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ABSTRACT In this paper, a convolutional neural network (CNN) with long short-term memory (LSTM) is
designed to detect QRS complexes in noisy electrocardiogram (ECG) signals. The CNN performs feature
extraction while the LSTM determines the QRS complex timings. A multi-layer perception (MLP) after the
LSTM is added to format the QRS complex detection predictions. With a unique data preparation procedure
that includes proper design of training dataset, the proposed CNN-LSTM can achieve superior inter-patient
testing performance, which means the testing and training datasets do not share any same patient ECG
records. This generalization ability characteristic is critical to automated ECG analysis in an age of big
data collected from noisy wearable ECG devices. The MIT-BIH and the European ST-T noise stress test
databases are used to validate the effectiveness of the proposed algorithm in terms of sensitivity (recall),
positive predictive value (precision), F1 score and timing root mean square error of R peak positions.

INDEX TERMS Artificial neural networks, electrocardiogram (ECG), QRS complex, feedforward neural
networks, multi-layer neural network, convolutional neural networks, recurrent neural networks.

I. INTRODUCTION
Electrocardiogram (ECG) is themost important and prevalent
tool in diagnosing cardiovascular diseases. With the advance-
ment of wearable technology, Internet of things (IoT) and
mobile health, mobile wearable ECG for real-time long-term
monitoring becomes increasingly possible anywhere and any-
time in patients’ hands. The direct result is that vast amounts
of ECG data will be generated. The sheer volume of ECG
recordings is prohibitive for cardiologists to handle. There-
fore, accurate and automated ECG analysis is in urgent need
to process the explosively growing number ECG recordings
collected by wearable devices.

Computer aided ECG analysis is a field that has been
developed for more than four decades. Numerous algorithms
were devised and proposed for QRS complex detection and
heartbeat classification in the literature [1], [2] and refer-
ences therein. QRS complex detection is the critical first step,
as QRS complex is the most prominent portion of a heartbeat
signal and its detection facilitates the subsequent ECG anal-
ysis. In addition to heartbeat classification, basic parameters,
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such as RR, QT, PR intervals, etc., derived after QRS detec-
tion, are required for every ECG recording and reveals impor-
tant information about heart functions. Therefore, literature
is abundant with QRS complex detection. Techniques used
in QRS complex detection range from signal derivative and
digital filters [3]–[7], wavelet transforms [8]–[12], Hilbert
transforms [13]–[15], matched filters [16], [17], compressed
sensing [18], [19], to machine learning and neural net-
works (NN) approaches [20]–[28]. Among the many clas-
sical derivative and digital filter algorithms after the first
Pan and Tompkins method [3], GQRS [7] is a simple one
with superior performance by using adaptive search intervals
and amplitude thresholds. Reference [10] uses wavelet trans-
form and dynamic amplitude thresholding for QRS complex
detection. The wavelet transform eliminates noise and other
peaks from the ECG recordings, after which the generated
pulse trains are scanned for the QRS complex peaks using
the dynamic amplitude thresholding. This method has the
advantage of being easy to implement and not needing a train-
ing phase. However, the wavelet transform uses a fixed filter
pattern, which has the disadvantage of not adapting to dif-
ferent types of QRS complexes. Similarly, papers [29]–[31]
employ noise filtering techniques to extract QRS complexes.
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A quadratic filter with dynamic amplitude thresholding is
constructed in [31] for QRS complex detection, which has the
same advantages and disadvantages of the wavelet transform
filter.

There is a long history of using neural networks for
ECG analysis. ECG signals are non-linear and non-stationary
in nature, and hence methods that can adapt to changes
are needed. Neural networks have such potential. Advance-
ments in neural networks lead to new opportunities and
design. Recently, Zihlmann et al. [32] propose a convolu-
tional neural network (CNN) followed by a long short-term
memory (LSTM) network for ECG disease classifica-
tion. Jun et al. [33] claim that a CNN with a fully con-
nected layer classifies arrhythmia in ECG recordings.
Rajpurkar et al. [34] developed a 34-layer CNN for detecting
arrhythmias in arbitrary length ECG time-series. For applying
neural networks to QRS detection, [23] implements the first
multi-layer perceptron (MLP) for QRS complex matched fil-
tering. In [25], Xiang et al. utilize a CNN followed by a dense
layer for QRS complex detection. The CNN filters the ECG
signal, while the dense layer predicts the QRS complexes.
The CNN has the advantage of adapting to different types of
QRS complexes, but it does not directly predict the timing
information of R peaks. Paper [26] segments the QRS com-
plexes by removing the regions outside of the QRS complexes
using the first CNN. Then the secondCNNfinds the starts and
ends of the QRS complexes. Paper [27] implements an MLP
with radial basis functions for QRS complex detection. Radial
basis functions are better at filtering noise when compared to
the regular sigmoid functions.

