
Received November 5, 2019, accepted November 21, 2019, date of publication November 25, 2019,
date of current version December 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2955864

kNN-STUFF: kNN STreaming Unit for Fpgas
JOÃO VIEIRA , (Member, IEEE), RUI P. DUARTE , (Member, IEEE), AND HORÁCIO C. NETO
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, 1000-029 Lisboa, Portugal

Corresponding author: João Vieira (joaomiguelvieira@tecnico.ulisboa.pt)

This work was supported by the National Funds through Fundação para a Ciência e a Tecnologia (FCT) under Grant
PTDC/EEI-HAC/31819/2017 and Grant UID/CEC/50021/2019 project ‘‘Synthetic Aperture Radar Robust Reconfigurable Optimized
Computing Architecture (SARRROCA)’’.

ABSTRACT This paper presents kNN STreaming Unit For Fpgas (kNN-STUFF), a modular, scalable and
efficient Hardware/Software implementation of k-Nearest Neighbors (kNN) classifier targeting System on
Chip (SoC) devices. It takes advantage of custom accelerators, implemented on the reconfigurable fabric
of the SoC device, to perform most of the classifier’s workload, whereas the processor coordinates the
accelerators and runs the remaining workload of the kNN algorithm. kNN-STUFF offers a highly flexible
framework, where the designer has the possibility to define the number of parallel instances of the classifier
and the parallelism within each instance. This capability allows creating the most suitable implementation
for a target device of any size. Results show that kNN-STUFF, with 24 accelerators, attains performance
improvements up to 67.4×, when compared to an optimized (-O3) software-only implementation of the kNN
running on a single core of the ARM Cortex-A9 CPU. Furthermore, its energy efficiency improvements are
as high as 50.6×.

INDEX TERMS FPGA, SoC, kNN, Parallel architectures, real-time classification, IoT.

I. INTRODUCTION
The k-Nearest Neighbors (kNN) is an important unsupervised
Machine Learning (ML) algorithm for classification used
in diverse fields, such as data mining, satellite and medical
imaging, speech recognition, computer vision, text catego-
rization, data compression, computational genomics, and pre-
dictive analysis [1]. It classifies multi-dimensional points in
the RM plan, called samples, by computing their distances
to all samples in a training set, whose classes are known
beforehand, and determining the most repeated class among
the k training samples closest to the one being classified.

Even though the kNN algorithm is conceptually simple,
when implemented in a classical fashion, the required amount
of data transfers between the memory and the Central Pro-
cessing Unit (CPU), as well as the instructions executed by
the CPU, scale superlinearlly with the size of the dataset.
Thus, the use of big datasets leads to extremely long and
intensive computational workloads, which require significant
processing power [2]. Plus, since kNN is memory-bounded it
requiresmassive data transfers between the CPU and themain
memory, which accounts for more than 25% of the energy
spent by the system [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Giacomo Verticale .

With the advents of Big Data and Internet of Things (IoT),
the necessity of processing in real time large amounts of data
in systems that are highly constrained in terms of energy
and hardware resources arose. Thus, creating mechanisms
capable of efficiently running heavy workloads in low-end
platforms became a need [4]–[7]. For this purpose, Systems
on Chip (SoCs) containing both hard processors and recon-
figurable logic have enabled the development of energy-
efficient Hardware/Software (HW/SW) architectures capable
of achieving high-performance. However, in the particular
context of the kNN algorithm, designing a dedicated accel-
erator is not trivial due to the constant change of the datasets’
parameters, the classifier requirements and how data is fed to
the system.

Previous work on kNN accelerators targeting Field-
Programmable Gate Arrays (FPGAs) and SoCs often do
not scale in terms of performance and hardware and energy
requirements and support only a small set of devices [8]–[12].
Furthermore, they require to re-implement the designs
whenever changing the parameters of the dataset. Other
contributions such as [13] show remarkable performance
improvements, but require a significant amount of hardware
resources to be implemented, which are hardly available in
the context of IoT. Moreover, in general, these proposals
focus mainly on accelerating the classification of a single

170864 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-0038-2830
https://orcid.org/0000-0002-7060-4745
https://orcid.org/0000-0002-3621-8322
https://orcid.org/0000-0001-7508-9706


J. Vieira et al.: kNN-STUFF: kNN STreaming Unit for Fpgas

sample at a time, not exploiting the parallelism enabled
by classifying several samples in parallel, which is possi-
ble in many circumstances outside the laboratory environ-
ment. Another limitation of most previous solutions is their
inherent data format. While most of the previously designed
kNN accelerators can only operate data in fixed-point format
(which usually leads to less complex data paths), in various
cases the features of the samples may be only representable in
floating-point format. For instance, most of bio-signals [14]
are acquired in the form of complex time-series and require
feature extraction before classification, which often produces
real or complex floating-point values.

For all the reasons above, there is a need for creating
a generic architecture that implements the kNN classifier
independent of the parameters of the dataset, capable of pro-
cessing data at the rate it is received and capable of operating
values in floating-point format efficiently.

This paper presents kNN STreaming Unit For Fpgas
(kNN-STUFF), a novel HW/SW floating-point implemen-
tation of the kNN classifier that offloads over 99% of the
algorithm’s workload from the processor to custom hard-
ware accelerators. The architecture of the accelerator used
by kNN-STUFF is independent of the parameters of the
dataset and processes the data in a streamed manner, being
able to consume new inputs every clock cycle. Furthermore,
kNN-STUFF enables the implementation of multiple acceler-
ators to perform the classification of several testing samples
simultaneously. To achieve this, the training set is broadcasted
to all accelerators at once, reducing the memory accesses by
the number of instances running in parallel, hence, enhanc-
ing both performance and energy efficiency. Furthermore,
kNN-STUFF also allows parallelizing the classification of
a single testing sample using multiple accelerators. In this
case, each accelerator computes the kNN relative to a training
subset, allowing to transfer the training subsets to the different
accelerators in parallel, thus increasing the bandwidth to the
memory by the number of accelerators.

Overall, the contributions of this paper are the following:
1) We present a scalable HW/SW architecture of a system

that optimizes the execution of the kNN algorithm tar-
geting SoCs.

2) We provide an optimized, fully parameterized and syn-
thesizable Register Transfer Level (RTL) description
of an accelerator for the kNN algorithm suitable for
implementation in FPGA.

3) We define a framework to generate and implement clus-
ters of accelerators automatically.

4) We provide a software library to use the accelera-
tors/clusters of accelerators from the software side.

5) We define an optimized software-only implementation
of the kNN algorithm targeting processors to use as a
baseline for performance comparison.

6) We perform extensive validation and assessment of the
novel system, using real datasets and studying the effect
of varying the dataset and the classifier parameters on
the system’s performance and hardware requirements.

The rest of this paper is organized as follows. Section II
analyzes previous hardware implementations of the kNN
classifier targeting FPGAs and SoCs and Section III pro-
vides background on the kNN algorithm. Section IV
introduces the challenges associated with designing an accel-
erator, and the profiling of the algorithm used to identify
its computational bottlenecks is presented in Section V.
Section VI details the architecture of the custom accelerator,
and Section VII explains the overall kNN-STUFF system.
Section VIII presents the experimental results, and Section IX
summarizes the main remarks of this work.

