IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 27, 2019, accepted November 18, 2019, date of publication November 25, 2019,

date of current version December 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2955482

Constrained Multi-Objective Weapon Target
Assignment for Area Targets by Efficient

Evolutionary Algorithm

KAI ZHANG ™, DEYUN ZHOU -, ZHEN YANG -, QIAN PAN™, AND WEIREN KONG

School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China

Corresponding author: Kai Zhang (zhangkainwpu @mail.nwpu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61603299 and Grant 61612385, and in
part by the Fundamental Research Funds for the Central Universities under Grant 3102019ZX016.

ABSTRACT The weapon target assignment (WTA) problem is the crucial decision support in Command &
Control (C2). In the classic WTA model, the point-to-point saturation salvo has a low efficiency-cost ratio
when the swarming targets, which have the advantage of low casualty, low cost and recyclable, become the
major operational units. The constraint is less studied for the operational intention of the decision-maker.
In this paper, a constrained multi-objective weapon target assignment (CMWTA) model is formulated for
area targets. The optimization objectives are minimizing collateral damage and resource consumption. The
multi-constraint is derived from the actual operational requirements of security evasion, damage threshold,
and preference assignment. To solve CMWTA efficiently, a novel multi-objective optimization evolutionary
algorithm (MOEA) is proposed to obtain the non-dominated solutions as the alternative plans for the
decision-maker. A self-adaptive sorting algorithm is proposed to guarantee the completeness of the Pareto-
optimal set, and a cooperative evolutionary mechanism is adopted to strengthen the convergence. For
handling multi-constraint, a repair mechanism is proposed to improve the quality of infeasible solutions,
and the measurement of constraint violation is designed to evaluate the infeasible solutions. A variant
of the convergence metric is introduced to evaluate the algorithms solving multi-objective weapon target
assignment (MWTA) problem. The experimental results show the effectiveness and superiority of the
proposed approaches.

INDEX TERMS Constrained weapon target assignment, collateral damage, multi-objective optimization

algorithm, decision support system.

I. INTRODUCTION
The weapon target assignment (WTA), which is also known
as Weapon Allocation or Weapon Assignment (WA), refers
to the reactive assignment of defensive weapons to counter
identified threats. With the development of intelligent over-
the-horizon weapons, the WTA process is the critical deci-
sion support in Command & Control (C2). The optimality
and real-time of WTA are consistent with the related own
force mission objectives and compliant with the rules of
engagement, weapon system characteristics and environment
constraints [1].

The WTA problem can be divided into two categories by
decision process: the static WTA (SWTA) and the dynamic
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WTA (DWTA). The difference between SWTA and DWTA
is whether the time is considered as a dimension. In SWTA,
weapons are launched in a salvo to maximize operational
effectiveness. The DWTA assigns the sequence of weapons
for the equilibrium plan during multi-stage. Manne intro-
duced the WTA problem originally in 1959 [2]. In the fol-
lowing decades, the SWTA problem is investigated much
more than the DWTA problem. This paper focuses on the
SWTA problem, and the review of the DWTA problem can
refer to [3], [4].

In view of the popular objectives, the classic SWTA
model is to maximize the expected damage effect of
weapons or minimize the expected survival probability of
targets, which is known as the target-based SWTA model [5].
The asset-based SWTA model is to maximize the expected
value of surviving own-force assets by assigning the weapons
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to the offensive targets [6]-[8]. Bogdanowicz [9] established
the sensor-based SWTA model considering the benefit of
assigning sensors to targets and weapons to targets. The
subsequent research refined the utility function of sensors on
weapons/targets [10], [11]. Besides, other operational effects
are incorporated to formulate the multi-objective WTA. For
example, Zeng et al. [12] presented a problem of cooperative
salvo attack of multiple cruise missiles against targets in a
group, which focus on the synchronization of the arrival time
of missiles, minimization of time-consuming and maximiza-
tion of expected damage. Li et al. [13] presented an MWTA
problem considering the expected damage effect and ammu-
nition consumption. Li et al. [14] designed the objectives
maximizing the total effectiveness of attack and minimize the
cost of missiles. In [15], Li, You, et al. added the residual
weapons into previous work [14] to establish an MWTA
formulation with three objectives. Volle and Rogers [16]
presented the MWTA problem optimizing the operational
effectiveness and the relative timing of agents’ arrival.

The fundamental constraints of the SWTA model are math-
ematical constraints, namely integer constraint and quan-
tity constraint. With the development of combat complexity,
the more model constraints are constructed in WTA. For
example, Lee [17] presented a constrained WTA (CWTA)
model in which the number of interceptors assigned to each
target has an upper bound. Li ez al. [18] established a model of
assigning interceptors to multiple waves of incoming ballistic
missiles with shoot time constraints. Guo et al. [19] presented
a multi-to-multi interception problem based on cooperative
guidance in which the damage probability function is con-
structed by the miss-distance under heading error, the time-
to-go, and the line-of-sight rate.

Although the objectives and constraints are various,
the point-to-point SWTA model is essentially a combina-
torial optimization problem. The exact algorithms, such as
implicit enumeration algorithm [20], the branch-and-bound
algorithm [17] and dynamic programming [21], [22], are
investigated in early research and suffering from exponential
complexity because the SWTA problem has been proven
to be NP-Complete [23]. Johansson and Falkman [24] pre-
sented an exhaustive search to solve the SWTA problem with
seven weapons and six targets. Kline e al. [25] developed
a branch and bound algorithm to find optimal solutions for
up to ten weapons and ten targets. To improve the real-
time of larger-scale problems, two techniques are presented:
1. Reformulate the SWTA model for reducing computa-
tional complexity; 2. Apply the swarm intelligent algorithm
to obtain the approximate optimal solution. For example,
Kwon et al. [26] formulated the SWTA as a nonlinear inte-
ger programming model which is solved by a branch and
bound algorithm. Ahuja et al. [20] transformed SWTA into
a linear integer programming model by logarithmic trans-
formation. The swarm intelligent algorithms are extensively
adopted to solve SWTA problem, such as genetic algorithm
(GA) [27], [28], ant/bee colony algorithm [29]-[32], particle
swarm optimization (PSO) [18], [33] and other swarming
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intelligence algorithms [34]. For balancing the optimality
and real-time, some hybrid algorithms, which take advantage
of exact and heuristic algorithms, are proposed [35], [36].
Because of the insensitivity of model scale and constraints,
the evolutionary algorithm performs excellently on solving
the WTA problem. Especially for MWTA, the multi-objective
evolutionary algorithm (MOEA) has become the major solver
due to the success in solving multi-objective optimization
problems (MOPs). Zhou et al. [37] presented a PSO algo-
rithm based on a two-stage evolutionary strategy to solve
MWTA. Li et al. [7] proposed a novel MOEA based on
decomposition (MOEA/D), which reformulates the mating
restriction and selection operation, to solve the asset-based
MWTA. In [15], an improved non-dominated sorting genetic
algorithm (NSGA), which incorporates an online operator
selection mechanism, is presented for MWTA.

In the research discussed thus far, the attack mode of
SWTA is the point-to-point saturation salvo in which one
weapon can only attack one target, and the number of
weapons is more than the number of targets. As TSP and
VPR, the SWTA model of this attack mode is also a com-
binatorial optimization problem (COP) and has been studied
by the corresponding algorithms. Nevertheless, these SWTA
models have two limitations: (1) The efficiency-cost ratio of
this attack mode is unsatisfied when facing swarming agents
which have the advantage of small size, low cost, and zero
casualties. (2) As the decision support of C2, the constraints
of the major models reflect the less intention of the decision-
maker. For these requirements, an alternative strategy is
employing weapons with lethal radius to attack the targets,
which are viewed as area targets in Threat Evaluation (TE),
by collateral damage. Bogdanowicz and Patel [38] designed
a quick collateral damage estimate (QCDE) algorithm to sup-
port WTA capabilities with collateral damage consideration.
Ma [39] established the principle of Constrained Target Clus-
tering (CTC), but the number of clusters is set artificially and
there is no overlap. Inspired by the above analysis, we formu-
late a constrained multi-objective weapon target assignment
model.

The constraint handling method of the WTA problem is
less studied since the mathematical constraint can be elimi-
nated by encoding, and certain model constraints can be tack-
led by special representation schemes. However, only these
two methods cannot satisfy CMWTA with different types of
constraints. Deb et al. [40] and Peng [41] suggested a set
of tunable test problems for constrained multi-objective opti-
mization problems (CMOPs), and show the increasing diffi-
culties in searching the Pareto-optimal sets. Coello [42], [43]
gave a review of the constraint handling for COPs. The main
constraint handling techniques of MOEASs can be divided into
1) penalty function; 2) repair algorithm; 3) dominance rule;
4) selection strategy. The penalty function is the most pop-
ular approach because of the simplicity and less restriction
for constraint type. However, tuning penalty parameters is a
difficult optimization problem itself. Hence the self-adaptive
mechanism is proposed to improve the dynamic performance
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TABLE 1. Notation declaration.

