addition, we set
each threshold (i.e., T1, T2, T3, and T4) as 0.1, 0.3, 0.9,
and 0.2, respectively. Further, we uploaded the source code
and demo video to URL (https://github.com/hanseahn/real-
time-pig-size-computation-using-pipeline-processing-with-
image-and-deep-learning-techniques) for other researches.

B. ANALYSIS OF UNDER-GROWTH MONITORING
Figure 11 shows the detection results of pig’s relative size for
24 h with the GT data. As shown in Figure 10, the nine pigs in
pig room 1 had similar sizes, while the five pigs in pig room
2 had different sizes. Although all the pigs in each pig room
were born from the same sow, the size of each pig might differ
depending on several reasons. As explained, in pig room 2,
one pig was relatively larger than the other pigs (denoted as
an overgrown pig) and one pig was relatively smaller than
the other pigs (denoted as an undergrown pig). We did not
attach RFIDs to the pigs, and the pig rooms did not have any
facility to control the feeding (i.e., one pig could eat more than
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FIGURE 11. Detection results with GT data. (a) Detection result of pig room 1. (b) Detection result of pig room 2.

TABLE 2. Solution scenarios for detecting undergrown pigs.

the other pigs). It is well known that pigs naturally behave
aggressively for social hierarchy status access to resources
such as feed [38]. Therefore, the overgrown pig could take
over the feed assigned to the undergrown pig. Unfortunately,

the undergrown pig died after the video was recorded. This
is the reason why we need to detect undergrowth in pigs
automatically so that special care can be provided at the right
time.
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FIGURE 12. Detection results of different solution scenarios. (a) S1: TinyYOLO version 3 [36]. (b) S2: Mask R-CNN [39]. (c) S3: Proposed method.

In Figure 11, the pig’s size was normalized with the mean
of the pig’s size computed for 24 h to represent the relative
size of each pig. In pig room 1, all the pig sizes computed
from the GT data were in the range between 1.3 (i.e., red line)
and 0.7 (i.e., purple line). In other words, in pig room 1, the
deviation of pig’s size was less than 0.5, because the nine pigs
had similar sizes. However, in pig room 2, the overgrown and
undergrown pigs were detected over the red line and under the
purple line, respectively. In this case, the deviation of pig’s
size was more than 0.6, because of one overgrown pig and
one undergrown pig among the five pigs. Therefore, with the
GT data, we can send an alarm to alert the farm worker.

C. ACCURACY ANALYSIS
To evaluate the effectiveness of the proposedmethod, we con-
sidered three solution scenarios for the undergrowth moni-
toring in group-housed pig rooms. Note that, we used the
relative size of each moving pig to detect overgrowth and

undergrowth in pigs. In addition, we did not consider the time
series analysis techniques (i.e., RNN and LSTM), but used the
object detection techniques to detect the individual pigs and
compute the relative size of pigs within the video. The first
scenario (denoted as S1) tried to compute the size of each pig
by using TinyYOLO only. Because TinyYOLO is a very fast
deep learning-based object detector, it can detect each pig on
a TX-2. However, because it produces an enclosing BB for
each pig, the size of the detected pig may not be accurate.
The second scenario (denoted as S2) tried to compute the size
of each pig by using Mask R-CNN [39]. Note that, Mask
R-CNN is one of the most widely used instance segmentors
based on deep learning techniques. Because Mask R-CNN is
a very accurate instance segmentor, it can detect each pig in
pixel-level accuracy. However, because it decides each pixel
for pig detection, it requires a large computational overhead.
Note that, both scenarios S1 and S2 rely on an end-to-end
deep learning technique only, without any image processing
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FIGURE 13. Detection results of proposed method (i.e., S3) for 24 h. (a) 00:00–08:00, (b) 08:00–16:00, and (c) 16:00–00:00.

technique. The third scenario (denoted as S3) tried to compute
the size of each pig by using the proposed method. Because
the proposed method combines the deep learning and image
processing techniques effectively, it can simultaneously sat-
isfy the accuracy and real-time execution requirements for the
undergrown pig monitoring. Note that, for the group-housed
pig rooms, developing a ‘‘markerless’’ instance segmentor
based on image processing techniques only is a difficult
task (see Table 1). Therefore, we did not consider the solu-
tion scenario that uses image processing techniques only.
The features of each solution scenario are summarized in
Table 2.