II. RELATED WORK
Previous hardware implementations of the kNN classifier
targeting FPGAs and SoCs have been proposed (e.g., [8],
[10], [12], [13], [15]–[18]). However, such proposals tackle
particular applications of kNN, adopt custom fixed-point rep-
resentations, and, in general, need to be re-engineered when-
ever the parameters of the classifier or the dataset change.

For example, Manolakos E. et al. [8] propose a Very Large
Scale Integration (VLSI) architecture obtained through linear
space-time mapping [19]. Their work devises two architec-
tures depending on the relation between the size of the train-
ing set, N , and the number of features per sample,M . One of
the architectures, obtained through the horizontal projection
of the Dependence Graph (DG) of the kNN algorithm is
optimized for datasets where N � M , while the other,
result of the vertical projection, is suitable for datasets where
M � N . They show that their architectures can achieve
performance improvements between 1.5× and 3× over the
NVIDIA GeForce 8800 GTXGeneral Purpose Graphics Pro-
cessingUnit (GPGPU)whilemaking efficient usage of FPGA
resources. However, their architectures are dependent on the
datasets, requiring to be re-implemented whenever the train-
ing set changes. Moreover, the hardware requirements grow
with the size of the datasets, since the entire training set is
permanently stored in Block RAMs (BRAMs). Thus, their
architectures are not scalable.

Hussain H. et al. [10] used an analogous approach to
the previous work, but performed partial reconfiguration to
reduce the overhead of re-implementing the whole design.
Their system only requires to re-implement the part of the
architecture that dependents on the number of nearest neigh-
bors, k . Their base design consists of three types of blocks
targeting different stages of the kNN algorithm. They show
that their architectures can outperform an Intel PentiumDual-
Core E5300 up to 76×. However, the design still needs to be
entirely re-implemented whenever any of the other parame-
ters of the classifier changes.

Mohsin M. et al. [12] propose a heterogeneous system
formed by aMicroBlaze soft-processor and a custom acceler-
ator. Besides the original flow of the kNN algorithm, they also
implement a pre-processing stage to normalize the dataset
and prevent high-value attributes from overwhelming the
influence of the low-value attributes. Similarly to [10], their
architecture features dedicated blocks to perform different

VOLUME 7, 2019 170865



J. Vieira et al.: kNN-STUFF: kNN STreaming Unit for Fpgas

stages of the algorithm. Their design is independent of the
features of the dataset. However, it uses a fixed consider-
able amount of hardware resources and can only fit in large
scale FPGAs.

Following a different approach, Pu Y. et al. [13] designed
a kNN accelerator for FPGAs using Open Computing Lan-
guage (OpenCL). Therefore, the programmer needs only
to be aware of the number of work-items for distributing
the workload in a manner that optimally uses the available
resources of the device. Their architecture outperformed an
Intel Core i7-3770K by 148× while having an Energy Effi-
ciency Ratio (EER) of 804×, which is 3× superior to that of
an AMD Radeon HD7950 GPGPU. The main disadvantage
of their design is the overhead associated with data trans-
fers via the PCI-Express bus, which is identical to that of
GPGPUs. Thus, their architecture is only suitable for large
workloads. Furthermore, it requires a massive amount of
hardware resources, making it unfeasible on smaller devices,
such as IoT.

All in all, previous works neglect to provide a reason-
able trade-off between flexibility, performance and hard-
ware requirements. In general, they are not parameterized
and require major changes to the architecture whenever the
requirements of the datasets change. kNN-STUFF presented
in this work surpasses previous works in terms of efficiency,
is scalable and can be implemented in both small and large
scale reconfigurable devices. It has a set of parameters that
can be adjusted prior to synthesizing the design to produce
different architectures depending on the requirements of the
problem and hardware constraints. It can enable high levels of
parallelism by instantiating multiple accelerators. Moreover,
the accelerators of kNN-STUFF are dataset-agnostic, mean-
ing that they do not require to be re-implemented for different
types of datasets.

III. KNN ALGORITHM REVISITED
The kNN algorithm classifies multidimensional samples
according to their distance to known training samples. The
classification result is derived from the class of the k closest
training samples. The algorithm has three stages: 1) distance
computation, 2) kNN finder, and 3) query label finder. Also,
the kNN algorithm splits the dataset in two parts: the train-
ing set with N pre-classified samples with M features each,
and the testing set with N ′ samples with M features each
from unknown classes. k is the number of nearest neighbors
contributing to the classification. For each of the N ′ samples
in the testing set, the three stages of the kNN algorithm are
executed as follows:
1) First, the distances between the testing sample and all

samples in the training set are determined. Different
metrics can be applied to compute the distance between
the two samples (e.g., Euclidean distance, Manhat-
tan distance, among others [20]). The Euclidean dis-
tance is the most widely used distance metric in kNN,
although other metrics might be more suitable for
particular datasets [21]. This work uses the sum of

squared differences,

d(A,B) =
M∑
i=0

(Ai − Bi)2, (1)

which is equivalent to the Euclidean distance

dEuc(A,B) =

√√√√ M∑
i=0

(Ai − Bi)2 (2)

in the context of the kNN algorithm, since

dEuc(A,B) > dEuc(A,C)⇒ d(A,B) > d(A,C). (3)

The removal of the square root simplifies the implemen-
tation of the distance metric in hardware.

2) Second, the distances calculated in the first stage of
the algorithm are sorted, and the k smallest values are
extracted. In the particular case of the software-only
baseline developed for this work, this phase was imple-
mented using a simple insertion sort. Additionally, since
only the k smallest distances are required, the insertion
sort can be interrupted after the first k elements of the
distance vector are determined, reducing its software
complexity from O(N 2) to O(N × k).

3) Finally, the most common class among the k training
samples corresponding to the k smallest distances is
determined and assigned to the testing sample.

Accordingly, the pseudo-code of the kNN algorithm high-
lighting its different stages is described in Algorithm 1 and
Figure 1 illustrates its operation.

ALGORITHM 1 Pseudo-Code of the kNN Algorithm
for all test_samples do
for all train_samples do

distances.append(distance(test_sample,
train_sample))

end for
indexes← getKLowestDistances(distances, k)
new_class← getMostFreqClass(indexes, train_set)

end for

Complexity-wise, the execution time of the first two phases
of the kNN algorithm scale with O(N × k), whereas the last
phase has complexity O(k). Thus, kNN’s complexity is given
by O(N × k + N × k + k), or simply O(N × k).