Despite of significant efforts, there are still unsolved chal-
lenges of QRS complex detection. First, when heavy noise,
motion artifact and baseline wanders are present, robust algo-
rithms are yet to be developed. In wearable device-based
ECG measurements, signals can often be very noisy. Second,
QRS complex varies from person to person and even within
one person’s recording. For training-based methods such as
NN, detection of new records not previously in the training
dataset leads to unsatisfied performance. As mobile wearable
ECG adoption increases, many patients’ data are not labeled
and not included in the training database. To address these
challenges, this paper proposes, for the first time according
to the authors’ knowledge, a CNN-LSTM for QRS com-
plex detection with the objectives of not only high classifi-
cation accuracy but also small timing error. Moreover, the
CNN-LSTM model developed has the ability to generalize
to new patients’ records. The CNN captures visual patterns
and filters noises, while the LSTMdetects timings of the QRS
complexes. After that, anMLP formats the timing predictions
and outputs the final QRS complex detection result. Finally,
this paper performs inter-patient testing on the CNN-LSTM
by training and testing on different ECG patient recordings.
Inter-patient testing verifies the CNN-LSTM’s generalization
ability.

The rest of the paper is organized as follows. Section II
discusses several related QRS complex detection algorithms

in detail. Section III on data preparation shows the
inter-patient test environment and the test parameters.
The proposed CNN-LSTM neural network is presented in
Section IV and the simulations section, Section V, compares
the performance metrics of the CNN-LSTM to other QRS
complex detection algorithms. Error analysis of CNN-LSTM
is conducted in Section VI. Conclusions are given in
Section VII. Finally, a review of neural networks is found in
the Appendix/Section VII.

II. RELATED QRS COMPLEX DETECTION ALGORITHMS
In this section, the following related QRS complex detection
algorithms are presented: Pan and Tompkins [3], GQRS [7],
Wavedet [8], Xiang et al.’s CNN [25], and Chandra et al.’s
CNN [28]. The advantages and disadvantages of each algo-
rithm are also described.

A. PAN AND TOMPKINS
The Pan and Tompkins algorithm [3] is the first real timeQRS
complex detection algorithm, in which a bandpass filter is
applied to reduce the noises in the ECG signals, and adaptive
filters are used to detect the QRS complexes. The adaptive
filters consist of an amplitude filter, a slope filter, and a width
filter. In order to be marked as a QRS complex, an ECG peak
must simultaneously meet all of the following criteria: the
peak’s amplitudemust be greater than an amplitude threshold,
the peak’s slope must be greater than a slope threshold, and
the peak’s width must fall within the range of a QRS complex
width. The amplitude filter rejects the low amplitude signals,
while the slope filter and thewidth filter eliminate the Pwaves
and T waves. The advantages of the Pan and Tompkins algo-
rithm are the fast processing times and low complexity. How-
ever, the filters used in the algorithm need to be engineered by
hand, which requires a lot of time and expertise. Furthermore,
the handcrafted filters can not adapt to different patients and
environments.

B. GQRS
GQRS [7] is a classical QRS complex detection algorithm.
Firstly, it calculates the means and the standard deviations
of the RR intervals and the QRS complex amplitudes of the
previously detected QRS. Secondly, the algorithm forms an
adaptive search interval using the statistics of the RR inter-
vals. Thirdly, the model creates an adaptive amplitude filter
using the statistics of the QRS complex amplitudes. Finally,
the adaptive amplitude filter is applied to the current adaptive
search interval in order to detect the QRS complex. GQRS
has the advantage of adapting slightly better than the Pan and
Tompkins algorithm, which resulted in a better performance.
However, GQRS still fails at detecting some of the QRS
complexes because of its inability to adapt properly in noisy
signals.

C. WAVEDET
Wavedet [8] is a wavelet based QRS complex detection
algorithm. It performs wavelet decomposition on the ECG
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signals, which produces a time series of frequencies. After the
decomposition, a matched filter detects the QRS complexes
by looking at the patterns of the wavelet coefficients. The
matched filter allows for the analysis of many different sig-
nals at varying frequencies and time intervals, thus enabling
the separation of the QRS complex signals from the non QRS
complex signals. For the final QRS complex detection, it uses
an adaptive amplitude filter. Wavedet performs better than
GQRS under low noise conditions due to its multi-resolution
analysis, but performs poorly under high noise conditions due
to its ineffective matched filter and adaptive amplitude filter.
The matched filter is unable to filter out the noises as it can
not distinguish the false QRS complexes from the actual QRS
complexes. Furthermore, the amplitude filter can not tell the
difference between the noises and the actual QRS complexes
just by looking at the amplitudes.