Notation Description
m the number of hostile targets;
n the number of available weapons;
l the number of friendly or neutral targets;

R= [W]lxm
V = [vjlixn

the lethal radius set of available weapons; ; denotes the lethal radius of weapon %;

the target survival value vector; v; denotes the survival value of target j, j = 1,2,...,n;

the position set of detected hostile targets; p; denotes the position of target j;

the survival probability threshold vector of hostile targets; p; denotes the required maximum survival probability of

target 7, and p; = 1 denotes target j has no requirement of survival probability threshold;

P={pj}ixn
p=[pjlixn
S =sk}ixi

E = [eijlmxn

the position set of friendly or neutral targets; sj, denotes the position of no-damage target k;
the preference matrix of weapon-target assignment; e;; = 1 denotes the preference assignment of weapon-target pair

(4,7), and e;; = 0 denotes no preference assignment of (¢, 7).

of penalty item [44]. The repair algorithm improves the
percentage of feasible solutions by enforcing the infeasible
solutions within or near the feasible space [45]. The drawback
is that the repair algorithm needs to be designed according
to the application, and a rigid algorithm maybe threat the
diversity of the population. For CMOPs, the modified domi-
nance rule is proposed in the non-dominated sorting process
of MOEAs. In the representation methods, Deb [46] proposed
the constrained-dominated principle (CDP) in which the con-
straint violation takes priority over the fitness to tournament
selection. Ray et al. [47] performed three non-dominated
rankings of population, which is constructed by the values
of constraint violation and objective fitness, on the evolu-
tionary process. Cai and Wang [48] presented a dominated
and replaced algorithm between the parent population and the
offspring population, which is robust for types of constraints.
A similar principle is also adopted in [49]-[52]. However,
CDP is unsatisfied with solving the MOPs with the narrow
feasible region in which the infeasible solutions play a crucial
role in finding the global optimum. Hence technique 4) is
increasingly applied in the tournament selection of MOEAs
to shape search space by describing a relaxation on the
constraint. The advantage is that this mechanism performs
well on solving the COPs with narrow feasible regions.
Takahama et al. [S3] proposed the e-constrained (EC) method
to preserve diversity by an € level. Runarsson and Yao [54]
introduced a stochastic ranking (SR) approach to balance
objective and penalty functions stochastically, which does
not require a priori knowledge about the problem. The pri-
mary constraint handling methods are generic for solving
constrained numerical optimization problems and not always
efficient for MOPs with an application background. The
proposed CMWTA problem is a CMOP deriving from the
real-world, and the non-dominated solutions have a specific
distribution. Hence it is necessary to investigate the constraint
handling approach in solving the CMWTA according to the
problem characteristics.

Based on the above research, we formulate a CMWTA
problem and proposes an MOEA to obtain non-dominated
solutions as alternative plans for the decision-maker. The
contributions of this paper are described as follows:

o A constrained multi-objective WTA model, which

is based on collateral damage, is established for
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area targets. The objectives are minimizing the expected
survival probability of targets and weapon consumption.
The constraints are derived from the operational require-
ments of security evasion, survival threshold of targets
and preference assignment.

« For the challenges of solving CMWTA, a novel multi-
objective evolutionary algorithm is proposed to obtain
the Pareto-optimal set excellently.

« A variant of convergence metric is introduced to evaluate
the performance of algorithms on solving MWTA which
takes the operational effect and resource consumption
as optimization objectives. Comparing several state-
of-the-art MOEAs and constraint handling methods,
the extensive experiments demonstrate that the proposed
approaches are effective and promising.

The rest of this paper is organized as follows. Section II
gives our motivations and formulates the CMWTA prob-
lem. Section III present the proposed MOEA for CMWTA.
Section IV compare the proposed MOEA with several
state-of-the-art MOEAS and constraint handling methods by
experimental studies. The conclusion is finally summarized
in Section V.

Il. PROBLEM FORMULATION

With the development of military techniques, swarm agents,
such as unmanned vehicles and intelligent robots, tend to be
the central combat units having the advantage of low cost
and recycling. The approved strategy is employing weapons
with lethal radii, such as directed energy, electronic jamming,
fragmentation warhead and continuous rod warhead. These
weapons can damage the target within the lethal radius effec-
tively and are useless to outside targets because of the sharp
attenuation. Therefore this section formulates a constrained
multi-objective weapon target assignment model to maximize
the efficiency-cost ratio by optimizing the number and aiming
point of weapons.

The notation employed in the context is listed in Table 1.

A. BASIC DEFINITIONS OF MOP
The multi-objective optimization problem, which has sev-
eral objectives to be optimized simultaneously, can be stated
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as follows:
minimize F (x) = (fi (¥) .o () ... fu D" (D)
subject to x € Q2 2)

where x is the decision vector, 2 is the decision space, F :
Q — R™ consists of m objective functions.

In a minimization MOP, it is said that a decision vector
xa € 2 dominates another vector xg € 2, which is written as
xp < xp,ifand only if f; (x4) <f; (xp),Vi=1,2,..., mand
fitxa) < fi(xp),3i = 1,2,...,m. So xx €  is defined
as a Pareto-optimal solution or non-dominated solution if
there is no solution x € € satisfying x < xx*, and F (xx)
is called Pareto-optimal vector. The set of all Pareto-optimal
solutions is called the Pareto-optimal set (PS), and the set of
all Pareto-optimal vectors is called Pareto-optimal front (PF).
The algorithm of MOP is to obtain a set of Pareto-optimal
solutions approximating the true Pareto-optimal front.

B. OBJECTIVES OF CMWTA

As a minimization MOP, the survival probability of targets
and weapon consumption, which conflict with each other, are
employed to be objectives of CMWTA.

min F (X, A) = (fi,/2)
Zv;]_[ (1=D(lp—al) x. ) x| @
j=1 i=1 i=1
S.tXiE{O,l}, fori=1,2,._,,m 4)

where f] is the objective that denotes the expected kill proba-
bility of the targets; f> is the objective that denotes the weapon
consumption; m is the number of weapons and n is the number
of targets; vj is the survival value of target j which is evaluated
by threat evaluation; {p1, p2, -+, p,} is the position set of
detected hostile targets; A = {ay, a2, - - - , an} is the position
set of aiming points of weapons; X = (x1, X2, - -+ , Xp,) is the
decision vector; D(-) is the function of damage effect by the
distance between blast points and targets. Based on research
involving collateral damage estimate [38], [39], [55]-[58],
we assume no firing error and approximate the conditional
damage law of target coordinate as

82
D(@r)=1—exp <_r_2> ()

where § is a parameter of damage law in target condition,
which is related to environmental resistance. For example,
in low altitude dense atmosphere, Go(r) has a sharp atten-
uation owing to the rapid decrease of the explosive fragment
speed. r is the projection of miss distance on dispersion plane.
Constraint (4) is the binary constraint and can be elimi-
nated by the encoding method. Considering the actual opera-
tional requirement, we present the constraint set as follows.

C. CONSTRAINTS OF CMWTA
In CMWTA, the following constraints, which deriving from
actual operational requirements, are considered:
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1) SECURITY EVASION

The no-damage objects, such as friendly units and civil-
ians, should be outside of the lethal radius of weapons.
The safe distance should be apart from aiming points to
friendly or neutral targets. The constraint of security evasion
is denoted as

Cy: lIsg —aill >Ri, fork=1,2,...,1;i=1,2,....,m

6)

where S = {s1,s2---,s7} is the set of no-damage targets;
R; is the lethal radius of weapon i.

2) SURVIVAL THRESHOLD

In the intention of the decision-maker, the key nodes of hostile
architecture are expected to be a lower survival probability.
The constraint of survival threshold is constructed as

-0 —al)

Cy l_[(l

i=1

X < pj, forj=1,2,...,n

N

where p = (p1, p2,--- , pn) 1s the predetermined threshold
vector, namely p; is the expected maximum survival proba-
bility of target j. The components are set to 1 for the targets
which have no requirement of damage threshold.

3) PREFERENCE ASSIGNMENT

There is the requirement of weapon-target pair in the fol-
lowing situations: a) situation assessment based on domain
knowledge; b) type matching of weapon to target; c) the
preference of decision-maker. The preference matrix £ =
[eij],., is introduced, and the element e;; is represented by

1, prior weapon i to target j

®)

ejj = .
0, otherwise

The constraint of preference assignment is denoted as

—ai| > 1/Ri, fori=1,2,....m
j=L2,....,n (9

Cs: e/ |pj

The CMWTA model is written as

Zv] H D (llpi = aif})) - xi

min (10)
= Z_xi
i=1

llsx — aill > R;

m
[TO=D(lp—al)) -x < s
i=1

s.t. eij/ ||pj—ai|| > 1/R; (11)
x, e {0, 1}

E xi<m
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The CMWTA model has the following difference with
the point-to-point WTA model: (1) In the CMWTA model,
the decision variable X is a binary vector and A is a continuous
matrix.f] and f> not only are piecewise continuous and integer
variables respectively but also have the gradients in different
orders of magnitudes. In the point-to-point WTA, the input is
only a decision vector X. Besides the identical objective of
weapon consumption, the objective of the fitness is a discrete
variable. (2) The true Pareto-optimal set of CMWTA is almost
impossible to get, while the optimal solution of classic WTA
is only restricted to the enumeration scale.

lIl. MOEA-CMWTA

The multi-objective evolutionary algorithms, which are based
on the natural evolution mechanism, have shown an increas-
ing application in MOPs owing to the less restriction for prob-
lem scale and constraints. For the characteristics analyzed so
far, the framework of MOEA is proposed to solve CMWTA.

e

k+n

k+2
I k+1
I
I
I

|
frk+2) fE+D) A

|
I
I
|
|
| [ e —— k
| I

| i

N

FIGURE 1. Distribution diagram of solutions of MOEA solving CMWTA.

The distribution of solutions, which are generated in the
evolutionary iterations of MOEA, is shown in Figure 1.
In Figure 1, the X-axis shows the excepted survival proba-
bility of targets; the Y-axis shows the weapon consumption.
One solution represents one decision plan which can be
identified by weapon consumption. Therefore the solutions
can be divided into several layers by weapon consumption.
The Pareto-optimal set of MWTA is consist of the leftmost
solution of each layer and has the following characteristics:

o The size of the Pareto-optimal set is no more than the

number of weapons.

o The non-dominated solutions of neighboring layers

show the high similarity empirically.

o As shown in Figure 1, let (fl*(i), i) denotes the fitness of

non-dominated solutions wherei =k, k+1, ...,k +n.
The difference f;*(i)—f;* (i+1) decreases with i increases.

There are two major challenges in solving CMWTA:
(1) The completeness of Pareto-optimal set is unable to be
guaranteed by a rigorous selection method, which is verified
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in the experimental section. (2) Owing to multi-constraint,
the high percentage of infeasible solutions reduces search
efficiency. For the above obstacles, a novel multi-objective
evolutionary algorithm for CMWTA (MOEA-CMWTA) is
proposed with the following contributions:

o For the completeness of the Pareto-optimal set, a self-
adaptive sorting algorithm, which has low computa-
tional complexity and does not require any parameter,
is proposed to preserving the diversity of the population.

o A cooperative evolutionary strategy, which utilizes the
similarity of the neighboring non-dominated solutions
and contributes to the good information transferring in
neighboring subpopulations, is presented to strengthen
the convergence performance.

o For handling multi-constraint, a detection and repair
mechanism is introduced to improve the infeasible solu-
tions. A measurement of constraint violation is designed
to evaluate the infeasible solutions.