IV. CHALLENGES IMPLEMENTING KNN ON FPGA
FPGAs are reconfigurable silicon devices which are capa-
ble of implementing highly optimized and parallel digital
architectures. They have configurable Processing Elements
(PEs) which are programmed to implement any digital func-
tion, memory blocks (BRAMs), fixed-point multiply and
add units known as Digital Signal Processors (DSPs), and
programmable interconnections to connect the elements. Cur-
rently, technology has evolved to SoC devices which can
combine hard processors with reconfigurable logic. While

170866 VOLUME 7, 2019



J. Vieira et al.: kNN-STUFF: kNN STreaming Unit for Fpgas

FIGURE 1. Example of the kNN algorithm applied to classify an unknown
bi-dimensional sample (represented by the green triangle) using a
training set with two classes, blue square and red circle. For k = 3,
the majority of the neighbors are blue squares, thus the assigned class is
also blue square. However, for k = 6 most of the nearest neighbors are
red circles, which determines that the testing sample should also be
classified as a red circle.

the reconfigurable logic offers flexibility to implement opti-
mized custom accelerators for given applications, enhancing
their performance, hard processors provide efficient ways of
feeding data to the devices and controlling them. Moreover,
hard processors easily overcome soft-cores (processors that
can be implemented in reconfigurable logic) performance-
wise. For example, the dual-core ARM Cortex-A9 included
in the Xilinx ZYNQ-7020 SoC can operate up to 650MHz
and is equipped with the ARM NEON Single Instruction
Multiple Data (SIMD) engine, capable of performing four
32-bit floating point operations at once. This makes such
processors the ideal candidates to execute the software parts
of the applications that are not dealt with in the accelerators.

SoC devices alone do not have enough memory capacity
to hold all the data necessary to do the computations inter-
nally and hence, they are interfaced with Double Data Rate
Synchronous Dynamic Random-Access Memories (DDR
SDRAMs). Moreover, DDR SDRAMs can be shared with
other Input/Output (I/O) sub-systems which facilitate the
exchange of data avoiding extra communication channels.
The downside is the access overhead introduced by DDR
SDRAMs when compared to the internal BRAMs.

Relating the kNN algorithm with the technology, it is
expected to spend a significant part of the time on loading data
since it requires to constantly evaluate the distance between
samples from the training and testing sets.

To avoid the data transfers from the DDR SDRAM to the
FPGA become the performance bottleneck, a strategy is to
fetch only once each sample from the testing set and compute
the distances for each sample from the training set and reduce
the number of times that the entire training set is transferred
from memory.

A challenge in the implementation of the kNN algorithm
is to choose the optimal data format. Even though data from
sensors is usually quantified with 8-16 bits, which promotes

the use of fixed-point arithmetic, very often the outputs of
feature extraction algorithms are single or double-precision
floating-points. Even though fixed-point is computed faster
than floating-point arithmetic, the effect on the classification
of the algorithm may compromise its application.

Moreover, in the kNN algorithm the quality of the results
depends on the considered precision. If the distances of a test
sample to two samples, one of each class, differ by 2−18,
to distinguish between them the implementation would have
to support more than 18 bits in the wordlength. However,
adopting single-precision floating-point, it supports values as
small as 1.17× 10−38.

V. KNN ALGORITHM PROFILING
The design of an accelerator is focused on offloading the
computation of operations that take the most time to hard-
ware accelerators. Therefore, before establishing the novel
architecture it was necessary to profile the execution of a bare
implementation of the algorithm in software and evaluate
which parts were responsible for the performance bottleneck.

The kNN algorithm was implemented in C language and
executed on an Arm Cortex-A9 processor. The application
was compiled with the highest optimization level (-O3).

The distance computation phase dominates the execution
time of the algorithm, and for increasingly bigger datasets
(increasing N andM ) the time spent computing the distances
between samples tends to 100%. The remaining execution
time is mostly spent on the kNN finder phase. In addition,
increasing k increases the relative execution time of the kNN
finder, due to increasing the insertion sort’s execution time
(O(N × k)). The time spent during the query label finder
is negligible. Considering the above, the devised hardware
accelerator only implements the distance computation and
kNN finder phases. The query label finder continues to be
executed in the processor.

VI. PROPOSED KNN ACCELERATOR ARCHITECTURE
The architecture of the accelerator that executes the first
two stages of the kNN algorithm is divided into two logical
blocks, the Distance Computing (DistComp), and the Dis-
tance Sorting (DistSort), as shown in Figure 2 and detailed
in the following subsections. The hardware accelerator com-
putes and sorts the distances using single-precision floating-
point arithmetic. Since the accuracy of the kNN is defined
only by the correct computation and sorting of the distances
between samples, the accuracy of the results computed by the
hardware accelerator is the same as a software-only imple-
mentation using the Euclidean distance and single-precision
floating-point.

A. DISTANCE COMPUTING BLOCK
The DistComp block computes the distance between one
testing sample and all the samples from the training set using
three single-precision floating-point arithmetic sub-blocks:
a subtracter, a multiplier, and an accumulator. These sub-
blocks are fully-pipelined such that it consumes a 32-bit word

VOLUME 7, 2019 170867



J. Vieira et al.: kNN-STUFF: kNN STreaming Unit for Fpgas

FIGURE 2. Simplified schematics of the devised kNN accelerator. The
DistComp block, to the left of the FIFO, is responsible for computing the
sum of square differences between one testing sample and all the
training samples. The DistSort block, to the right of the FIFO, selects the
indexes of the lowest values computed by the input block. Input A
represents the testing sample, which is stored in the local memory in the
DistComp block, while input B represents the stream of training samples.
The result of the classification is represented by C , and consists of the
indexes of the training samples which hold the smallest distances to the
testing sample. Both the inputs and output of the circuit receive and
transmit data sequentially through streaming buses.

per clock cycle. Additionally, this block has a local memory
for storing the features of a single testing sample during
the computation. The sub-blocks that implement floating-
point arithmetic operations receive the operands in a streamed
manner and pass the sub-results to the next sub-block in
an equally streamed way. A signal that indicates the end
of the stream is also propagated through the pipeline. That
signal is used to reset the accumulator and enable the write
of a new result into the FIFO. The arithmetic sub-blocks
are also pipelined to optimize the throughput of the overall
system. In total, the DistComp block has a throughput of one
32-bit word every M cycles, and has sixteen pipeline stages.
The results produced by the arithmetic sub-blocks are stored
in the FIFO, whose write enable is activated whenever the
signal that indicates the end of the stream is detected. Overall,
the operation of the DistComp block is described in the
following paragraph.

First, this block receives a stream containing the features
of a testing sample and stores it in its local memory. After
receiving all the features of the testing sample, it calculates
and stores the number of features per sample, since this value
is not known beforehand. Then, in parallel with receiving a
stream of all the training samples’ features, it calculates the
distance from the stored testing sample to each training sam-
ple being received.Whenever the number of received features
equals the number of features per sample, the computation
of the distance between the testing sample and the training
sample being received is complete. Thus, the address counter
of the local memory is reset, and a signal is propagated to the
accumulator to insert a new value in the FIFO and also to reset
the accumulator. Figure 3 illustrates the order of operations
executed by the DistComp block.

The distance metric used by the kNN algorithm is entirely
defined inside the DistComp. Changing it requires only to

replace the arithmetic sub-blocks by others that implement
a different function. For example, to use the Manhattan dis-
tance, the block that calculates the square has to be replaced
by one that calculates the absolute value. Modifying the
circuit that calculates the distance may only possibly impact
the latency of the DistComp block and not its throughput,
as long as it is kept fully-pipelined. Thus, changing the metric
used for calculating distances does not affect the overall
performance of the accelerator.

In addition, the format of the data is solely determined by
the sub-blocks that implement the distance calculation. Thus,
the entire data format of the accelerator can be easily changed
by replacing these sub-blocks by, for instance, fixed-point
ones.