D. AUTOMATIC QRS COMPLEX DETECTION USING
TWO-LEVEL CONVOLUTIONAL NEURAL NETWORK
Xiang et al.’s paper [25] detects QRS complexes using a
2-layer CNN. The first ECG channel is obtained by applying a
difference filter to the original input ECG signal. The second
ECG channel is produced by applying a moving average filter
and a difference filter to the original input ECG signal. After
filtering, two 1×5 pixel CNN kernels are applied to the ECG
channels. For the second CNN layer, it uses a 1×5 pixel
CNN kernel. Finally, the MLP layers make the final QRS
complex predictions. Xiang et al.’s CNN is fast and produces
great results under low noise conditions. However, Xiang
et al.’s CNN is ineffective under high noise conditions due
to its difference filter. The difference filter is a highpass filter
that allows high frequency noise through, which introduces
classification errors and decreases the performance of the
algorithm.

E. ROBUST HEARTBEAT DETECTION FROM
MULTIMODALDATA VIA CNN-BASED
GENERALIZABLE INFORMATION
FUSION
Chandra et al.’s paper [28] uniquely features an inter-patient
testing scheme. In the testing scheme, the patients in the
training set differ from the patients in the testing set. This
testing scheme proves the generalization ability of their algo-
rithm. Their neural network has a 1-layer CNN and an MLP.
The CNN has 2 filters with a kernel size of 29 pixels. The
MLP has one 200-neuron hidden layer and employs a sigmoid
activation function. The model performs slightly better than
Xiang et al.’s CNN due to the former’s large CNN kernel
size and the former’s greater number of neurons. However,
it was not designed for high noise conditions, and hence its
performance degrades in very noisy data that often happen in
wearable ECG devices.

III. DATA PREPARATION
As stated in the introduction, data preparation provides the
testing and training environment to compare the various

QRS complex detection algorithms. The MIT-BIH arrhyth-
mia database [35], [36] and the European ST-T database [37]
were selected for the training and testing of the QRS com-
plex detection algorithms. The MIT-BIH database was sam-
pled at 360 Hz, or equivalently 1 sample per 2.78 ms.
In order to maintain a consistent sample rate, the European
ST-T database was upsampled from 250 Hz to 360 Hz. The
databases have relatively clean ECG recordings. To simulate
the noisy wearable ECG devices, noise was added to the ECG
recordings using the PhysioToolkit Noise Stress Test [38]
software. In this paper, only the first 640,000 samples of
each ECG recording were used due to the constraints of the
PhysioToolkit Noise Stress Test [38]. The worst case signal
to noise ratio (SNR) for most wearable ECG devices ranges
from 12 dB SNR to 0 dB SNR. As a result, only the 12 dB
SNR and the 0 dB SNR ECG recordings were used.

The following labels were selected for QRS complex
detection: N, •, L, R, A, a, J, S, V, F, e, j, E, /, f, and Q. After
the selection, the labels were converted into floats. For every
individual sample that has a QRS complex label, y = 1.0 was
assigned to that individual sample, which usually corresponds
to the R peak position or very close to the R peak. The floats
y = 0.0 were assigned to all other samples in the recording.
There is only one y = 1.0 label for each QRS complex. All
detection algorithms were restricted to using only the primary
ECG lead for QRS complex detection, while Other ECG leads
were not used. The usage of only the primary ECG lead was
also done to mimic wearable single channel ECG devices.

Some of the ECG recordings in the databases have incon-
sistent label positioning. A portion of the QRS complexes
were labeled at the R peak, while other QRS complexes were
labeled at the start of the Q wave. For this paper, the QRS
complexes labeled at the R peak were used. Moreover, a few
ECG recordings have QS complexes instead of QRS com-
plexes. The detection of QS complexes is out of the scope
of this paper. The following correct ECG recordings from
the MIT-BIH database were used for training and testing:
100, 101, 102, 103, 104, 105, 106, 109, 112, 113, 115, 116,
118, 119, 121, 122, 123, 201, 202, 208, 209, 212, 213, 214,
215, 217, 219, 220, 221, 222, 228, 230, 231, 232, and 234.
Furthermore, the following correct ECG recordings from the
European ST-T database were used for training and testing:
e0103, e0104, e0111, e0112, e0113, e0115, e0116, e0118,
e0123, e0127, e0136, e0147, e0151, e0154, e0159, e0161,
e0166, e0170, e0203, e0204, e0206, e0207, e0208, e0210,
e0212, e0303, e0306, e0404, e0406, e0408, e0409, e0410,
e0411, e0417, e0418, e0509, e0601, e0606, e0607, e0609,
e0610, e0611, e0612, e0613, e0615, e0704, e0818, and
e1304. Patients with multiple ECG recordings in the database
had only one ECG recording included in this study. The
datasets were concatenated into one dataset and randomly
shuffled during the 1×10 fold testing phase. After shuffling,
14 ECG recordings were used as the training dataset and
the remaining ECG recordings were grouped as the testing
dataset. This way the patients from the training dataset differ
from the patients in the testing dataset, realizing interpatient
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testing to minimize bias towards the training dataset. The
following recordings were used for the MIT-BIH NST cross
validation set: 107, 117, 124, and 205. These recordings were
selected because they already have significant noise artifacts
or ECG deformations present.