The main loop of MOEA-CMWTA is outlined in
Algorithm 1.

Algorithm 1 Main Loop of MOEA-CMWTA

1: Initialization: Generate an initial population Py which
consists of m subpopulations.

2: Termination: If + < T or another stopping criterion is
satified then obtain the non-dominated solutions of P; as
output. Stop.

3: Environmental selection: Perform the self-adaptive sort-
ing algorithm on P, to create the effective population P;.

4: Variation: Implement the cooperative evolutionary pro-
cedure on P; to create a new population Q;.

5: Fitness assignment: Calculate the fitness and constraint
violation of individuals in Q;. Set P, = P, U Q; and
t =t+ 1. Go to Step 2.

A. SOLUTION BUILDING

1) SOLUTION ENCODING

To indicate the weapon usage and aiming points, we encode
the solution of CMWTA by the real-value set A =
{a1,as, -, an} where the component a; shows the aim-
ing point of weapon i in the scenario. a; = @ when the
weapon i is not used and a; represents the aiming point of
weapon i otherwise. In initialization, solution A is generated
by the corresponding decision vector X = (x1, x2, ..., Xn)
where x; = 1 represents the weapon i is employed and
x; = 0 conversely. Hence the solutions can be divided into
m subpopulations by |X | which is corresponding to the layers
in Fig. 1. The algorithm of population initialization is shown
in Algorithm 2.

In line 5 of Algorithm 2, the random integer u is the number
of the employed weapons. In line 6, L is the index list of
employed weapons. Line 11 gives the detection and repair
algorithm which is described as follows.
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Algorithm 2 Population Initialization

Algorithm 3 Detection and Repair Algorithm of Consistency

Input: pop: the size of the population; m: the number of
weapons; n: the number of targets; B: the battlefield
domain.

Output: P = {SP1,SP3,...,SP,}: the initial population
where SP; is the ith subpopulation.

1: P={SP,SP,,...,SPy,},SP; =10

2: for k = 1 to pop do

33 X =[xlixmxi=0

4 A={aj,a,...,an},qa; =0

5 u = [rand (0, 1) x m]

6 Generate a vector L = (Iy,[»,...l,) containing u
unique integers selected randomly from [0, m];

7. fori=1toudo
8: x; =1
9: a;; = B - rand

10:  end for

11:  Detect and repair (X, A);

12:  Add solution (X, A) to subpopulation SPx|;
13: end for

2) EVOLUTIONARY OPERATOR

To avoid the accuracy decline and the Hamming Cliff prob-
lem [59], [60], the Simulated Binary Crossover named SBX,
and Polynomial Mutation is adopted on the real-valued solu-
tions without coding and decoding. Apply the evolutionary
operators on the equal genes of solutions by the strategy:

1 Execute the SBX operation when two parent genes are the
nonempty set.

2 Exchange two parent genes when only one parent gene is
the nonempty set.

3 Randomly select a nonempty gene in the parent as the
mutation gene.

The advantage of this strategy is that the solutions are still
in the neighboring subpopulations after the evolutionary
operators.

B. CONSTRAINT HANDLING

1) REPAIR OPERATOR

For the diversity of the population, the repair operator has a
level of relaxation on constraints. The repair operator con-
sists of three detection and repair procedures of consistency,
survival threshold, and preference assignment.

(1) Consistency. Calculating (f1,f>) by raw (X, A) may
lead to the inconsistency of f] and f, which causes the redun-
dancy of mapping from search space to the objective function.
Hence the decision matrix is proposed to update (X, A). The
detection and repair algorithm of consistency is presented in
Algorithm 3.

In Algorithm 3, lines 1-10 show the initialization of deci-
sion matrix D. Lines 11-16 show the redundant weapon is
pruned by the decision matrix.

(2) Survival threshold. To prevent local optimum, elastic
detection is adopted on the constraint of damage threshold,
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Input: (X, A): the raw solution; m: the number of weapons;
n: the number of targets; {p1, p2, . .., pn}: the location of
targets in the scenario.

Output: (X, A): the repaired solution.

D= [dij]mxn’ dl/ =0

2: fori =1tomdo

3:  ifx; = 1 then

4: forj=1tondo

5: if ”pj —a; H < R; then
6: dlj =1

7: end if

8: end for

9: end if

10: end for

11: fori=1t§1)mdo
12: if x; + Z d,'j = 1 then

j=1
13: x;=0
14: a =9
15:  end if
16: end for

Algorithm 4 Detection and Repair Algorithm of Survival
Threshold
Input: (X, A): the raw solution; m: the number of weapons;
n: the number of targets; p: the damage threshold vector;
E': the preference matrix; D: the decision matrix.
Output: A: the repaired solution.
1: Generate the set of weapon

index U =

n
ilxpi=1and ) e;=0¢;
J=1
2: forj=1tondo
m
3 ifpj+ Y dj < 1 then

=1
if U %  then

4:

5: Randomly select an index k from U and delete &
from U,

6 Randomly generate a; by || Dj — ak || < Ry

7: else

8 return A

9 end if

10:  endif

11: end for

namely have the target, which has the requirement of damage
threshold, within the lethal radius of any weapon. The detec-
tion and repair algorithm of the survival threshold is presented
in Algorithm 4.

Line 1 of Algorithm 4 obtains the employed weapons
which are out of preference assignment and available to be
reassigned. Line 3 obtains the target which has the require-
ment of damage threshold but is not within the lethal radius
of any weapon. Line 4-9 shows an available weapon is
selected randomly to the target which is unsatisfied with the

VOLUME 7, 2019



K. Zhang et al.: CMWTA for Area Targets by Efficient Evolutionary Algorithm

IEEE Access

survival threshold. As shown in line 8, the algorithm stops
when all unsatisfied targets are repaired, or no available
weapon can be reassigned.

(3) Preference Assignment. For the diversity of the popu-
lation, the following strategy is adopted in the case of prefer-
ence assignment of weapon-target pair i — j.

1 If weapon i is not available, no operator is performed to the
solution.

2 If weapon i is available and target j is not within the lethal
radius of weapon i, randomly generate the aiming point of
weapon i within a certain range centered on target j.

The detection and repair algorithm of preference assign-
ment is presented in Algorithm 5. Line 3-5 show the weapon i,
which is available but not for the prior target j, is reassigned
to threaten target j.

Algorithm 5 Detection and Repair Algorithm of Preference
Assignment

Input: (X, A): the raw solution; D: the decision matrix; E:
the preference matrix; m: the number of weapons; n: the
number of targets.

Output: A: the repaired solution.

1: forj=1tondo

2. fori=1tomdo

3 ife;; = 1 and x; + dj; = 1 then

4: Randomly generate a; by ||pj - a,-|| < Rj;

5: break

6 end if

7 end for

8: end for

Considering the mutual interaction, the sequence of three
algorithms is preference assignment, damage threshold, and
consistency. The procedure of repair operator is described as
follows.

Step 1 Generate the raw solution (X, A) then calculate the
decision matrix D,

Step 2 Implement the preference assignment algorithm on
(X, A) then update the decision matrix D;

Step 3 Implement the damage threshold algorithm on (X, A)
then update the decision matrix D;

Step 4 Implement the consistency algorithm on (X, A).

2) MEASUREMENT OF CONSTRAINT VIOLATION

Because the relaxation of the repair operator, the most
repaired solutions also violate the constraints. Preparing for
the selection algorithm, a measurement of constraint violation
is designed to evaluate the infeasible solutions.

The constraint violation of a solution is defined as
IC|
PX,A) = si- gi(X, A) (12)

where C is the set of constraints; s; is the constant coeffi-
cient of the ith constraint; g;(X, A) represents the constraint
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violation of solution (X,A) on the ith constraint and is
designed by the following principles.

o gi(X, C) reflects the deviation of the infeasible solution
X to the feasible region on C;.

e gi(X, C)is proportional to the distance from the infeasi-
ble solution X to the nearest feasible solution on C; and
is normalized.

In this paper, C = {C, C,, C3} represents the constraint
of security evasion, survival threshold, and preference assign-
ment respectively; s; is set to 1 since g;(X, C) is normalized.
The constraint violation of security evasion is designed as

1 I m —a
g1 = |_ ZZ ( ||SkRia ||> (13)
=1 i=1

g1 = 0 when the friendly/neutral targets are not within
the lethal radius of any weapon. Conversely, g| is inverse
proportional to the distance from friendly/neutral targets to
the aiming points of weapons violating Cj.

The constraint violation of the survival threshold is
designed as

5 max (0’ lj (1 =D (|l —al)) x5 - Pj)

g=) = . (14)
=1 (1=m) L1 p]
J:

g2 = 0 when survival probability vector P and survival
threshold vector satisty P; < p;,i = 1,2, --- , n; otherwise
g> is proportional to the deviation |P — p|.

The constraint violation of preference assignment is
designed

|pj
8= ||E||1 ZZmaX(O

i=1 j=I

ai| - e — Ri
B—R

) (d5)

where ||E||; is the 11-norm of the preference matrix E, which
denotes the number of preferred weapon-target pairs. g3 = 0
when the preference pair i — j is satisfied; otherwise g3 is
proportional to the distance from target j to the aiming point
of weapon i.