B. DISTANCE SORTING BLOCK
The DistSort block receives a sequence of values and holds
the k lowest values and respective indexes. After consuming
the entire input stream of sizeN , it produces a sorted sequence
of the indexes corresponding to the k smallest values.

This block is a parallel implementation of the insertion sort
algorithm, where each incoming value is compared simulta-
neously with all the current k lowest values and is inserted in
the correct place within a single cycle.

The internal architecture of the DistSort block is a cascade
of k Sorting Nodes (SortNodes), as shown in Figure 4a. The
architecture of a single SortNode is depicted in Figure 4b.
Each SortNode evaluates the incoming value, the value of the
previous SortNode and its own and decides on what action to
perform. If the incoming value is lower than the present value
and lower that the value stored in the previous SortNode,
the current SortNode forwards its present value and respective
index to the next SortNode and receives the value and index
that were stored in the previous SortNode. If the incoming
value is lower than the present value but higher than or equal
to the value stored in the previous SortNode, the SortNode
forwards its current value and index to the next SortNode and
stores the incoming value and respective index. Otherwise,
the incoming value is higher than the current value of the
SortNode and it maintains its current value. When all the
k SortNodes store a value and an incoming value is read
from the FIFO, the highest value among them is discarded.
After consuming all the distances computed by the DistComp
block, the DistSort block will hold the indexes of the k
training samples whose distances to the testing sample are
the smallest.

There are three further special cases to be consideredwhich
are controlled by the ‘‘force load’’ and ‘‘sequence’’ signals:

1) Whenever a SortNode loads a value for the first time
the force load signal associated with that SortNode is
activated, causing it to load the highest value between
the incoming value and the value stored in the previous
SortNode and its respective index.

2) After consuming all distances computed by the
DistComp block, the signal sequence is activated, and all

170868 VOLUME 7, 2019



J. Vieira et al.: kNN-STUFF: kNN STreaming Unit for Fpgas

FIGURE 3. Order of operations executed by the DistComp block. First, the block receives the features of a testing sample, in stream, and stores them in
a local memory (not represented in the diagram). Then, it receives a stream with all the features of the training samples concatenated and calculates,
in a pipelined manner, the distance between the testing sample to each of the training samples. From t0 to tτ the DistComp block receives the M
features of the first training sample. Whenever the number of received features from the training set equals the number of features per sample,
the computation of the distance between the testing sample and the training sample being received is complete (tM ). Therefore, the address counter of
the local memory is reset, and a signal is propagated to the accumulator to insert a new value in the FIFO. This process repeats until all the training
samples are received and processed (tN ). Note that to make it easier to represent, this diagram does not provide an accurate scale.

FIGURE 4. Figure 4a shows the simplified data path of the DistSort block
composed by several SortNodes. Figure 4b depicts the control path of a
single SortNode.

the SortNodes shift their current values and indexes to
the next SortNode, one per cycle, producing an ordered
stream of the indexes corresponding to the k closest
training samples to the testing sample.

3) Since the distance between the testing sample and a
training sample is calculated iteratively, which takes sev-
eral cycles, the DistSort block is not fed one distance per
cycle, thus it has to stall during the cycles when there is
no new distance being produced. For this purpose, both
the signals ‘‘force load’’ and ‘‘sequence’’ are activated,
disabling the write enable of the registers inside each
SortNode.

The control of each SortNode is independent of the remain-
ing SortNodes, and thus independent on the number of
SortNodes within the DistSort block. Increasing the number
of SortNodes only increases the fan-in of the DistSort block

due to the need of feeding the incoming value to all SortNodes
at once, which may slightly affect the maximum operating
frequency of the block.

Figure 5a depicts the control flow of the DistSort block.
To exemplify how the DistSort block operates, Figure 5b
illustrates a sequence of four values being sorted by the
DistSort block, {6, 8, 5, 7}. The first received value, ‘6’
(index ‘0’), is forced into the first SortNode as all the
SortNodes are still empty. The second received value is ‘8’
(index ‘1’). Since ‘8’ is higher than ‘6’, the first SortNode
does not change its value and ‘8’ is forced into the second
SortNode. Afterward, ‘5’ (index ‘2’) is received. Since ‘5’ is
lower than ‘6’, the first SortNode forwards its value, which
causes all the SortNodes to shift right and ‘5’ to be stored
into the first SortNode. Finally, ‘7’ (index ‘3’), is received.
Since ‘7’ is higher than both ‘5’ and ‘6’, the first and second
SortNodes do not change their values. However, ‘7’ is lower
than ‘8’ which causes the third SortNode to forward its value
to the fourth SortNode and store ‘7’. After sorting all the
values, the DistSort block exports the indexes of the values
in the arrival order of the elements in the sorted sequence,
{2, 0, 3, 1}.

VII. KNN SYSTEM
The devised system is a fully autonomous implementation
of the kNN algorithm running on the ARM Cortex-A9 pro-
cessor coupled with a custom accelerator, described pre-
viously, in the Programmable Logic (PL). The transfer of
data between the DDR SDRAM and the kNN accelerator(s)
supported through Direct Memory Access (DMA) engine(s)
is shown in Figure 6.

Before the execution starts, both the testing set and
the training set are stored in the DDR SDRAM. Then,
kNN-STUFF proceeds to classify each testing sample. The
processor instructs the DMA engine to read the coordinates of
one testing sample and waits for the transaction to complete.
Then, the processor orders the DMA engine to read the entire
training set from the main memory and waits for it to transfer

VOLUME 7, 2019 170869



J. Vieira et al.: kNN-STUFF: kNN STreaming Unit for Fpgas

FIGURE 5. Description of the operation of the DistSort block. Figure 5a demonstrates the control flow of the DistSort block taking into account the
control signals, whereas Figure 5b shows an example of four values, initially in the FIFO, being sorted.

FIGURE 6. Simplified diagram of kNN-STUFF architecture featuring an
ARM CPU core, a DDR SDRAM main memory, a DMA engine,
a broadcaster and one instance of the devised kNN accelerator.

all the training samples to the accelerator. While the training
set is being received by the accelerator, the distances between
the stored testing sample and all the training samples are
calculated, and the indexes corresponding to the k shortest
distances are determined. Then, the processor programs the
DMA to retrieve the k indexes corresponding to the k shortest
distances. Finally, the processor calculates the most frequent
class among the selected training samples and assigns it to
the testing sample. The pseudo-code of the software part that
controls the DMA engine and executes the non-accelerated
part of the kNN algorithm is shown in Algorithm 2.
The limitations in the dataset size are imposed by (1)

the size of the internal memory that temporarily stores the
testing sample (is mitigated by re-implementing the design
using a bigger memory); (2) the maximum stream length
supported by theXilinxDMA Intellectual Property (IP) limits
the training set to a maximum size of N ×M ≤ 226×8 bytes
(is mitigated by re-engineering the accelerator to receive the
training set in multiple streams). Additionally, since there
are only four High Performance (HP) ports available in the
Processing System (PS), only four DMAs are worthwhile to

be implemented, since using more than four DMAs does not
increase the bandwidth that can be achieved.