IV. PROPOSED CONVOLUTIONAL NEURAL NETWORKS
WITH LONG SHORT-TERM MEMORY
In this paper, we propose a CNN-LSTM for the detection of
QRS complexes in noisy ECG signals. The algorithm takes
in a 2 channel ECG signal. Note that channel 1 is the filtered
version of the primary ECG lead, and channel 2 is the gradient
of channel 1. To mimic wearable ECG devices, the model
does not use any other ECG lead besides the primary ECG
lead. The model predicts QRS complexes by producing a
delta function at the location of the R peak.

In the pre-processing phase, a Butterworth highpass filter
n = 3, fc = 5 Hz is applied to the primary ECG lead
in order to obtain channel 1. The Butterworth filter reduces
the baseline wandering of the ECG signals by attenuating
the signals below fc = 5 Hz. After obtaining channel 1,
a difference filter is applied to the channel 1 in order to obtain
channel 2, as given by

y[t] = x[t]− x[t − 1] (1)

where x[t] is the input ECG signal with respect to time t and
y[t] is the filtered output signal with respect to time t . The
difference filter enhances signals that have large gradients.
As the QRS complexes have large gradients, the difference
filter enhances the QRS complexes. After the filtering, chan-
nel 1 and channel 2 are independently normalized in order
to compensate for the differing patients and ECG devices.
First, each ECG recording is divided into ECG segments
of 1,280 samples each. Second, each segment is normalized
using the mean of the local maximums.

The architecture of the CNN-LSTM is shown in Fig. 1.
It is made from a 2-layer 2D CNN, a 2-layer LSTM, and a
3-layer MLP. The purpose of the CNN layers is to extract the
visual features from the ECG signals. Moreover, the CNN
layers are able to filter noise from the ECG signals. The
visual features extracted by the CNN layers are sent to the
LSTM layers, which predict the future QRS complexes using
the previous QRS complexes. Furthermore, the LSTM lay-
ers smooth out high frequency noise present in the ECG
signals. The timing predictions from the LSTM layers are
sent to the MLP layers, which apply thresholding to the
timing predictions in order to produce the final QRS complex
predictions.

The CNN-LSTM architecture is superior to the CNN coun-
terpart because the former takes into account of the temporal
correlations between the ECG samples through the LSTM.
QRS complexes are quasi-periodic signals. If the period of
the QRS complexes is known and position of the latest QRS
complex is known, the position of the next QRS complex
could be predicted. The LSTM enables the prediction of

FIGURE 1. The proposed CNN-LSTM architecture.

the next QRS complex position by using the previous QRS
complex position and the visual features from the CNN.

A. HYPERPARAMETER TUNING
Table 1 shows the hyperparameter tuning of the CNN-LSTM.
Firstly, the CNN kernel size is varied until the optimal
91×2 kernel size is found. Secondly, the number of CNN
channels, i.e., filters, in the first layer is varied. The optimal
number of CNN channels is found to be 4 CNN channels.
Thirdly, the number of LSTM and MLP neurons per layer is
altered and the optimal number is found to be 200. In order
to preserve the information between the LSTM layers and
the MLP layers, the number of LSTM neurons per layer
must equal the number of MLP neurons per layer. Finally,
the optimal number of LSTM layers is found to be 2 LSTM
layers, and the optimal number of MLP layers is 3.
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TABLE 1. CNN-LSTM hyperparameter tuning.

B. CNN DESCRIPTION
The first CNN layer has a kernel size of 91×2. As the kernel
needs to detect QRS complex gradients, the kernel size is
set to the size of a QRS complex gradient. The CNN layers’
horizontal strides control how much the kernels shift at every
time interval. In order to preserve the timing of the ECG
signal, the horizontal strides of the CNN layers are set to
1 sample. This makes the kernels shift right by 1 sample at
every time interval. When the kernels go out of the bounds of
the input matrix, the ends of the input matrix are padded with
zeros. The first CNN layer uses 4 channels in order to detect
the 4 main QRS complex like waveforms: QRS complex, qRs
complex [39], QR complex, and RS complex. The first CNN
layer uses the LeakyReLU activation function with α = 0.02
given by

LeakyReLU (x) =

{
x if x > 0
αx otherwise

(2)

where x is the input matrix to the LeakyReLU function. The
LeakyReLU function is fast due to its low computational
complexity. Moreover, it prevents the loss from reaching
zero. The first CNN layer also uses the batch normalization
function given by

BN (x) =
x − µx
σx

(3)

where x is the input matrix, µx is the mean of x, and σx is the
standard deviation of x. Batch normalization helps the neural
network to converge faster. The second CNN layer is similar
to the first CNN layer, with the only difference being the
number of channels. The second CNN layer takes in 4 CNN
channels from the first CNN layer and reduces it to 1 channel,
which effectively functions as a 4 to 1 pooling layer.