The proposed method computed the sizes of walking and
separated pigs and sent an alarm if there were any undergrown
or overgrown pigs in a room. Therefore, we verified the pro-
posed method by comparing the alarms generated by the pro-
posed method with those generated by GT. Figure 12 shows
the results of monitoring for 3 h (07:00 to 10:00) with three

solution scenarios in pig room 1 and pig room 2, respectively.
In S1, the deviation of pig’s size was more than 1.0 in both
rooms 1 and 2 as shown in Figure 12 (a). Because the size
of BB depends on the pig’s posture, it was difficult to com-
pute the accurate size of each pig, without any segmentation
technique. In the case of S2, Mask R-CNN provided small
deviations similar to GT (see Figure 12 (b)). Thus, we con-
firmed that Mask R-CNN could compute the accurate size
of each pig and detect both overgrown and undergrown pigs.
Note that, because Mask R-CNN could not be executed on a
TX-2 towing to memory problem, we measured the accuracy
ofMaskR-CNNon a PC. Finally, in S3, the deviations of pig’s
size were 0.6 and 1.1 for the pig rooms 1 and 2, respectively
(see Figure 12 (c)). Although S3 provided a higher deviation
(i.e., 0.6) than S2 (i.e., 0.5), S3 could detect the overgrown
and undergrown pigs automatically.

The detection results of the proposed method for 24 h are
shown in Figure 13. Note that, the alarms will be generated
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depending on the setting of the upper-limit (i.e., the red
line shown in Figure 13) and lower-limit (i.e., the purple
line shown in Figure 13). For an upper-limit of 1.3 and
a lower-limit of 0.7, S3 did not generate any false alarms
for pig room 1. In addition, for pig room 2, S3 generated
true alarms for the undergrown pig. Of course, S3 did not
generate true alarms for pig room 2 for every time interval.
These cases may be considered as the failure cases. When
compared with the GT, S3 cannot compute the size of the
undergrown pig perfectly. Further, if the undergrown pig is
not in a proper position (i.e., either resting or sleeping) during
the time interval, then S3 will not try to compute its size in
that time interval. However, S3 could generate a sufficient
number of true alarms even though it could not compute the
size of the undergrown pig perfectly. Therefore, we confirm
that the proposed method can detect undergrown pigs auto-
matically without any human inspection or measurement of
actual weight by a farm worker.

TABLE 3. Execution time of each module of S3 scenario
measured on a TX-2.

D. SPEED ANALYSIS
With a careful combination of image processing and deep
learning techniques, we could compute the relative size of
each pig on an embedded device TX-2. To analyze the speed
performance of the proposed method, the execution time of
each module was measured on a TX-2 as shown in Table 3.
GMM required the highest execution time in image process-
ing modules, and thus, we parallelized GMM with OpenMP
to reduce the execution time by using a multi-core CPU.
Note that, the latency (i.e., execution time for a video frame)
of the proposed method was 59.1 ms on a TX-2. However,
the execution times of the image processing modules could
be hidden by pipelining the CPU and GPU steps while pro-
cessing the continuous video stream.

Finally, Table 4 shows the throughput (i.e., frames per sec-
ond for a video stream) of the three scenarios on a TX-2. In S1,
the average throughput was 24.3 fps on a TX-2. However,

TABLE 4. Comparison of throughputs measured on a TX-2.

the average throughput of S3 was 31.5 fps. By pipelining the
tasks of a CPU and GPU on a TX-2, we confirmed that the
real-time processing was possible. As explained, the average
throughput of S2 could not be measured on a TX-2. To com-
pare the relative speed of the three scenarios, wemeasured the
average throughput of each scenario on a PC (i.e., Intel Core
i7-7700K CPU and NVIDIA GeForce GTX 1080 Ti GPU).
The average throughputs of the three scenarios were 125.4
fps (S1), 6.5 fps (S2), and 161.7 fps (S3), respectively. The
throughput of S2 was lower than that of S3 by a factor of 20.1,
and thus, S2 could not be executed on a TX-2 in real-time
(even without the memory problem).