A. USING MULTIPLE ACCELERATORS
Since the operations in the kNN algorithm are independent,
multiple accelerators can be instantiated to explore massive
parallelism. The number of accelerators per cluster, the num-
ber of nearest neighbors (k) and the size of the accelerators’
internal memories are parametrizable in the RTL specifica-
tion to easily produce different architectures targeting distinct
classifier configurations and hardware constraints, without
reengineering the entire design.

Implementingmultiple accelerators in kNN-STUFF can be
done using two distinct methods: connecting the PS to each
accelerator through an independent DMA engine, as shown
in Figure 7; or grouping the accelerators in clusters that are
connected to the processor through a single DMA engine.
Additionally, a combination of both is possible where several
clusters are connected to the PS using one dedicated DMA
engine per cluster, and the accelerators within a cluster share
the same connection, as illustrated in Figure 8. This approach
allows the best trade-off between hardware requirements and
bandwidth utilization since only a limited number of DMAs is
implemented while still being possible to parallelize the com-
munication between clusters. Inside a cluster, the training set

ALGORITHM 2 Pseudo-Code That Describes the Pro-
gram Running in the Processor, Responsible for Controlling
the DMA Engine and Executing the Last Phase of the kNN
Algorithm
for int i = 0; i < N ′; i = i+ 1 do
dmaUpload(test_sample[i])
dmaUpload(train_set)
dmaDownload(indexes)
new_class[i]← getMostFreqClass(indexes, train_set)

end for

170870 VOLUME 7, 2019



J. Vieira et al.: kNN-STUFF: kNN STreaming Unit for Fpgas

FIGURE 7. Overview of a system that implements four instances of the
kNN accelerator, each one connected to the PS by a DMA engine.

is broadcasted to all the accelerators. Hence, the performance
and bandwidth utilization is the same as having a dedicated
DMA per accelerator.

Regardless of how the multiple accelerators are connected
to the PS, kNN-STUFF can be configured to explore various
levels of parallelism that are intrinsic to the kNN algorithm.
The classification of different testing samples is independent,
thus multiple testing samples can be classified simultane-
ously using various accelerators. There are no dependencies
in computing the distance between two samples, therefore
multiple accelerators can be used to calculate the distance
from one testing sample to several training samples at the
same time.

When using multiple accelerators for classifying different
test samples, the accelerators are synchronized so that the
training set is broadcasted only once to all of them. By doing
this, the number of times that the training set is read from
memory is reduced by the number of instances running in
parallel. Since the first two phases of kNN dominate the
execution time, when using two accelerators, classifying two
testing samples takes nearly the same time as classifying
one. Figure 9 shows the communication diagram for using
multiple accelerators to perform several classifications in

parallel, while Algorithm 3 illustrates the program running
in the processor.

Alternatively, multiple accelerators can be used to classify
one testing sample by splitting the training set into subsets
that are processed by different accelerators concurrently. This
allows the subsets of the training set to be transferred simulta-
neously to the accelerators, leveraging the bandwidth enabled
by using multiple DMA engines. The timing diagram for this
scenario is shown in Figure 10, and its software counterpart
is described in Algorithm 4.

Both alternatives for exploiting parallelism have the same
performance when classifying multiple testing samples.
In the first case, D testing samples are evaluated in parallel
by the D accelerators and a single training sample is broad-
casted to all every clock cycle, corresponding to a bandwidth
utilization of one 32-bit word per cycle. In the other case, all
accelerators evaluate a single testing sample and D training
samples are transferred in parallel every clock cycle, leading
to a bandwidth of D 32-bit words per cycle. Hence, classi-
fying multiple testing samples takes the same time in both
cases.

When using multiple accelerators for classifying a single
testing sample, an additional phase is required in the software
part to merge the C × k results into the final kNN, where C
represents the number of clusters and k represents the kNN
produced by each cluster for one testing sample. The merge
of these results is done with the same method used for the
software version of the kNN finder. The main differences are:
since there are only C×k elements in the vector to be sorted,
the complexity of the merge is O(k × (C × k)) instead of
O(N × k); as the output of the accelerators are the indexes
of the closest training samples, the distances from the testing
sample to theC×k training samples determined by the accel-
erators have to be recalculated by the software. Therefore,
the introduction of the merge phase adds a small overhead,
when compared with the configuration that uses different
accelerators to classify different testing samples. This is more
evident for small datasets, as shown in Section VIII.

FIGURE 8. Implementation of kNN-STUFF with three clusters with eight accelerators each connected to the PS by independent DMA engines. The eight
accelerators within a cluster share the same connection to the PS.

VOLUME 7, 2019 170871



J. Vieira et al.: kNN-STUFF: kNN STreaming Unit for Fpgas

FIGURE 9. Time diagram illustrating how the DMA engines are
coordinated to send the testing samples and broadcasting the training set
to the accelerators. Since the training set is broadcasted only once,
the overhead associated with sending it is reduced by the number of
accelerators.

ALGORITHM 3 Routine Being Executed by the Processor
When Using Multiple Accelerators for Classifying Different
Testing Samples. The Number of Clusters Is Represented
by C , and A Represents the Number of Accelerators per
Cluster

for int i = 0; i < N ′; i = i+ (C × A) do
for int j = 0; j < A; j = j+ 1 do
for int k = 0; k < C ; k = k + 1 do

dmaUpload(dma[k], test_sample[i+ k × A+ j])
end for

end for
dmaBroadcast(train_set)
for int j = 0; j < A; j = j+ 1 do

for int k = 0; k < C ; k = k + 1 do
dmaDownload(dma[k], indexes[i+ k × A+ j])
new_class[i+ k × A+ j]←
getMostFreqClass(indexes[i + k × A + j],

train_set)
end for

end for
end for

When grouping the different accelerators using clusters,
it is also possible to classify multiple testing samples while
using more than one accelerator to classify a single test sam-
ple. In that case, the different testing samples are broadcasted,
in sequence, to all clusters. Then, a training subset is trans-
ferred to each cluster. Although the accelerators within the
same cluster are responsible for classifying different testing
samples, the classifying testing samples are the same for all
clusters.

VIII. EXPERIMENTAL RESULTS
The kNN-STUFF was evaluated for correctness, by compar-
ing the outputs produced against the expected result from
the software baseline implementation for several real and
synthetic datasets.

kNN-STUFF was also evaluated in terms of hardware
resources, performance and energy efficiency for four
scenarios:

Scenario 1 Three clusters featuring eight accelerators each
were implemented, and seven real datasets

FIGURE 10. Time diagram illustrating how the DMA engines are
coordinated to send the testing sample and transfer the training subsets
to the accelerators. The communication of the training subsets is done in
an interleaved way. Thus, in practise, the training subsets are transferred
simultaneously.