C. LSTM DESCRIPTION
The second CNN layer connects to the first LSTM layer,
which predicts the QRS complex timings using the 1D
sequence of visual features from the CNN layers. The QRS
complex timings allow the LSTM layers to narrow the search
spaces for QRS complexes. There are 2 LSTM layers. Each
has 200 neurons and uses the tanh function as the activation
function. The tanh function has a range of r ∈ [−1, 1], which
allows for the negative and positive feedback in the LSTM
layers without exponential feedback, which in turn allows
the LSTM layers to remember different past information.
The LSTM with the tanh activation function can be viewed
as a smoothing filter and hence is able to smooth out high
frequency noise present in the ECG signals.

D. MLP DESCRIPTION
The final LSTM layer fully connects to the first MLP layer.
The purpose of the MLP layers is to execute the final QRS
complex detection. The MLP layers apply thresholding to
the QRS complex timing predictions in order to filter out the
incorrect QRS complex predictions. There are 3 MLP layers,
each having 200 neurons. The MLP layers use the batch
normalization function and the sigmoid activation function
given by

S(x) =
1

1+ e−x
(4)

where x is the input matrix. The sigmoid activation function
constrains the MLP layers’ output to the continuous interval
of Q ∈ [0, 1]. In order to produce a binary output, a final
threshold fthres = 0.9 is applied to MLP layers’ output Q.
If Q > fthres, then the CNN-LSTM predicts ŷ = 1.0 to signal
the presence of QRS complex, otherwise the CNN-LSTM
predicts ŷ = 0.0 to signal the absence of a QRS complex.
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E. LOSS FUNCTION
Neural networks are trained by minimizing a defined loss
function. As a result, the choice of the loss function is critical
to the performance of the neural network. This work uses the
weighted cross-entropy loss function expressed as

J (ŷ, y) = − log(S(ŷ))(y)(Wpos)− log(1− S(ŷ))(1− y) (5)

where y is the QRS complex label and Wpos is the
cross-entropy weight. The weighted cross-entropy loss func-
tion is chosen because the function allows the designer to
change the ratio of false positives (FP) to false negatives (FN)
by varying the cross-entropy weightWpos. Each ECG record-
ing has approximately 340 samples in between each pair
of QRS complexes. Therefore, the number of true nega-
tives (TN) is far larger than the number of true positives
(TP). The imbalance is corrected by setting the cross-entropy
weight toWpos = 340. Furthermore, the predicted QRS com-
plex detection ŷ is matched against the actual QRS complex
detection label y. If they both have the same value ŷ ≈ y,
then the loss function is small. If they have different values
ŷ 6= y, then the loss function is large. This fulfills the design
objective.

V. SIMULATIONS
In this paper, all algorithms described in Section II are
implemented as the comparison basis for the proposed
CNN-LSTM. The neural networks are implemented in
Python 3 using TensorFlow 1.5 [40], while the other
algorithms are implemented in MATLAB using the Phy-
sioNet ECG-Kit [36]. The QRS complex detection algo-
rithms are benchmarked using the noisy dataset described
in Section III.

A. EVALUATION METRICS
The true positives (TP), false positives (FP), false negatives
(FN ), sensitivity (SEN ), positive predictive value (PPV ),
F1 score (F1), and root mean-squared error (RMSE) of
the timings of the QRS complex detection algorithms are
recorded. Here, SEN , PPV and F1 are computed according
to the equations below

SEN =
TP

TP+ FN
(6)

PPV =
TP

TP+ FP
(7)

F1 = 2
SEN · PPV
SEN + PPV

. (8)

Sensitivity measures the number of false negatives in relation
to the actual QRS complexes. Positive predictive value mea-
sures the number of false positives among the detected QRS
complexes. If a QRS complex detection algorithm performs
well, then it must have a high sensitivity SENS ≈ 1 and a
high positive predictive value PPV ≈ 1. This in turn causes
the F1 ≈ 1 to be high.
If a QRS complex detection algorithm predicts the R peak

of a QRS complex within 50 ms of the R peak of a true

QRS complex, then the predicted QRS complex counts as a
true positive. If a QRS complex detection algorithm predicts
a QRS complex and the R peak of a true QRS complex does
not exist within 50 ms of the R peak of the predicted QRS
complex, then it is counted as a false positive. If a QRS
complex detection algorithm does not predict the R peak
of a QRS complex within 50 ms of the R peak of a true
QRS complex, then it is counted as a false negative. The true
negatives are not relevant as none of the ECG metrics use
them.

Another important performance measure is related to the
timing accuracy of the R wave, in addition to QRS detection
benchmarks. R peak timing error directly impacts the accu-
racy of RR intervals, PR intervals, and heart rate variability
calculations. Here, the RMSE timing metric, given by

RMSE =

√√√√ 1
M

M∑
i=1

(Ti − T̂i)2 (9)

is used for the evaluation of the QRS complex detection
algorithms, where M is number of QRS complexes, Ti is
the QRS complex label time, and T̂i is the QRS complex
prediction time.