C. ENVIRONMENT SELECTION

One challenge of solving CMWTA is obtaining the non-
dominated solutions of fewer weapons. The reason is that
fewer weapons are difficult to satisfy the constraints, and
more weapons are easy to violate constraints. The situation
of more weapons is better than fewer weapons in the evolu-
tionary process because adding one weapon to the feasible
plan of the middle subpopulation is more likely to approach
a feasible plan than removing one weapon from the feasible
plan of the middle subpopulation. Hence the diversity of the
subpopulation of small f, is more important than the other
subpopulations. Hence this paper presents a self-adaptive
selection algorithm that gives more relaxation on the subpop-
ulations of smaller f>.
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First, we defines the solution of CMWTA, which has a
low constraint violation and acceptable fitness, as an effec-
tive solution. The self-adaptive selection algorithm selects
the effective solutions to an elitist environment called effec-
tive population. According to the characteristic of the WTA
problem, the survival probability of target declines obviously
when one more weapon is used, especially the one more
weapon violates more constraints. If a solution uses more
weapons and violates more constraints, but leads to less dam-
age effect, we consider this solution contributes less effec-
tive information. Inspired by this principle, the procedure of
the self-adaptive sorting algorithm is as follows: Pick the
first front consisting of the non-dominated solution of each
subpopulation. In this front, if a solution is dominated by
any solution with smaller f> on (f, ¢), then this solution
is removed from the current front and is left to the next
front. When this detection of each solution of the current
front completes, copy the existing solutions to the effective
population. Pick the next front and repeat the above steps
until the effective population is filled. Besides the low com-
putational complexity and no parameter tuning, this sorting
method has a self-adaptive mechanism making the solutions
with smaller f> be more likely to be selected to the effective
population. The self-adaptive selection algorithm is detailed
in Algorithm 6.

Algorithm 6 Selection Algorithm of the Effective Population

Inmput: P = {SP,SP,...,SP,}: the population; sep:
the size of the effective population; m: the number of
weapons.

Output: EP: the effective population.

1. EP=0,k =1,
2: if k < sep then
3§ = (sp1*, Spask, ..., Spm*) where sp;* is the non-

dominated solution of SP; on (fi, ¢).

4. fori=mto2do

5: if sp;* = () then

6: continue;

7 end if

8: forj=i—1to1do

9: if spjx # @ and spj * .fi < sp;* .f1 and sp; * .¢ <
spi * .¢ then

10: Delete sp;* from S;

11: break;

12: end if

13: end for

14: Copy S to EP and delete S from P;

15: k=k+|S|;
16:  end for
17: end if

As shown in line 3 of Algorithm 6, S is the front pre-
pared for the effective population in which s(p;)* is the non-
dominated solution on (fi, ¢) of SP; rather than the entire
population. Line 4-9 gives the filter procedure of effective
solutions. The solutions of § is checked from SP,, to SP;,
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and one solution is only compared with the solutions with
smaller f>. For example, solution sp; and sp; of the front
S come from the subpopulation SP; and SP; (i < j) respec-
tively. If solution i dominates solution j on (f1, ¢), namely
spifi < spj.fi and sp;.¢ < spj.¢p, we believe the solution j
provides the less effective information than solution i in the
evolutionary process and give priority to copying solution i
to EP. In line 10-14, the ineffective solutions of current S are
deleted and left to the front S of the next iteration.

The relaxation of constraint generally impacts the conver-
gence speed. A cooperative evolutionary mechanism, which
utilizes the similarity of neighboring non-dominated solu-
tions and contributes to the quality information transferring
in neighboring subpopulations, is adopted to strengthen the
convergence speed. For the ith subpopulation, we define the
nearest 7' subpopulations as the neighborhood B (i, T') which
can be calculated by Equation 16.

B(,T)
{sp(D),....sp(T+ 1}, ifi—[T/2]1<0
=1{spm—=T),....spm)}, if i+ |T/2] >m
{sp(G—=1T/21),...,sp(i+ |T/2])}, otherwise
(16)

The evolutionary operators are implemented on the neighbor-
ing solutions, and the procedure is outlined in Algorithm 7.

Algorithm 7 Evolutionary Procedures of MOEA-CMWTA
Input: EP = {SEPy, SEP,, ..., SEP,}: the effective popu-
lation where SE P; is the ith subpopulation; m: the number
of weapons.
Output: Q: the offspring population.
1: fori=1tomdo
2:  if |[SEP;| > O then

3: Randomly select the individual x| and x; from SEP;
and B (i, T') respectively;

4: Generate solutions y; and y; from x; and x, by
evolutionary operators;

5: Detect and repair y; and y».

6: Copy y1 and y, to corresponding subpopulations of
0.

7. end if

8: end for

D. COMPUTATIONAL COMPLEXITY

Let P denotes the size of the population; M denotes the
number of weapons; N denotes the number of targets. The
worst time complexity of one generation of proposed MOEA
can be calculated according to the process: (1) The time
complexity of population initialization is O (MP). (2) The
worst time complexity of the selection algorithm is O (MP).
(3) In the effective population, the time complexity of the
evolutionary process is also O (MP). (4) In the detection
and repair algorithm applied on population, the worst time
complexity of consistency repair is O (MNP). The worst time
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complexity of damage threshold repair is O (NP). The worst
time complexity of preference assignment repair is O (MNP).
According to the operational rules of the symbol O, the worst
time complexity of one generation in MOEA-CMWTA is
O (MNP).

E. PERFORMANCE METRICS

In MOPs, the major performance metrics are to measure the
convergence and spacing. The former evaluates the proximity
of obtained Pareto-optimal set to the true Pareto-optimal set,
and the latter evaluates the uniformity of the non-dominated
solutions. In CMWTA, since the non-dominated solutions
follow the specific non-uniform distribution, the spacing met-
ric is not employed to reflect the quality of the Pareto-optimal
set. Generally, the calculation of convergence metric needs
the true Pareto-optimal set which is hardly obtained in the
CMWTA problem. Thus a variant of convergence metric is
proposed to compare the algorithms solving MWTA. Let
P = {p 1,D2, D) p|} be the approximate Pareto-optimal
set coming from the historical non-dominated solutions of
the comparison algorithms; A = {aj, az, -+, a} is the
Pareto-optimal set found by a comparison algorithm. The
convergence metric C (A) is the normalized proximity of A
to P.

fu@) =hw) e

di — flmax _ f]min (17)
1, otherwise
|P|
2 di
C@) 2 TIT (18)

Besides the quantitative evaluation of the convergence met-
ric, the coverage metric[20] is employed for the qualitative
evaluation.

A {beB;JacA:a> b}

Ic(A,B) = Bl (19)

where > means weakly dominate; A, B are two approximate
Pareto-optimal sets and the function /¢ maps the ordered pair
(A, B) to the interval [0, 1]. It shows that A is better than B
when I¢c (A, B) > Ic (B, A).

IV. EXPERIMENT STUDIES

In this section, we compare MOEA-CMWTA with sev-
eral state-of-the-art MOEAs, an MOEA/D for WTA, and
approved constraint handling methods. All experiments were
carried out in MATLAB R2016b environment on a PC with
i7-2.5GHz CPU and 8GB memory.

A. COMPARISON ALGORITHMS AND

CONSTRAINT HANDLINGS

To verify the performance of MOEA-CMWTA, we compare
our algorithms with several MOEA frameworks and approved
constraint handling approaches. The comparison frameworks
are:
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1) NSGA-IT [61]. Alleviating the difficulties of NSGA,
NSGA-II has better convergence and lower computa-
tional complexity by using a fast non-dominated sorting
approach and an elitist selection operator. The reason why
being a comparison algorithm is that NSGA-II performs
rather good diversity in bio-objective instances.

2) SPEA2 [62]. As an improved version of SPEA,
SPEA?2 incorporates a revised fitness assignment strategy,
a nearest neighbor density estimation technique and an
enhanced archive truncation method. SPEA2 has a great
advantage in distribution.

3) MOEA/D [63]. MOEA/D has achieved great success in
the field of evolutionary MOPs based on decomposing
a MOP into some scalar optimization subproblems and
optimizes them simultaneously. MOEA/D performs well
on multi-objective 0-1 knapsack problems, continuous
multi-objective optimization problems and disparately-
scaled objectives by using objective normalization.

4) MOEA/D-WTA [7]. For solving the classic MWTA,
MOEA/D-WTA integrate a population initialization based
on prior knowledge, a problem-specific selection, and a
mating restriction. The experimental results show that
MOEA/D-WTA outperforms several MOEA/D frame-
works in terms of solving the point-to-point MWTA
problem.

The comparison constraint handling approaches are:

1) Self-adaptive penalty (SP) function [44]. This method
modified the objective function by an adaptive penalty
function and a distance measure. Besides the superior
performance, the advantage is simple to implement and
does not need any parameter tuning.

2) Constrained-dominated principle (CDP) [46]. As the
representative method of the modified dominance rule,
the CDP compares the objectives and constraints sep-
arately. The infeasible solutions are guided toward the
feasible region. This method performs well on real-code
GAs and does not require any parameter setting.

3) e-constraint handling (EC) method [53]. EC designs a
dynamic relaxation on the constraints, which is in favor
of maintaining diversity.

4) Stochastic ranking (SR) method [54]. SR adopts a prob-
ability parameter pf to decide if the comparison is to be
based on objectives or constraints, which contributes to
solving the COPs with the narrow feasible region.

In the practical composition of the frameworks and con-
straint handling approaches, the repair operator is also imple-
mented on each algorithm. The parameters are set as follows:

1) Global settings: the population size pop = 1200; the
max generation maxgen = 100; the crossover proba-
bility p. = 0.8; the mutation probability p,, = 0.2;
the crossover distribution index n. = 5; the mutation
distribution index n,, = 5;

2) Parameter setting in MOEA-CMWTA: the size of effec-
tive population ep = 0.5pop; the number of neighboring
subpopulations T = 2;
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TABLE 2. Parameters of the comparison algorithms.

Parameter MOEA-CMWTA

NSGA-II

SPEA2

MOEA/D MOEA/D-WTA

1200
100

1200
100

pop
mazxgen
De/Pm 0.8/0.2
Ne/Mm 20/20 20/20
Repair Operator v v
Elitist environment Effective population/Mating pool
Size of elitist 600
Neighborhood Index 2
Constraint Handling Self-adaptive selection

600

0.8/0.2
Mating pool

CDP/EC/SP

1200
100
0.8/0.2
20/20
v
External archive/Mating pool
1200/600
35
CDP/EC/SP

1200
100

1200
100
1/0.2 0.8/0.2

20/20 20/20

v v

10 3
CDP/EC/SR CDP/EC/SP

3) Parameter setting in NSGA-II: the size of the mating
pool is set to 0.5pop;

4) Parameter setting in SPEA2: the size of the archive
pop = 1200; the nearest neighbor index k is set to 49 by
k = /pop + pop.