ALGORITHM 4 Routine Being Executed by the Processor
When Using Multiple Accelerators for Classifying One Test-
ing Sample. The Number of Clusters Is Represented by C ,
and A Represents the Number of Accelerators per Cluster
for int i = 0; i < N ′; i = i+ A do
for int j = 0; j < A; j = j+ 1 do
dmaBroadcast(test_sample[i+ j])

end for
for int j = 0; j < C ; j = j+ 1 do
dmaUpload(dma[j], train_subset[j])

end for
for int j = 0; j < A; j = j+ 1 do
for int k = 0; k < C ; k = k + 1 do
dmaDownload(dma[k], aux[k])

end for
indexes[i+ j]← mergeResults(aux)
new_class[i+ j]←
getMostFreqClass(indexes[i+ j], train_set)

end for
end for

(Iris1, Wine2, Breast Cancer Wisconsin3, Car
Evaluation4, Abalone5, Bank Marketing6, and
Poker Hand7) from [22], [23] were used, consid-
ering k = 4. The clusters were connected to the
PS in such a way that each accelerator classifies
a different testing set.

Scenario 2 Four accelerators were implemented and con-
nected to the PS through independent DMA
engines. The same seven real datasets from [22],
[23] were used, considering k = 4. The connec-
tions between the accelerators and the PS allow
to have a testing sample to be broadcasted to all
accelerators, and a subset of the training set is

1https://archive.ics.uci.edu/ml/datasets/iris
2https://archive.ics.uci.edu/ml/datasets/wine
3https://archive.ics.uci.edu/ml/datasets//Breast+Cancer+Wisconsin+

(Diagnostic)
4https://archive.ics.uci.edu/ml/datasets/car+evaluation
5https://archive.ics.uci.edu/ml/datasets/abalone
6https://archive.ics.uci.edu/ml/datasets/bank+marketing
7https://archive.ics.uci.edu/ml/datasets/Poker+Hand

170872 VOLUME 7, 2019



J. Vieira et al.: kNN-STUFF: kNN STreaming Unit for Fpgas

transferred to each accelerator using an indepen-
dent DMA engine.

Scenario 3 A single accelerator was implemented, and syn-
thetic random datasets were generated to evalu-
ate the impact of varying the number of train-
ing samples and features in the performance of
kNN-STUFF. The fixed parameters used for this
scenario were k = 4, N ′ = 1, and 4 possi-
ble classes. Depending on the varying parameter,
N or M , the other was fixed to M = 64 or
N = 10, 000, respectively.

Scenario 4 A pseudo-random dataset was generated with
fixed parameters N = 10, 000, N ′ = 1, M = 64,
and 4 possible classes to evaluate the impact of
changing k in the hardware requirements and
performance of a single accelerator.

Choosing a suitable value for k in the context of the kNN
algorithm is a non-trivial task often tightly related to the
dataset and the nature of the data being classified. Although
such analysis is out of scope of this work, tests showed that
k = 4 leads to a classification accuracy above 75% of the best
achievable for k ∈ [1, 21] and the used distance metric (sum
of squared differences). Hence, in Scenario 1, Scenario 2 and
Scenario 3 use k = 4.

All scenarios were evaluated on a ZED board featur-
ing a Xilinx ZYNQ-7000 XC7Z020-CLG484 SoC, and
Xilinx Vivado 2018.3 was used to synthesize and imple-
ment the designs. The PS of kNN-STUFF uses a single
core of the ARM Cortex-A9, operating at 650MHz, and
the components in the PL were implemented to operate
at 100MHz.

The baseline implementation corresponds to the single
core of the ARM Cortex-A9 inside the ZYNQ device run-
ning at 650MHz. The software part of the kNN-STUFF
was compiled with -O0, while the baseline was compiled
with -O3, enabling all the optimizations including vector-
ization with the ARM NEON. The -O0 flag was used
because compiler optimizations may violate the control flow
of the hardware accelerators, which may lead to incorrect
results or deadlocks. Nevertheless, even without software
optimizations, kNN-STUFF still significantly outperforms
its software-only counterpart, as shown in Section VIII-B.
Moreover, since no optimizations are required to achieve
such performance results, it is likely that a less pow-
erful processor, or even a soft-processor, could be used
instead of the ARM Cortex-A9 in kNN-STUFF, facilitating
the adoption of a different device family (e.g., a low-cost
FPGA).

A. HARDWARE RESOURCES
The hardware resources, after synthesis, for a system with
a single accelerator, considering k = 4, in Scenario 1 and
Scenario 2 are shown in Table 1. The hardware accelerator
is rather lightweight, requiring only 2.4% of the LookUp
Tables (LUTs) available in the targeted device. Furthermore,

TABLE 1. Hardware resources required by a single accelerator with k = 4
and the systems corresponding to Scenario 1 and Scenario 2.

FIGURE 11. Number of LUTs required to implement an accelerator
depending on the value of k .

only 9 DSPs are required, which allows instantiating up to
24 accelerators in the XC7Z7020 device.

Moreover, varying k only affects the number of LUTs
required to implement the accelerator. Figure 11 shows the
variation of LUTs for values of k within the range [1, 128] for
Scenario 4. As expected, for larger values of k , the relation
between k and the required LUTs to implement a single
accelerator is approximately linear. However, for k ≤ 8,
the variation of hardware resources is almost negligible.

B. PERFORMANCE
The results regarding execution time and attained speedup
for the seven real datasets are illustrated in Figure 12. The
parameters of each dataset are listed in Table 2. As shown
in Figure 12b and Figure 12d, the attained speedup increases
with the size of the dataset. However, for small datasets,
the synchronization overhead of both scenarios and the merge
phase of Scenario 2 overcome the gain provided by imple-
menting more accelerators, as demonstrated by Figure 13a
and Figure 13c. Nevertheless, formedium and big datasets the
relation between the speedup and the number of accelerators
is linear, as shown in Figure 13b and Figure 13d. As expected,
duplicating the number of accelerators drops the execution
time to half, duplicating the speedup. This is only possible
because in Scenario 1 the training set is broadcasted to all the

VOLUME 7, 2019 170873



J. Vieira et al.: kNN-STUFF: kNN STreaming Unit for Fpgas

FIGURE 12. Execution time and speedup attained by kNN-STUFF for seven real datasets using different numbers of accelerators.
Figure 12a–Execution time for Scenario 1; Figure 12b–Speedup for Scenario 1; Figure 12c–Execution time for Scenario 2;
Figure 12d–Speedup for Scenario 2.

TABLE 2. Parameters of the seven real datasets from the UCI Machine
Learning Repository used in the evaluation of this work.

accelerators running in parallel and in Scenario 2 the training
subsets are transferred simultaneously. Thus, in the former,
the communication overhead is reduced by the number of
accelerators, and in the latter the bandwidth enabled by the
four DMA engines is leveraged.

Overall, the maximum achieved speedup was 67.4×, for
the Poker Hand dataset using all the 24 accelerators under
Scenario 1.

The speedup increases with k , as demonstrated
in Figure 14a. This is because the hardware implementation
of the kNN finder phase is based on a parallel version of the
insertion sort where each incoming value is compared with
the previously k sorted values in just one cycle. On the other
hand, the software counterpart only compares a pair of values
at once, requiring N × k iterations.
As the incoming value is an input of all k SortNodes,

the fan-in of the DistSort block scales linearly with k , which

introduces a small timing overhead. Experimental results
show that this overhead is negligible as the target operation
frequency is still achieved for k as high as 128.
Increasing the size of the training set only affects the

attained performance improvements to the point where com-
municating the entire training set to the accelerator incurs in
an overhead proportional to that of the processor reading it
from memory, as shown in Figure 14b.