B. CNN-LSTM LEARNING CURVE
Fig. 2 shows the learning curve of the CNN-LSTM. The
learning curve was generated using the MIT-BIH NST 12 dB
SNR database. Some of the ECG segments in the MIT-BIH
NST database have low noise, while others have high noise.
This discrepancy causes fluctuations in the F1 score. Further-
more, the CNN-LSTM may perform better in certain ECG
recordings, which also leads to more fluctuations in the F1
score. The fluctuations in the F1 score account for the large
error bars in the learning curve. These errors also plague
the other algorithms presented in Table 2, which results
in large F1 score standard deviations. The learning curve
narrowing around the 12 to 14 ECG recording mark. This
proves the convergence of the model. Moreover, the learning
curve also proves the CNN-LSTM is neither underfitting nor
overfitting.

FIGURE 2. CNN-LSTM’s learning curve. MIT-BIH NST 12 dB SNR. 2σ error
bar.
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TABLE 2. MIT-BIH NST algorithm performance, with 12 dB SNR.

TABLE 3. MIT-BIH NST algorithm performance, with 0 dB SNR.

TABLE 4. European ST-T NST algorithm performance, with 12 dB SNR.

TABLE 5. European ST-T NST algorithm performance, with 0 dB SNR.

C. RESULTS
Tables 2-5 show the results of the 1×10 fold testing on
the MIT-BIH NST and the European ST-T NST databases.
For both databases, the proposed CNN-LSTM outperforms
GQRS [7], Pan and Tompkins [3], Wavedet [8], Xiang et al.’s
CNN [25], and Chandra et al.’s CNN [28] in terms ofF1 score.
For example, for the 12 dB SNR MIT-BIH NST database,
the proposed CNN-LSTM’s F1 score of 0.9650 is greater
than GQRS’s F1 score of 0.9005, Pan and Tompkins’s F1
score of 0.8844, Wavedet’s F1 score of 0.8409, Xiang et al.’s
CNN’s F1 score of 0.9418, and Chandra et al.’s CNN’s F1
score of 0.9460. Also shown in these tables, the most recent
machine learning based algorithms, [25], [28] and the pro-
posed CNN-LSTM, have clear advantages over the previ-
ous filter and wavelet based algorithms, which demonstrates
the effectiveness of neural networks. The proposed model

performs consistently better than the other NN based QRS
complex detection algorithms for noisy data because our
CNN-LSTM model has larger CNN kernels than the latter.
The larger CNN kernels help the CNN-LSTM to filter out
the noise better, thus reducing the number of false positives.
Furthermore, the LSTM layers improve the F1 score of the
CNN-LSTM model by predicting the future QRS complexes
correctly. Finally, the proposed model has a greater number
of neurons than the other NN. The greater number of neurons
allows the CNN-LSTM to detect more complex patterns,
which improves the F1 score.

D. WIDE QRS COMPLEXES
Fig. 4 and Fig. 5 show patients with wide QRS complexes.
The ECG signals have QRS complex widths of 80 samples
(222 ms) and 90 samples (250 ms) respectively. The smaller
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FIGURE 3. CNN-LSTM’s error distribution. MIT-BIH NST 12 dB SNR. 2σ error bar.

CNN kernel sizes have trouble detecting large QRS com-
plexes because they can not capture the entire QRS complex.
Thus, the large 91×2 CNN kernels were used to detect the
large QRS complexes. This results in an increase of F1 as
shown in Table 1.

E. CNN-LSTM LIMITATIONS
The proposed CNN-LSTM has a few limitations. The tim-
ing RMSE of the model is similar to that of Xiang et al.’s
CNN [25] and Chandra et al.’s CNN [28] at low SNRs,
but slightly worse at high SNRs. The timing errors of the
proposed model are due to the large 91×2 CNN kernels.
All CNN kernels have a trade off between spatial frequency
uncertainty and position uncertainty. The 91×2 CNN kernels
has low spatial frequency uncertainty at the cost of high posi-
tion uncertainty. Another limitation of the proposed model
is the computational complexity. At every time interval n,
the CNN performs one convolution with kernel widthW and
kernel height H at a cost of O(W ,H ) = WH computations.
If the number of channels C is considered, then the cost is
O(W ,H ,C) = WHC computations. The cost for the entire
time interval n is O(n) = WHCn computations. With the
addition of many CNN layers LCNN , the cost becomesO(n) =
LCNNWHCn computations.
Now, consider the computational complexity of the LSTM.

For a single gate G = 1 at a single time interval
n = 1, the gate has a cost of O(m, p) = mp compu-
tations, where m and p are the height and width of the
gate’s weight matrix respectively. For multiple gates G and
time intervals n, the cost is O(n) = Gmpn computations.
With the addition of many LSTM layers LLSTM , the cost
becomes O(n) = LLSTMGmpn computations. The MLP lay-
ers have the same weight dimensions as the LSTM layers.