5) Parameter setting in MOEA/D-WTA:

6) Parameter setting in MOEA/D: the number of the neigh-
bor weight vectors is set to 10; the decomposition strat-
egy is the Tchebycheff approach.

7) Parameter setting in EC: T, = 80; cp = 2; theta =
0.05pop;

8) Parameter setting in SR: Py = 0.45.

The detailed setting of the comparison algorithms are listed
in Table 2.

B. OPERATIONAL SCENARIO

First, the scenario 1 of limited weapons, namely m < n,
is defined and omitting the units for simplicity. As shown
in Fig 2, the scenario scale is 20 x 20. There are six
available weapons and 20 hostile targets displayed by red
diamonds and marked by Arabic numerals. The inequali-
ties after target 6 and 13 indicate the requirement of survival
threshold. The Roman numeral III, after target 14, indicates
the preference assignment of weapon 3. There are also two
friendly/neural targets displayed by blue dots. Let the lethal
radius of available weapons be [2.5:0.5:5]. Then the sce-
nario 2, which involves 30 weapons and 30 hostile targets,
is designed to investigate the performance facing the satu-
rated weapon resource and a more complex environment. The
lethal radius of available weapons is [2.1:0.1:5]. The specific
parameters of the two scenarios are shown in Table 3.

C. EXPERIMENTS ON MOEAS

In this section, we perform 13 compositions of the MOEA
frameworks and constraint handlings on scenario 1. Then five
algorithms, which preserve the convergence metric less than
0.1 and have better distribution, are compared on scenario 2.

1) PERFORMANCE ON SCENARIO 1

We run each algorithm on scenario 1 over 30 independent
runs. The statistics of the Pareto-optimal sets are shown
in Table 4. In Table 4, column 1 lists the comparison
algorithms. Columns 2 to 6 show the size of the obtained
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FIGURE 2. Diagram of two operational scenarios.

Pareto-optimal sets. Column 7 gives the percentage of infeasi-
ble solutions in non-dominated solutions, and column 8 gives
the mean value of constraint violation. Column 9 gives the
mean value of the convergence metric of the Pareto-optimal
set. Column 10 to 14 show the mean value of fitness of the
optimal solution in each subpopulation, namely the oper-
ational effect of the optimal plan under different weapon
consumption.
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TABLE 3. Numerical values of two operational scenarios.

Scenario 1 Scenario 2
Unit  Threat Position Remarks Unit Threat Position Remarks Unit Threat Position Remarks
Fl 0 (5.60, 10.43) No damage Fl 0 (18.38,16.43)  No damage H20 0.53 (17.61, 20.76)
N1 0 (14.17,5.31) No damage F2 0 (15.00, 7.44) No damage H21 0.66 (15.11, 4.06)
HI 0.71 (14.63, 14.95) N1 0 (9.36, 18.42) No damage H22 0.03 (18.16, 11.92)
H2 0.05 (17.74, 3.36) H1 0.05 (28.91, 21.16) H23 0.57 (23.94, 17.55)
H3 0.85 (5.93, 11.40) H2 0.52 (16.50, 10.71) H24 0.67 (15.89, 13.86)
H4 0.85 (8.69, 16.19) H3 0.39 (15.43, 15.48) H25 0.56 (6.66,2.41) sp<0.4
H5 0.61 (15.16, 0.12) H4 0.99 (10.26, 16.59) H26 0.66 (13.71, 7.40)
H6 0.93 (4.99, 11.27) sp<0.2 H5 0.43 (13.04, 5.38) sp<0.3 H27 0.45 (12.98, 24.36)
H7 0.88 (17.72, 1.88) H6 0.71 (14.77, 16.74) H28 0.12 (28.05, 1.44)
HS8 0.39 (4.72,9.16) H7 0.52 (2.99, 20.45) W9-T7 H29 0.69 (18.36, 25.18)
H9 0.43 (3.60, 17.49) H8 0.24 (25.86, 12.94) H30 0.95 (2047, 3.19)
HI10 0.93 (9.34, 16.13) H9 0.37 (2.81,24.42)
H11 0.11 (6.00, 5.74) H10 0.17 (13.21,21.48)
H12 0.54 (3.20,0.23) H1l 0.63 (24.15, 11.08) sp<0.2
H13 0.43 (13.29, 1.35) sp<0.1 H12 0.16 (12.05, 13.72)
H14 0.51 (2.98, 8.28) W3-T14 H13 0.91 (18.18, 11.82)
H15 0.29 (18.65,9.38) H14 0.90 (23.92,22.72)
H16 0.29 (11.77, 11.96) H15 0.92 (25.81, 21.56)
H17 0.21 (11.70, 6.77) H16 0.26 (27.07, 13.05)
H18 0.69 (1.05, 14.66) H17 0.13 (6.34,20.43)
H19 0.83 (10.48, 11.07) H18 0.04 (8.24,27.47)
H20 0.16 (12.71, 10.57) H19 0.53 (26.14, 20.76) WI13-T19

According to the prior information and simulation results,
the size of the true Pareto-optimal set is 5, and the f> of
the optimal non-dominated solutions is 2 to 6. As shown
in Table 4, Only MOEA-CMWTA can guarantee the com-
pleteness in each run. NSGA-II-SP, SPEA2-CDP, SPEA2-SP,
and MOEA/D-WTA-SP obtain the size of 4 in two, three,
one, and one run respectively. The other algorithms perform
worse on the distribution of PS size. In column 7 and 8§,
the drawbacks are concentrate on the algorithms with the
EC method, and NSGA-II-SP also obtains one infeasible
solution. MOEA-CMWTA and SPEA2-SP outperform on the
convergence metric, which can guarantee the value of less
than 0.05. MOEA/D-WTA-SP, NSGA-II-SP, and SPEA-CDP
follow by 0.0570, 0.0636, and 0.0652 respectively. In mean
values of fitness, SPEA2-SP performs better on the weapon
consumption of 2, 5 and 6. NSGA-II-SP and SPEA2-CDP
obtain optimal fitness as the weapon consumption is 3 and 4
respectively.

Based on the results of Table 4, the convergence metric is
mainly related to the completeness of the Pareto-optimal set.
The elaborate self-adaptive penalty function performs rather
well in the frameworks of NSGA-II, SPEA2, and MOEA/
D-WTA-SP, although it also can not guarantee the complete-
ness of the Pareto-optimal set. MOEA-CMWTA is the only
algorithm that can guarantee completeness in each run. Hence
MOEA-CMWTA achieves 0.0379 on convergence metric,
although it has no optimal values of fitness.

In terms of the complete Pareto-optimal set, the rigid
search space may lead to the local optimum and incom-
plete Pareto-optimal set of CMWTA, such as NSGA-II-CDP,
SPEA2-CDP, MOEA/D-CDP, MOEA/D-SR, and MOEA/
D-WTA-SP. The frameworks of NSGA-II and SPEA2 uti-
lize the non-dominated sorting algorithm with a strict
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FIGURE 3. Convergence metric and coverage of the Pareto-optimal sets
obtained by the comparison algorithms solving scenario 1 over 30
independent runs.

selection principle. MOEA/D-WTA-SP selects the non-

dominated solution of each weapon consumption forcibly.
CDP implements a rigorous selection criterion which gives
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TABLE 4. Statistics of the Pareto-optimal sets obtained by the comparison algorithms solving scenario 1 over 30 independent runs.

Aleorith Size of PS Infeasibility Convergence Mean values of the fitness under each weapon consumption
orithm 8

£ 5 4 3 2 1 % Mean metric 6 5 4 3 2
MOEA-CMWTA 30 0 0 0 O 0 0 0.03796948 1.18613171 1.46369502 1.99870344 3.05914387 6.94233816
NSGA-II-CDP 24 6 0 0 O 0 0 0.10947655 1.30337952  1.53691869 1.95034898 3.36504456 7.00916463
NSGA-II-EC 13 8 o 2 7 6.48 0.0703  0.43937094 1.61527547 1.86712760 2.50076797 3.95476551 7.01871626
NSGA-II-SP 28 2 0 0 O 0.68 0.0236  0.06361190 1.36574984  1.57919597 1.97083404 2.95675853 6.94092238
SPEA2-CDP 27 3 o 0 0 0 0 0.06528147 1.12439058 1.40071270 1.92189134 3.26156324 6.98320975
SPEA2-EC 17 13 0 0 O 1898 0.1309 0.36172785 1.34995469 1.62569575 2.12809649 4.26761576 7.02359706
SPEA2-SP 29 1 o 0 0 0 0 0.02849572 1.10894854 1.39538003 1.92541419 2.95744218 6.93929157
MOEA/D-CDP 9 12 8 1 0 0 0 0.47007922 2.18499595 2.49026557 3.12380357 4.88918491 7.06989340
MOEA/D-EC 0 3 6 6 15 2456 0.0706 0.80446787 1.89647577 2.20097431 2.57203922 4.92286555 7.37321712
MOEA/D-SR 21 7 1 1 0 0 0 0.23137060 1.70370318 2.00372769 2.45880462 3.79840971 7.02798235
MOEA/D-WTA-CDP 11 19 0 0 O 0 0 0.23426148 1.42194788 1.64150993 2.01752055 3.71960971 7.20513175

MOEA/D-WTA-EC 0 5 3 1 21 4038 0.0682 0.83594250 1.74406824 2.08974885 2.41326216 4.65705256 -
MOEA/D-WTA-SP 29 1 o 0 0 0 0 0.05698250 1.39881516  1.60912535 2.00380805 2.96642146 6.94636257
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FIGURE 4. Solving scenario 1 and sorted by weapon consumption, the number of the feasible non-dominated solutions obtained by comparison
algorithms over 30 independent runs; mean values of the fitness and constraint violation obtained by comparison algorithms over

3FourFitnessConstraint0 independent runs in 1 to 100 generations.

the non-dominated solutions with O constraint violation.
Consequently, the composition of NSGA-II/SPEA2/MOEA/
D-WTA and CDP has a forced ability to cleaning the infea-
sible solutions out and against the diversity of the popula-
tion. MOEA/D transforms a piecewise continuous objective
and an integer objective into a scalar optimization, and the
search capability is further restricted by CDP. As shown
in Table 4, NSGA-II-CDP and SPEA2-CDP concentrate on
the size 5 and 4, and MOEA/D-CDP concentrates on the size
5 to 3. SR adopts a stochastic selection mechanism to decide
the selection is based on objectives or constraints. In the
latter case, SR equates to CDP. Therefore, MOEAD/D-SR
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performs better than MOEA/D-CDP on solving CMWTA. SR
can ensure the feasibility of obtained sets but is not ideal for
the completeness. The reason is that SR has no information
to guide the search space such as SP.