Increasing the number of features per sample decreases
the attained speedup, as illustrated in Figure 14c. A pos-
sible explanation for this effect involves the use of ARM
NEON, loop unrolling and caching effects. For M ∈ {1, 2},
the calculation of the sum of square differences involves only
one or two subtractions followed by multiplication and the
sum of the results. In these scenarios, the NEON engine
is not fully exploited, since the operands are insufficient
to use all the capabilities of the unit. When M ≥ 4 the
engine is fully used, and all the benefits provided by the
NEON are reflected in the algorithm’s execution time. For
M ∈ [4, 64], the speedup attained by using kNN-STUFF
continues decreasing, but at a much lower rate. This may
be associated with minor compiler optimizations allowed
by techniques such as loop unrolling as well as caching
effects. Eventually, for M ≥ 64, the speedup becomes
nearly constant, which means that the execution time of
the kNN algorithm using the ARM Cortex-A9 processor
and kNN-STUFF are proportional with the size of the
dataset.

170874 VOLUME 7, 2019



J. Vieira et al.: kNN-STUFF: kNN STreaming Unit for Fpgas

FIGURE 13. Relation between speedup and number of accelerators for two real datasets: the Iris dataset (as an example of a small dataset)
and the Poker Hand dataset (as an example of a large dataset). Figure 13a–Iris dataset under Scenario 1; Figure 13b–Poker Hand dataset
under Scenario 1; Figure 13c–Iris dataset under Scenario 2; Figure 13d–Poker Hand dataset under Scenario 2.

FIGURE 14. Effect of varying the dataset and the parameters of the classifier on the speedup attained by kNN-STUFF. Figure 14a–Effect of varying
the k nearest neighbors; Figure 14b–Effect of varying the number of training samples (N); Figure 14c–Effect of varying the number of features per
sample (M).

TABLE 3. Static and and dynamic power of the PS and the PL of the
device for the configuration regarded in Scenario 1 and Scenario 2.

As an example, the Poker Hand has the highest speedup
because it has one of the largest training sets (over
25,000 training samples) and has only 10 features per sample.
The Bank Marketing dataset has a training set of the same
order of magnitude (slightly larger), but has a marginally
lower speedup because it has 60% more features than the
Poker Hand dataset.

C. ENERGY EFFICIENCY IMPROVEMENTS
The energy efficiency improvements, calculated based on
Xilinx Vivado’s power reports for the implemented system,
are illustrated in Table 3. To estimate the total energy spent
by kNN-STUFF, it was considered that the average instant
power of the system is given by the sum of the static power
and the dynamic power of both the PS and the PL. For the
baseline, the average instant power demand of the processor
was approximated by the sum of the static power of the
system plus the dynamic power of the ARM Cortex-A9 pro-

cessor. Since kNN is computationally intensive, this approx-
imation is valid, and it can be assumed that, while executing
the algorithm, the processor’s average instant power demand
is approximately equal to its maximum dynamic power. How-
ever, these results do not include the energy spent by the
DDR SDRAM. Nevertheless, given the fact that the number
of memory accesses when using kNN-STUFF is lower than
that of the baseline (or at most the same), the energy spent
by the DDR SDRAM when using kNN-STUFF is expected
to be lower than the baseline. Therefore, the used approach
is even conservative, and the actual energy savings are higher
than those corresponding to the determined energy efficiency
improvements.

The impact of the data format in the energy efficiency
was also assessed. Xilinx Vivado reports that the floating-
point arithmetic units responsible for computing the distances
account for 12% of the in-chip energy consumption. Further-
more, the memory accesses dominate the energy consump-
tion of the entire system, which can be as high as 90% of
the total energy consumption [24]. Consequently, the units
responsible for computing the distance account for only 1%
of the total energy consumption. On conclusion, changing the
representation of the operands from floating-point to another
data format does not impact the energy requirements of the
system.

Figure 15 illustrates the total energy consumption for
each considered dataset and corresponding energy efficiency

VOLUME 7, 2019 170875



J. Vieira et al.: kNN-STUFF: kNN STreaming Unit for Fpgas

FIGURE 15. Energy consumption and efficiency improvements allowed by kNN-STUFF for seven real datasets. Figure 15a–Energy
consumed by kNN-STUFF for seven real datasets under Scenario 1 using all the 24 accelerators. Figure 15b–Energy efficiency
improvements allowed by kNN-STUFF for seven real datasets under Scenario 1 using all the 24 accelerators. Figure 15c–Energy consumed
by kNN-STUFF for seven real datasets under Scenario 2 using all the four accelerators. Figure 15d–Energy efficiency improvements
allowed by kNN-STUFF for seven real datasets under Scenario 2 using all the four accelerators.

improvements. The highest energy efficiency improvement
was 50.6×, corresponding to the Poker Hand dataset using
all the 24 accelerators under Scenario 1.

IX. CONCLUSION
This paper presented a novel hardware implementation of
the kNN classifier targeting reconfigurable devices. In con-
trast with previous proposals, kNN-STUFF is scalable, and
allows to automatically scale the system depending on the
hardware and power constraints of the targeted devices.When
implemented in small reconfigurable devices, each accelera-
tor inside kNN-STUFF requires only 1,263 LUTs. If targeting
large scale devices, multiple accelerators or clusters of accel-
erators can be instantiated.

kNN-STUFF exploits various levels of parallelism enabled
by the kNN algorithm, being able to classify multiple testing
samples at once using several accelerators or dividing the
classification of a single testing sample by various acceler-
ators. While the former allows broadcasting the entire train-
ing set to all accelerators, reducing the number of memory
accesses by the number of accelerators, the latter allows to
simultaneously transfer subsets of the training set to multi-
ple accelerators, leveraging the bandwidth enabled by using
various DMA channels.

Results show that using kNN-STUFF allows achieving
speedups as high as 67.4× while reducing energy consump-
tion up to 50.6× when compared with a fully optimized
software-only implementation of the kNN algorithm running
on a single core of an ARM Cortex-A9 CPU. Moreover,
it was demonstrated that the speedup and the energy effi-
ciency improvements allowed by kNN-STUFF increase with
the number of accelerators, k , and the number of training
samples.

A. OPEN SOURCE FRAMEWORK
A framework was created to facilitate the adoption of
kNN-STUFF. The framework includes tools that generate
both the software and the hardware components automati-
cally, based on the kNN classification parameters.

The kNN-STUFF framework, which allows to replicate the
results shown in this paper and includes the RTL descrip-
tion and a comprehensive tutorial showing how to deploy
the system using a Xilinx ZYNQ-7000 device, are avail-
able at https://github.com/joaomiguelvieira/kNN-STUFF/.
The source code for the optimized version of the
software-only implementation, regarded as the baseline,
alongside its extensive documentation, are available at
https://github.com/joaomiguelvieira/kNNSim/.

REFERENCES
[1] Y. Peng, G. Kou, Y. Shi, and Z. Chen, ‘‘A descriptive framework for the

field of data mining and knowledge discovery,’’ Int. J. Inf. Technol. Decis.
Making, vol. 7, no. 4, pp. 639–682, Dec. 2008.