Thus, the computational cost of the MLP layers is O(n) =
LMLPmpn computations, where LMLP is the number of MLP
layers. Finally, the total computational complexity of the
CNN-LSTM is

O(n) = LCNNWHCn+ LLSTMGmpn+ LMLPmpn. (10)

The computational complexity of the CNN-LSTM is higher
than the computational complexities of other QRS complex
detection algorithms. As a result, the proposed model detects
QRS complexes at a slower rate than the rest of the QRS
complex detection algorithms. The CNN-LSTM also requires
more ECG recordings for the training phase. The proposed
model requires at least 11 ECG recordings for the training
phase as shown in Fig. 2. The rest of the QRS complex
detection algorithms only require 100,000 ECG samples for
the training phase. These limitations can be largely overcome
by today’s powerful computingmachines such as GPU during
training.

VI. ERROR ANALYSIS
A detailed error analysis of the CNN-LSTM indicates the
following 5 main errors: QRS complex like artifact created
by noise, P wave and T wave misclassified as QRS complex,
QRS complex amplitude too small, atrial flutter/atrial fibrilla-
tion, and actual QRS complex distorted by noise. Fig. 3 shows
the CNN-LSTM’s error distribution.

A. QRS COMPLEX LIKE ARTIFACT CREATED BY NOISE
This error type occurs when QRS complex like artifacts are
introduced by the noises, generated using the PhysioToolkit
Noise Stress Test [38], and is the main source of error
accounting for 35.12% of total number of errors. The criteria

(FP) ∧ (RMSE(ECGclean[t],ECGnoisy[t]) > 0) (11)
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FIGURE 4. MIT-BIH NST CNN-LSTM QRS complex detection. QRS complex width 80 samples (222 ms).

FIGURE 5. MIT-BIH NST CNN-LSTM QRS complex detection. QRS complex width 90 samples (250 ms).

is used to classify the error, where the error is a false positive
FP = True and large amounts of noises are introduced
RMSE(ECGclean[t],ECGnoisy[t]) > 0. ECGclean[t] and

ECGnoisy[t] represent the ECG signals before and after the
additions of the noises respectively. The generated artifacts
are almost indistinguishable from the actual QRS complexes.
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The artifacts could be minimized by employing more filters
or advanced neural networks. For example, the filters could
minimize the number of false positives by rejecting false QRS
complexes before they reach the CNN-LSTM.

B. P WAVE AND T WAVE MISCLASSIFIED
AS QRS COMPLEX
P waves and T waves in the ECG signals sometimes look
similar to the QRS complexes, especially when they become
larger than QRS complex in amplitude. This error type hap-
pens when a P wave or a T wave is misclassified as a QRS
complex. The criteria

(FP) ∧ ((label == P) ∨ (label == T )) (12)

is used to classify the error, where the error is a false positive
FP = True and a P wave or a T wave is within 50 ms of
the error. The P waves and T waves could be removed using
a P wave and T wave detector. However, the detector may
introduce more errors.

C. QRS COMPLEX AMPLITUDE TOO SMALL
TheCNN-LSTMuses thresholding to detect QRS complexes.
If a QRS complex amplitude is above the threshold, then it
gets detected; Otherwise it does not get detected. This error
type happens when a QRS complex amplitude is too small,
which results in a false negative error. The criteria

(FN ) ∧ (E[AQRS ] > AQRS ) (13)

is used to classify the error, where the error is a false neg-
ative FN = True and the expected value of the QRS com-
plex amplitudes E[AQRS ] is greater than the current QRS
complex amplitude AQRS . This could be reduced by using
better normalization algorithms. However, the normalization
algorithms introduce a chicken and egg problem. The QRS
complex detection algorithm requires a normalization algo-
rithm in order to increase the QRS detection accuracy. On the
other hand, the normalization algorithm needs the actual QRS
complex amplitude because the noise peaks could be higher
than the actual QRS complexes.

D. ATRIAL FLUTTER/ATRIAL FIBRILLATION
When atrial flutters or atrial fibrillations occur, the ECG
signals look like triangular waves or saw-tooth waves. This
significantly distorts the QRS complexes and introduces
detection errors. The criteria

(FN ) ∧ ((label == AFIB) ∨ (label == AFL)) (14)

is used to classify the error, where the error is a false negative
FN = True and the ECG segment is labeled as an atrial
flutter or an atrial fibrillation. The misclassification errors
may be resolved by increasing the cross entropy weights of
the segments that have atrial flutters or atrial fibrillations.
Moreover, the false negative errors could be reduced by using
a specialized CNN-LSTM just for the detection of the atrial
flutters and the atrial fibrillations.