The permissive search space causes the infeasibility
and incomplete Pareto-optimal set of CMWTA, such as
NSGA-II-EC, SPEA2-EC, MOEA/D-EC, and MOEA/
D-WTA-EC. EC performs worst on not only convergence
but also spacing. Four frameworks with EC can not solve the
complete sets in more than half runs, and can not guarantee
the feasible of non-dominated solutions. MOEA/D-WTA-EC
even obtains one non-dominated solution in 21 runs and
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FIGURE 5. The display of the optimal non-dominated solutions obtained by MOEA-CMWTA, NSGA-11-SP, SPEA2-CDP, SPEA2-SP, and MOEA/D-WTA-SP
solving scenario 1 over 30 independent runs.
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TABLE 5. Statistics of the Pareto-optimal sets obtained by MOEA-CMWTA, NSGA-I1-SP, SPEA2-CD, SPEA2-SP, and MOEA/D-WTA-SP solving scenario 2 over

30 independent runs.

Size of PS Infeasibility
Algorithm Convergence metric
30-26  25-21  20-16  15-11 <10 % Mean

MOEA-CMWTA 14 16 0 0 0 0 0 0.48631359
NSGA-II-SP 0 2 23 5 0 0 0 0.60822153
SPEA2-CDP 0 0 21 9 0 0 0 0.62945846
SPEA2-SP 0 0 26 4 0 0 0 0.60270033
MOEA/D-WTA-SP 21 9 0 0 0 8.03 1.5387 0.49539967

metric in 1 to 100 generations
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CMWTA and a comparison algorithm

FIGURE 6. Convergence metric and coverage of the Pareto-optimal sets
obtained by the comparison algorithms solving scenario 2 over
30 independent runs.

contains 40.38% infeasible solutions. The reason is that EC
loses control of the constraint violations of CMWTA.

The convergence metric and coverage of the obtained
sets are presented in Figure 3. Let M denotes the Pareto-
optimal sets obtained by MOEA-CMWTA, N denotes the sets
obtained by NSGA-II, S denotes the sets obtained by SPEA2,
D denotes the sets obtained by MOEA/D, and W denotes
the sets obtained by MOEA/D-WTA. Figure 3(a) gives the
dynamic performance of the mean values of the convergence
metric in evolutionary generations. Figure 3(b) gives the box
plots to illustrate the distribution of the convergence metric
of the Pareto-optimal sets. The notches represent a robust
estimate of the uncertainty about the medians for box-to-box
comparison, and symbol + denotes outliers. To verify the
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proposed MOEA, Figure 3(c) exhibits the box plots of the
coverage of the two sets obtained by MOEA-CMWTA and
a comparison algorithm. In each plot, the left box represents
the distribution of I¢(M, *), and the right box represents the
distribution of Ic (%, M).

As shown in Figure 3(a) and 3(b), the comparison algo-
rithms are located in several tiers. In the first tier, there are
MOEA-CMWTA, NSGA-II-CDP/SP, SPEA2-CDP/SP, and
MOEA/D-WTA-SP which can obtain the complete feasible
non-dominated solutions in the most runs. In Figure 3(c), only
SPEA2-SP is slightly better than MOEA-CMWTA. However,
this gap may result from the repair operator used in all algo-
rithms. The influence of the repair operator is investigated in
the following experiment.

In view of the decision plan of C2, Figure 4 shows the
results identified by different weapon consumption. The first
row of the figures gives the number of feasible plans obtained
in 30 runs. To evaluate the dynamic performance of algo-
rithms, the latter two rows present the mean values of the
fitness and constraint of the optimal plans in the evolutionary
generations respectively.

As shown in Figure 4(a)-4(e), the challenge is to obtain the
optimal plan with two or six weapons. Only MOEA-CMWTA
can solve the optimal plans under all weapon consumption
in 30 runs. SPEA2-SP and MOEA/D-WTA-SP solve the opti-
mal plan of two weapons and six weapons in 29 runs respec-
tively. Considering Figure 4(f)-4(0), the most plots of the
comparison algorithms have the shocks since the algorithms
can not maintain the non-dominated solution in every genera-
tion of each run. By contrast, MOEA-CMWTA is robust and
has a stable decrease trend. The fitness of MOEA-CMWTA
increases slightly in the early generations, and the constraint
violation is suppressed to 0. In this process, the individuals
are converted from infeasible solutions to feasible solutions.
However, NSGA-II-SP, SPEA2-SP, and MOEA/D-WTA-SP
perform opposite. The fitness drops down to a low level
rapidly and the constraint violation has a sharp increase, then
fitness is increasing with the decrease of constraint violation.
The reason is that MOEA-CMWTA and SPEA2-CDP give
priority to decreasing the constraint violation. Hence the
fitness of MOEA-CMWTA and SPEA2-CDP has a tempo-
rary increase in early generations. The algorithms with SP
optimize the modified objectives, which optimize the objec-
tive and constraints simultaneously. Hence MOEA-CMWTA
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FIGURE 7. Mean values of the fitness and number of feasible non-dominated solutions obtained by MOEA-CMWTA, NSGA-11-SP, SPEA2-CD, SPEA2-SP,
and MOEA/D-WTA-SP under different weapon consumption over 30 independent runs.

outperforms on convergence speed, which is a crucial advan-
tage of real-time decision support in C2. As shown in
Figure 4(k)-4(0), the constraint violation of MOEA-CMWTA
can converge to O within 5 generations, and the others of
the first tier eliminate the constraint violation at about 18th
generation.

So far the proposed MOEA, NSGA-II-SP, SPEA2-CDP,
SPEA2-SP, and MOEA/D-WTA-SP are qualified solver for
CMWTA. The sketch maps of the optimal plans, which are
obtained by three algorithms over 30 runs, are displayed
in Figure 5. In Figure 5, the roman number I to VI represent
the aiming points of available weapon resources of which the
lethal radii are displayed by specified colors. The targets with
damage requirements are indicated by arrow wherein the first
number represents the expected survival, and the number in
parentheses represents the survival threshold. The weapon-
target pair i — j with preference assignment, that is a;; = 1,
is linked by the dotted line.

As shown in Figure 5, the solved plans can satisfy
the operational requirements. The survival thresholds of
target 6 and 13 are 0.2 and 0.1. However, the no-damage
targets 1 and 2 are close to the hostile targets 6 and 13
respectively, and the target 14 with the preference assignment
of weapon III is close to no-damage target 1. Constrained by
this situation, when the weapon consumption is less than 6,
the optimal plans obtained by three algorithms have high sim-
ilarity. In the case of two weapons, the weapon V and VI can-
not deal with the above constraints and only the weapon III
meets both the preference assignment for target 14, the sur-
vival threshold of target 6 and the security evasion of target 1.
Only the weapon IV or V can satisfy the maximum fitness
based on the survival threshold of target 13 and the security
evasion of target 2. The distinct difference emerges as the
weapon consumption is six, and the optimal plan obtained by
SPEA2-SP is more rational according to the fitness and the
distribution of the aiming points.

In addition, MOEA-CMWTA has low computational com-
plexity. As described in Section 3, the repair algorithm,
which is adopted in all comparison algorithms, has the worst
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computational complexity of O (MNP) where M is the num-
ber of weapons, N is the number of targets, and P is the
population size. Regardless of the complexity of the repair
algorithm, the worst computational complexity of MOEA-
CMWTA is O (MP). The worst computational complexity of
NSGA-II and SPEA2 are O (KP?) and O (P?) respectively
where K is the number of objectives. The worst compu-
tational complexity of MOEA/D and MOEA/D-WTA are
O (KPT) where T is the number of the weight vectors in
the neighborhood of each weight vector. The number of
objectives is 2 in the proposed CMWTA model.

Based on the above analysis, we conclude SPEA2-SP out-
performs on the values of convergence in the comparison
algorithms. MOEA-CMWTA approaches to SPEA2-SP on
convergence and has advantages in spacing, robust, real-time
and computational complexity.

2) PERFORMANCE ON SCENARIO 2

As shown in the above experiments, MOEA-CMWTA,
NSGA-II-SP, SPEA2-CD, SPEA2-SP, and MOEA/
D-WTA-SP have the convergence metric less than 0.1 and
approximate complete Pareto set. These algorithms are run
on scenario 2 over 30 independent runs.

The statistics of the obtained Pareto-optimal sets are shown
in Table 5. Owing to the max weapon consumption is
30, we do not give the mean values of the fitness under
each weapon consumption like Table 4. Instead, the mean
values of the fitness are plotted in Figure 7. As shown
in Table 5, MOEA/D-WTA-SP outperforms on completeness
of the Pareto-optimal set but contains 8.03% infeasible non-
dominated solutions and the mean value is 1.5387. MOEA-
CMWTA gives better completeness of the Pareto-optimal set
than three other algorithms and preserves the feasibility of the
non-dominated solutions.