As aforementioned, the nine pigs in pig room 1 had similar
sizes (i.e., alarm should not be generated), whereas the five
pigs in pig room 2 had different sizes (i.e., alarm should
be generated). Bounding box-based TinyYOLO could be
executed on a TX-2 in real-time (because of the light com-
putational requirement), but the size of each pig detected
might not be accurate (i.e., it generated several false alarms
for pig room 1, as shown in Figure 12 (a)). In addition,
the size of each pig detected by using Mask R-CNNmight be
accurate (i.e., it did not generate any false alarms for pig room
1 and generated true alarms for pig room 2, as shown in Fig-
ure 12 (b)), but it could not be executed on a TX-2 (because
of the heavy computational requirement). Thus, it was con-
firmed that because the proposed method combines the deep
learning and image processing techniques effectively, it could
simultaneously satisfy the accuracy (i.e., it did not generate
any false alarms for pig room 1 and generated true alarms for
pig room 2, as shown in Figure 12 (c)) and real-time execution
requirements for undergrown pig monitoring.

V. CONCLUSION
Detection of undergrown pigs in group-housed pig rooms
is important in pig management because it allows early
detection of health and management problems. In this paper,
we proposed an automated method for detecting undergrown
pigs, which is practically impossible by few farm work-
ers in a large-scale farm. By using the top-view camera
installed at the ceiling of a pig room, we computed the
size of each moving pig with computer vision techniques.
With a careful combination of image processing and deep
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learning techniques, we could compute the relative size
of each pig on an embedded device TX-2. Furthermore,
by pipelining the CPU and GPU steps while processing the
continuous video stream, we could hide the additional image
processing time for the real-time throughput.

From the experimental results obtained from pig room 1
(consisting of nine pigs of similar sizes), it was observed
that the proposed method did not generate a false alarm for
undergrown pigs. Although Mask R-CNN did not generate
a false alarm owing to the capability of pixel-level accuracy,
it could not be executed on a TX-2 because of the memory
problem. However, TinyYOLO generated a false alarm owing
to the limitation of BB-level accuracy.

From the experimental results obtained from pig room 2
(consisting of three pigs of similar sizes, one pig of larger
size, and one pig of smaller size), the proposed method could
generate a true alarm for undergrown pigs in real time. Similar
to pig room 1, TinyYOLO generated an alarm, but it was
meaningless because of the possibility of a false alarm. Mask
R-CNN, owing to its pixel-level accuracy could generate a
true alarm, but it was meaningless because of the memory
problem.

In summary, the recent developments in deep learning
techniques can be applied to several computer vision tasks.
When we apply such end-to-end deep learning techniques to
a complicated task (i.e., instance segmentation) on an embed-
ded device, we need to consider its computational overhead
and/or memory constraint. However, by combining the very
fast image processing and deep learning techniques carefully,
we can perform any complicated task on an embedded device
in real-time. That is, IoT-based monitoring techniques for
smart pig farms can be applied to intelligent services such
as early warning, in addition to simple services such as tem-
perature/humidity control. To the best of our knowledge, this
is the first study to detect undergrown pigs in group-housed
rooms on a TX-2, without any human intervention or a spe-
cial facility. However, the proposed method used for detect-
ing the abnormality in growth rate automatically should be
considered as an aid (i.e., sending alarms) rather than as a
replacement for farm workers.

This proposed method can be extended to other compli-
cated tasks that are related with IoT-based monitoring in
a cost-effective way, although we developed a method for
detecting undergrown pigs. In addition, we expect that the
individual pigs can be managed more effectively if the pro-
posed method is combined with the future work that involves
24-h tracking of each pig (i.e., our final goal for intelligent
pig monitoring).
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