E. ACTUAL QRS COMPLEX DISTORTED BY NOISE
This error type occurs when the actual QRS complex is
distorted by the noises generated by the PhysioToolkit Noise
Stress Test [38]. The distorted QRS complex does not resem-
ble any normal QRS complex, thus resulting in a classifica-
tion error. The criteria

(FN ) ∧ (RMSE(ECGclean[t],ECGnoisy[t]) > 0) (15)

is used to classify the error, where the error is a false negative
FN = True and the actual QRS complex is distorted by the
noises RMSE(ECGclean[t],ECGnoisy[t]) > 0. The error
could be minimized by adding more filters to the model.
More filters could mean better detection of distorted QRS
complexes.

VII. CONCLUSION
This paper has presented a novel CNN-LSTM structure
for the detection of QRS complexes in noisy ECG sig-
nals. Moreover, an inter-patient training/testing procedure
has been devised to prove the generalization ability of the
CNN-LSTM. The generalization ability of the CNN-LSTM
is particularly useful for automatic analysis of ECG data col-
lected by mobile wearable devices, where manual labeling of
individual patients’ records is unrealistic. Inside the stacked
network, the CNN layers extract visual features and filter out
noise from the noisy ECG signals. The LSTM layers pre-
dict the QRS complex timings. The subsequent MLP layers
execute the final QRS complex detections and format the
outputs of the network. Simulations using MIT-BIH NST and
European ST-T NST databases have demonstrated that the
proposed CNN-LSTM outperforms the existing algorithms in
the literature in terms of F1 score. As a result, the proposed
CNN-LSTM is a promising solution for use in noisy wearable
ECG devices.

APPENDIXES
REVIEW ON NEURAL NETWORKS
Neural networks are the building blocks for some of the QRS
complex detection algorithms. Therefore, a brief review of
neural networks is presented below.

A. MULTI-LAYER PERCEPTRON
MLPs [41] are a type of neural network. They excel at classi-
fying many types of data. Moreover, MLPs are proficient at
adapting to changing input data and are suitable for detecting
QRS complexes in ECG signals. The fundamental equation
for the MLPs is given by

Oi = A(W T
i Xi + Bi). (16)

For each layer i, Xi,Wi,Bi are the input, weight, and bias
matrices respectively. A(V ) is the activation function with
respect to input matrix V . Also, Oi is the output matrix of
layer i. The input data enters at the input matrix Xi. The input
Xi is multiplied by the weights Wi and the result is added to
the bias Bi. The output Oi is obtained by passing the result
through the activation function A(V ).
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B. LONG SHORT-TERM MEMORY
LSTMs [42] are a special type of neural network that store
memories inside of the neurons. LSTMs remember and forget
data using the hidden gates. Therefore, LSTMs are suitable
for time-series pattern recognition, where the LSTMs predict
the future using only the past input data. LSTMs are often
employed to predict QRS complexes in time-series ECG
signals. The LSTM’s equations are given by

ilt = S(W l
i [χt ; h

l
t−1]+ b

l
i) (17a)

f lt = S(W l
f [χt ; h

l
t−1]+ b

l
f ) (17b)

slt = f lt s
l
t−1 + i

l
t tanh(W

l
s [χt ; h

l
t−1]+ b

l
s) (17c)

olt = S(W l
o[χt ; h

l
t−1]+ b

l
o) (17d)

hlt = olt tanh(s
l
t ) (17e)

Eqn. (17a) shows the input gate for the LSTM neuron. Input
gate controls which information enters the LSTM neuron.
Input data χt and final LSTM output data hlt−1 are fed into the
input gate ilt . Using the input gate weights W l

i and biases bli ,
the output vector of the input gate ilt is determined. Eqn. (17b)
shows the forget gate. The forget gate f lt determines if the
hidden state slt is forgotten or retained. The forget gate f lt
is computed just like the input gate ilt . Eqn. (17c) shows
the computation of hidden state vector slt . The forget gate
f lt controls the retention of the previous state variable slt−1.
The input gate ilt controls the weight of the tanh activation
function. Eqn. (17d) shows the output gate olt . The output
gate olt controls what information is outputted by the LSTM
neuron. Eqn. (17e) shows the final output vector hlt of the
LSTM neuron. Final output vector hlt is computed using the
hidden state vector slt and the output gate o

l
t .

C. CONVOLUTIONAL NEURAL NETWORKS
CNNs [43] are used for processing images. At every layer,
the CNN applies a convolutional filter to the input vector
of the layer. Convolutional filters allow the CNNs to detect
spatial patterns in the data. Moreover, CNNs are able to filter
out noise from the input data. Therefore, CNNs are good at
detecting QRS complexes as QRS complexes have unique
spatial patterns. The CNN equations given by

V i
y,z =

N∑
j=1

M∑
k=1

W i
j,kX

i
j+y−1,k+z−1 (18)

Oi = A(V i
+ Bi) (19)

depict 2D convolution between the input matrix X i and the
kernel weights W i. The kernel weights W i slide across the
input data X i to produce V i. After computing V i, V i is
added to bias Bi. Then the resulting matrix passes through
the activation function A and produces the output matrix Oi.
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