Figure 6 shows the convergence metric and coverage of
the Pareto-optimal sets obtained by five algorithms. Con-
sidering Table 5 and Figure 6(a), only MOEA-CMWTA
and MOEA/D-WTA-SP get the convergence metric less
than 0.5. MOEA-CMWTA has a better convergence metric,

176353



I E E E ACC@SS K. Zhang et al.: CMWTA for Area Targets by Efficient Evolutionary Algorithm

o o
o 5 0 15 2 25 i o s 0 15

(a) MOEA-CMWTA, (b) MOEA-CMWTA, (c) MOEA-CMWTA, (d) MOEA-CMWTA, (e) MOEA-CMWTA,

£1=9.1895, fo=3, g=0 f1=4.6299, fo=5, g=0 £1=0.6963, f2=10, g=0 f1=0.1164, f2=15, g=0 £1=0.0118, f2=20, g=0

3 3 3 B B

o o

o o
s s s

(f) NSGA-II-SP, f1 =9.2712, (g) NSGA-II-SP, f1 = 4.6624, (h) NSGA-II-SP, f1 = 0.6833, (i) NSGA-II-SP, f1 = 0.1213, (j) NSGA-II-SP, f1 = 0.0244,
f2=2, g=0 f2=5, g=0 f2=10, g=0 f2=15, g=0 f2=20, g=0

. .
'
A
P g q . .
s = S
48 416 '
)
N . \
osfos ) s .
w
.
x

(k) SPEA2-CDP, f; =9.2396, (1) SPEA2-CDP, f; = 4.6239, (m) SPEA2-CDP, f1 =0.6510, (n) SPEA2-CDP, f1 = 0.1225, (0) SPEA2-CDP, f; = 0.0244,
f2=3, g=0 f2=5, g=0 f2=10, g=0 f2=15, g=0 f2=20, g=0

/ <amu1 AK\;Q e <amm‘a&’f
(p) SPEA2-SP, fi = 9.2205, (q) SPEA2-SP, fi = 4.6158, (f) SPEA2-SP, f = 0.6659, (s) SPEA2-SP, f1 = 0.0952, (t) SPEA2-SP, fi = 0.0310,
f2:3’ g:() f2:5’ g:() f2:10, g:O f2:15, gZO f2:20, g:O

B

o
o 5 10 15 2 25 E 0 5 10 15

(u) MOEA/D-WTA-SP, f1 =(v) MOEA/D-WTA-SP, f; =(w) MOEA/D-WTA-SP, f1 = (x) MOEA/D-WTA-SP, f1 =(y) MOEA/D-WTA-SP, f; =
92134, fo=3, g=0 47887, f2=5, g=0 0.7658, f2=10, g=0 0.1241, f=15, g=0 0.0234, f3=20, g=0
¢  Threat ®  Friendly/Neutral X Aiming Point — — Preference
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TABLE 6. Statistics of the Pareto-optimal sets obtained by the repair and non-repair versions of MOEA-CMWTA, NSGA-II-SP, SPEA2-CDP, and SPEA2-SP

in 30 independent runs.

Aleorith Size of PS Infeasibility Convergence Mean values of the fitness under each weapon consumption
orithm .
£ 5 4 <3 %  Mean metric 6 5 4 3 2
MOEA-CMWTA 30 0 0 0 0 0.13634975 1.17603219 1.44166066 1.96665203 3.09438195 6.93925962
non-repair MOEA 30 0 0 0 0 0.19627163 1.19336561 1.50885716 2.06619803 3.40140200 6.95137814
NSGA-II-SP 29 1 0 0 0 0.19336857 1.35470202 1.56719467 2.01689722 3.00607847 6.94541942
non-repair NSGA-II-SP 28 2 0 1.35  0.0237 0.302151172  1.46038735 1.66435621 2.08163854 3.17693941 6.94899371
SPEA2-CDP 23 7 0 0 0 0.19973988 1.16245224 1.42532121 1.93276840 3.38133551 7.02025116
non-repair SPEA2-CDP 15 15 0 0 0 0.35030033 1.20908668 1.54244373 2.09709001 3.97316478 6.98121104
SPEA2-SP 29 1 0 0 0 0.13297757 1.16329986 1.44534160 1.97288129 2.95712583 6.94055130
non-repair SPEA2-SP 29 1 0 0 0 0.24659084 1.31757592 1.63701617 2.05484690 3.16806788 6.95294700
MOEA/D-WTA-SP 29 1 0 0 0 0.23335987 1.39881516 1.60912535 2.00380805 2.96642146 6.94636257
non-repair MOEA/D-WTA-SP 30 0 0 2 0.0568 0.28682654 1.4607794  1.65367074 2.05790502 3.05110879 6.87574372

4 NRM NSP NANSP SCOP NASCOP SSP NASSP W.Sp NRWSP

(a) Mean values of the convergence (b) Box plots of the convergence
metric of the Pareto-optimal sets

metric in 1 to 100 generations
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FIGURE 9. Convergence metric and coverage obtained by the repair and
non-repair version of MOEA-CMWTA, NSGA-II-SP, SPEA2-CDP and
SPEA2-SP in 30 independent runs.

and MOEA/D-WTA-SP has a smaller overshoot. As shown
in Figure 6(b), the convergence metric of MOEA-CMWTA
and MOEA/D-WTA-SP also have better distribution than the
others. Figure 6(c) illustrates that MOEA-CMWTA outper-
forms than four other algorithms on coverage.

In Figure 7, the upper figure shows the mean values
of the Pareto-optimal fronts obtained by MOEA-CMWTA,
NSGA-II-SP, SPEA2-CD, SPEA2-SP, and MOEA/
D-WTA-SP. The lower figure gives the number of the non-
dominated solutions obtained by five algorithms and sorted
by weapon consumption.
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The mean values of the Pareto-optimal fronts are close
in the upper figure. It is noteworthy that the more weapon
consumption, the less benefit obtained. Integrating the lower
figure, MOEA-CMWTA outperforms when weapon con-
sumption is less than 25, and MOEA/D-WTA-SP is outstand-
ing when weapon consumption is more than 24. However,
as shown in the upper figure, fitness has little benefit when
weapon consumption is more than 15. Besides, MOEA/
D-WTA-SP gets no infeasible non-dominated solutions in
scenario 1 possessing six weapons but obtains 8.03% infea-
sible solutions in scenario 2 possessing 30 weapons. Hence
we deduce that the infeasible non-dominated solutions of
MOEA/D-WTA-SP are concentrated in the solutions of mid-
dle or high weapon consumption. All the above, we conclude:
(1) The rational number of max weapon resource is about
16 for scenario 2. (2) CMWTA-MOEA has more superiority
in solving CMWTA.

Figure 8 shows the sketch maps of the optimal plans, which
are obtained by five algorithms over 30 runs. As illustrated
in Figure 8, the valuable targets can be covered by the optimal
assignment when weapon consumption achieves 10.

D. EXPERIMENTS ON REPAIR OPERATOR

To verify the performance of the repair operator, we com-
pare the repair and non-repair two versions of four
MOEAs, namely MOEA-CMWTA, NSGA-II-SP, SPEA2-
CDP, SPEA2-SP and MOEA/D-WTA-SP which are verified
in the previous experiment. We perform 30 independent runs
on each algorithm, and the statistics of obtained Pareto-
optimal sets are shown in Table 6.

As shown in Table 6, only two versions of MOEA-
CMWTA and non-repair MOEA/D-WTA-SP can guarantee
the completeness and feasibility of the Pareto-optimal sets.
However, the percentage of the infeasible solutions is 2%
and the mean values is 0.0568. The repair operator has a
slight improvement on the completeness and feasibility of
NSGA-II-SP. The repair operator has a great improvement
on the completeness of SPEA2-CDP but has no influence
on the completeness of SPEA2-SP. Comparing the conver-
gence metric, the repair version of each algorithm performs
better than the non-repair version. In terms of the fitness,
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FIGURE 10. Mean values of the fitness and constraint violation obtained by the repair and non-repair version of MOEA-CMWTA, NSGA-II-SP, SPEA2-CDP

and SPEA2-SP over 30 independent runs in 1 to 100 generations.

MOEA-CMWTA almost obtains the suboptimal fitness of
each subpopulation. SPEA2-CDP obtains the optimal mean
values of SP4 to SPg but it has an indifferent convergence
metric owing to the incompleteness. SPEA2-SP performs
better in solving the non-dominated solutions of SP3 and
SPs. MOEA/D-WTA-SP has the optimal fitness of SP, but
is related to the infeasible solutions. Besides, the most absent
solutions are in SP».

The convergence metric and coverage of the obtained sets
are shown in Figure 9. Figure 9(a) shows the distribution
of the convergence metric obtained in 30 independent runs.
Figure 9(b) shows the mean values of the convergence metric
over 30 independent runs in 1 to 100 generations. Figure 9(c)
exhibits the box plots of the coverage metric obtained by two
versions of each algorithm. The left plot shows the distribu-
tion of the repair version dominating the non-repair version.
The right plot shows the distribution of the non-repair version
dominating the repair version. For each algorithm in Figure 9,
the repair version has a significant improvement compared to
the non-repair version.

In Figure 10, the figures of the first row plot the mean
values of fitness of optimal plans during the iteration pro-
cess, which are identified by weapon consumption. Similarly,
the figures of second-row give the mean values of constraint
violation. As shown in Figure 10, the repair version performs
better than the non-repair version on not only fitness but also
convergence speed. Owing to the narrower feasible region of
SP», this difference is distinct in Figure 10(a). In view of the
feasible decision of C2, MOEA-CMWTA and SPEA2-CDP
have an advantage in real-time.

E. SENSITIVITY ANALYSIS

The parameters of MOEA-CMWTA can be divided into two
categories. One is the parameters of the evolutionary frame-
work, such as p¢, pm, ne and n,,. Another is the unique
parameters embedded in MOEA-CMWTA, such as the size
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FIGURE 11. Convergence metric and coverage obtained by MOEA-CMWTA
of different ep in 30 independent runs.

of the effective population ep and the number of neighboring
subpopulation 7. In this paper, the former parameters adopt
the proposed settings in extensive research. The sensitiv-
ity of the unique parameters is analyzed by the following
experiments.
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in 1 to 100 generations.

1) SIZE OF THE EFFECTIVE POPULATION

In the above experiments, the size of the effective population
is set to pop/2 empirically. In order to investigate the influ-
ence of ep, we set ep = K - pop where K = [0.1:0.1: 1]
is to control the ratio of ep to pop. For each ep, we perform
30 independent runs on MOEA-CMWTA solving scenario 1,
and the results are shown in Table 7, Figure 11 and 12.