[2] J. Saikia, S. Yin, Z. Jiang, M. Seok, and J.-S. Seo, ‘‘K-nearest neigh-
bor hardware accelerator using in-memory computing SRAM,’’ in Proc.
ISLPED, Jul. 2019, pp. 1–6.

[3] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, ‘‘Compute caches,’’ in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2017, pp. 481–492.

[4] N. Kehtarnavaz, Smartphone-Based Real-Time Digital Signal Processing,
Second Edition (Synthesis Lectures on Signal Processing). San Rafael, CA,
USA: Morgan Claypool, 2018.

[5] E. Onat, ‘‘FPGA implementation of real time video signal processing
using sobel, robert, prewitt and laplacian filters,’’ in Proc. SIU, May 2017,
pp. 1–4.

[6] L.Ming,W.Yan, S.-J.Wu, andY.Wei-Ming, ‘‘Implementation of a parallel
signal processing system for all-purpose radar,’’ in Proc. 6th Int. Conf.
Signal Process., vol. 2, Aug. 2002, pp. 1465–1468.

[7] K. Li, C. Ji, C. Zhong, F. Zheng, and J. Shao, ‘‘Application research of
energy data acquisition and analysis based on real-time stream processing
platform,’’ in Proc. 6th Int. Conf. Comput. Sci. Netw. Technol. (ICCSNT),
Oct. 2017, pp. 175–178.

[8] E. S. Manolakos and I. Stamoulias, ‘‘IP-cores design for the kNN classi-
fier,’’ in Proc. ISCAS, May/Jun. 2010, pp. 4133–4136.

[9] I. Stamoulias and E. S. Manolakos, ‘‘Parallel architectures for the kNN
classifier—Design of soft IP cores and FPGA implementations,’’ ACM
Trans. Embedded Comput. Syst., vol. 13, no. 2, Sep. 2013, Art. no. 22.

[10] H. M. Hussain, K. Benkrid, and H. Seker, ‘‘An adaptive implementation of
a dynamically reconfigurable K-nearest neighbour classifier on FPGA,’’ in
Proc. AHS, Jun. 2012, pp. 205–212.

[11] H. M. Hussain, K. Benkrid, C. Hong, and H. Seker, ‘‘An adaptive
FPGA implementation of multi-core k-nearest neighbour ensemble clas-
sifier using dynamic partial reconfiguration,’’ in Proc. FPL, Aug. 2012,
pp. 627–630.

170876 VOLUME 7, 2019



J. Vieira et al.: kNN-STUFF: kNN STreaming Unit for Fpgas

[12] M. A.Mohsin andD. G. Perera, ‘‘An FPGA-based hardware accelerator for
K-nearest neighbor classification for machine learning onmobile devices,’’
in Proc. HEART, Jun. 2018, Art. no. 16.

[13] Y. Pu, J. Peng, L. Huang, and J. Chen, ‘‘An efficient KNN algorithm imple-
mented on FPGA based heterogeneous computing system using OpenCL,’’
in Proc. FCCM, May 2015, pp. 167–170.

[14] F. Canento, A. Lourenço, H. Silva, and A. Fred, ‘‘Review and com-
parison of real time electrocardiogram segmentation algorithms for bio-
metric applications,’’ in Proc. 6th Int. Conf. Health Inform., 2012,
pp. 1–9.

[15] H. M. Hussain, K. Benkrid, and H. Seker, ‘‘Dynamic partial
reconfiguration implementation of the SVM/KNN multi-classifier
on FPGA for bioinformatics application,’’ in Proc. EMBC, Aug. 2015,
pp. 7667–7670.

[16] H. Peng, L. Huang, and J. Chen, ‘‘An efficient FPGA implementation for
odd-even sort based KNN algorithm using OpenCL,’’ in Proc. ISOCC,
Oct. 2016, pp. 207–208.

[17] M. Tian, X. Wang, X. Zhang, Z. Yang, and J. Huang, ‘‘The imple-
mentation of a KNN classifier on FPGA with a parallel and pipelined
architecture based on Predetermined Range Search,’’ in Proc. 13th
IEEE Int. Conf. Solid-State Integr. Circuit Technol. (ICSICT), Oct. 2016,
pp. 1491–1493.

[18] A. Al-Zoubi, K. Tatas, and C. Kyriacou, ‘‘Design space exploration of the
KNN imputation on FPGA,’’ in Proc. MOCAST, May 2018, pp. 1–4.

[19] S. Y. Kung VLSI Array Processors, vol. 685. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1988,

[20] S. Pandit, ‘‘A comparative study on distance measuring approaches
for clustering,’’ Int. J. Res. Comput. Sci., vol. 2, no. 1, pp. 29–31,
2011.

[21] L.-Y. Hu, M.-W. Huang, S.-W. Ke, and C.-F. Tsai, ‘‘The distance function
effect on k-nearest neighbor classification for medical datasets,’’ Springer-
Plus, vol. 5, no. 1, p. 1304, 2016.

[22] D. Dua and C. Graff. (2017).UCI Machine Learning Repository. [Online].
Available: http://archive.ics.uci.edu/ml

[23] S. Moro, P. Cortez, and P. Rita, ‘‘A data-driven approach to predict the
success of bank telemarketing,’’ Decis. Support Syst., vol. 62, no. 1,
pp. 22–31, Jun. 2014.

[24] J. Vieira, ‘‘A product engine for energy-efficient execution of binary neural
networks using resistive memories,’’ in Proc. VLSI-SoC, to be published.
[Online]. Available: https://infoscience.epfl.ch/record/267670

JOÃO VIEIRA received the M.Sc. degree in elec-
trical and computer engineering from the Insti-
tuto Superior Técnico, Lisbon, Portugal, in 2018,
where he is currently pursuing the Ph.D. degree,
while doing research at the Signal Processing Sys-
tems Research Group, Instituto de Engenharia de
Sistemas e Computadores-Investigação e Desen-
volvimento. In 2018, he performed a Research
Internship with the Processor Architecture Labo-
ratory, EPFL, Switzerland, and the Laboratory for

NanoIntegrated Systems, The University of Utah, USA, from January to
August 2019. His research interests include high performance computer
architectures, near-data processing, hardware/software co-design, and com-
puter architectures applied to quantum computing.

RUI P. DUARTE received the Ph.D. degree from
Imperial College London, U.K., in 2014. He is
currently a Research Associate with the Elec-
tronic Systems Design and Automation (ESDA)
Research Group, INESC-ID, Lisbon, Portugal. His
research interests include reconfigurable comput-
ing, fault-tolerant, and low-power architectures.

HORÁCIO C. NETO received the Ph.D. degree
in electrical and computer engineering from the
Technical University of Lisbon. He is currently an
Associate Professor with the Department of Elec-
trical and Computer Engineering (DEEC), School
of Engineering (IST), University of Lisbon. He
is also responsible for the Electronic Systems
Design and Automation (ESDA) Research Group,
INESC-ID, a Research Institute associated with
IST, Engineering University. His main research

interests are digital systems design and computer architecture, with emphasis
in reconfigurable computing.

VOLUME 7, 2019 170877