As shown in Table 7, the different ep do not destroy
the completeness and feasibility of the Pareto-optimal sets.
According to the convergence metric, the cases of more than
50% perform better than the others. In the column of fitness,
the optimal mean values are concentrated in the cases of
more than 50%. The case of 60% outperforms on the mean
values of the convergence metric and the fitness of SPy
and SPs.

As shown in Figure 11(a), the cases of less than 60% show
the faster convergence speed and the worse convergence met-
ric. According to the drawing of partial enlargement, the case
of 60% has a better convergence metric and the medium
convergence speed. The cases of 70%, 80%, and 100% show
a similar performance. In Figure 11(b), the cases of no more
than 50% have a wide distribution. The convergence metric
can be stabilized less than 0.2 when ep is more than 0.5pop.
It is worth noting that the case of K = 0.6 is also outstanding
in not only value but also distribution. To verify the supe-
riority of the case of 60%, Figure 11(c) gives the box plots
of the coverage of the two sets obtained by the case of 60%
and the others in 30 independent runs. The case of 60%
outperforms the others except the case of 80%. Considering
the convergence metric and fitness, the case of 60% performs
better than the case of 80%.

In Figure 12, the algorithms of different ep have close fit-
ness in subpopulations except for SP3, and the constraint vio-
lation can converge to 0 within 10 generations. According to
the drawing of partial enlargement, the algorithms of smaller
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FIGURE 13. Convergence metric and coverage obtained by MOEA-CMWTA
of different T in 30 independent runs.

ep have the faster convergence speed but no advantage of the
fitness.

Based on the above results, we conclude that MOEA-
CMWTA is easy to trap in local optimum when ep is
less than 0.5pop, and the performance of MOEA-CMWTA
has a stable improvement when ep is no less than 0.6pop.
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TABLE 7. Statistics of the Pareto-optimal sets obtained by MOEA-CMWTA of different ep.

Size of PS Infeasibility Convergence Mean values of the fitness under each weapon consumption
ep/pop ’
4 <3 % Mean metric 6 5 4 3 2
10% 30 0 0 0 0 0.33446657 1.21447880 1.48586760 2.01186965 3.39263121 6.94757704
20% 30 0 0 0 0 0.31877602 1.24142924 1.51150917 2.02408727 3.27627889 6.94328087
30% 30 0 0 0 0 0.27066128 1.18399445 1.47469405 2.01375536 3.21545763 6.94185768
40% 30 0 0 0 0 0.24387855 1.18373603 1.46407986 1.99858421 3.16632432 6.93925577
50% 30 0 0 0 0 0.29567391 1.23445383 1.52052677 2.04619240 3.16061797 6.94017686
60% 30 0 0 0 0 0.21745812 1.17074824 1.44483357 1.97810385 3.07934652 6.93926312
70% 30 0 0 0 0 0.23982810 1.17083386 1.47488734 2.01065088 3.06919557 6.94033815
80% 30 0 0 0 0 0.24038300 1.16247176 1.46590194 2.00143067 3.07787333 6.94184384
90% 30 0 0 0 0 0.24825370 1.18322718 1.48054343 2.01555349 3.10142079 6.93978306
100% 30 0 0 0 0 0.22798895 1.17427134 1.46403321 1.99938791 3.05513795 6.93936234
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FIGURE 14. Mean values of the fitness and constraint violation obtained by MOEA-CMWTA of different T over 30 independent runs in 1 to 100 runs.

TABLE 8. Statistics of the Pareto-optimal sets obtained by MOEA-CMWTA of different 7.

T Size of PS Constraint violation  Convergence Fitness of the non-dominated solutions in subpopulations

5 4 <3 Mean Percent metric 6 5 4 3 2
1 30 0 0 0 0 0.27603206 1.20139948 1.45999678 1.98448357 3.13479126 6.94137854
2 30 0 0 0 0 0.25638917 1.18510670 1.46381112 1.99916427 3.09733389 6.93944496
3 30 0 0 0 0 0.32050908 1.21422058 1.52954825 2.06463783 3.11885818 6.94071071
4 30 0 0 0 0 0.29794719 1.21889626 1.52310418 2.04819926 3.06653831 6.93971087
5 30 0 0 0 0 0.33394151 1.22963115 1.50817569 2.04403889 3.09418464 6.94484723

However, a larger ep has an impact on convergence speed.
Hence we suggest ep be set to 0.6pop.

2) THE NUMBER OF NEIGHBORING SUBPOPULATIONS
In MOEA-CMWTA of the previous experiments, the number
of neighboring subpopulations is set to 2 tentatively. We set
T =1,2,...,5toinvestigate the sensitivity of T on MOEA-
CMWTA. The neighboring subpopulations are calculated
by Eq. 16. For each T, we perform 30 independent runs
on MOEA-CMWTA solving scenario 1, and the results are
shown in Table 8, Figure 13 and 14.

As shown in Table 8, the different T have no influence on
completeness and constraint violation of the Pareto-optimal
sets. The cases of 1 and 2 perform better than the others
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on convergence metric. The optimal mean values of fitness
are also concentrated in the cases of 1 and 2. The case of 1
performs better in SP4 and SPs, and the case of 2 has an
advantage in SP; and SP.

As shown in Fig. 13(a), the case of 2 outperforms on the
convergence metric and has a medium convergence speed.
As shown in Fig. 13(b), the case of 2 outperforms and the case
of 5 performs worst. The other cases are relatively close to the
median. To verify the outstanding of the case of 2, Fig. 13(c)
shows the box plots of the coverage of two sets obtained by
the case of 2 and the others in 30 independent runs. The non-
dominated solutions obtained by the case of 2 has a high ratio
of dominating the non-dominated solutions obtained by the
other cases. As shown in the box plots of the case 2 and case 4,
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the case of 2 has more advantage than the other box plots,
which demonstrates the validity of the neighbor evolutionary
strategy on solving CMWTA.

In Fig. 14(a)-14(j), the number of neighboring subpopu-
lations has a slighter influence than ep on the dynamic per-
formance. In Fig. 14(f)-14(j), the constraint violation of each
subpopulation can converge to 0 in the first ten generations,
and the convergence speeds are close.

Based on the above results, we conclude that the small size
of neighboring subpopulations improves MOEA-CMWTA
slightly, and the number of neighboring subpopulations is set
to 2 reasonably. The possible reason is that the case of 1 and 2
take advantage of the local information. The case of 1 per-
forms worse than the case of 2 on diversity because the case
of 1 only operates with the pre-subpopulation. When the num-
ber of neighboring subpopulations increases, the evolutionary
process is reducing to be operated in the entire population and
can not utilize the similar information of neighboring non-
dominated solutions.

V. CONCLUSIONS AND FUTURE WORK

The WTA problem is less studied based on a specific oper-
ational environment. For the low efficiency-cost ratio of
the point-to-point WTA model facing swarming targets, this
paper formulates a constrained multi-objective weapon target
assignment problem. The CMWTA model can be viewed
as an attack pattern based on overlapping target clusters
if the threat assessment can cluster the targets by physical
position. The objective of the CMWTA model is minimiz-
ing the expected survival probability of targets and weapon
consumption by considering unit type, lethal radius, damage
effect and so forth. The constraints are derived from the
actual operational requirements of security evasion, survival
threshold, and preference assignment. The non-dominated
solutions of CMWTA are solved to be the candidates for the
decision-maker.

Owing to the characteristics of the CMWTA model,
the major MOEAs solving CMWTA have two challenges:
(1) Handling the multi-constraint. (2) Obtaining the complete
Pareto-optimal set. Therefore we present a novel multi-
objective evolutionary algorithm. An elitist selection algo-
rithm and a neighbor evolutionary strategy are proposed to
guarantee the completeness and convergence of the Pareto-
optimal set. A repair mechanism is proposed to improve the
quality of infeasible solutions. A measurement of constraint
violation is designed to evaluate the infeasible solutions.

In the experimental section, we compared our approaches
with several state-of-the-art MOEAs and approved constraint
handling methods. A variant of the convergence metric is
introduced to evaluate the algorithm solving MWTA. From
the experimental results, we conclude that MOEA-CMWTA
outperforms on convergence and spacing by preserving
the diversity of the population. The repair operator further
strengthens the searchability of the algorithms. In the sen-
sitivity analysis of parameters of MOEA-CMWTA, the size
of the effective population, which is suggested 60% of pop,
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has a moderate improvement on the Pareto-optimal set. The
number of neighboring subpopulations has a slight advantage
and is suggested to 2.

We noticed that MOEA/D solves the classic WTA problem
efficiently and has low computational complexity. MOEA/D
also has the advantage of using information among neigh-
boring subproblems. Hence we think that MOEA/D has the
potentiality of solving CMWTA. How to design an appro-
priate decomposition strategy, which is based on constraints
handling, is the future challenge for us.

ACKNOWLEDGMENT
The authors greatly appreciate the reviews valuable
suggestions and the editors encouragement.

REFERENCES

[1] J. N. Roux and J. H. Van Vuuren, “Threat evaluation and weapon assign-
ment decision support: A review of the state of the art,” ORiON, vol. 23,
no. 2, pp. 151-187, 2007.

[2] A. S. Manne, “A target-assignment problem,” Oper. Res., vol. 6, no. 3,
pp. 346-351, 1957.

[3] P. A. Hosein and M. Athans, “Preferential defense strategies. Part II:

The dynamic case,” Massachusetts Inst. Technol., Cambridge, MA, USA,

Tech. Rep., 1990.

A.Kline, D. Ahner, and R. Hill, “The weapon-target assignment problem,”

Comput. Oper. Res., vol. 105, pp. 226-236, May 2019.

[5] M. F. Hocaoglu, ‘““Weapon target assignment optimization for land based
multi-air defense systems: A goal programming approach,” Comput. Ind.
Eng., vol. 128, pp. 681-689, Feb. 2019.

[6] G. Shang, Z. Zaiyue, Z. Xiaoru, and C. Cungen, “Immune genetic algo-

rithm for weapon-target assignment problem,” in Proc. IEEE Workshop

Intell. Inf. Technol. Appl. (IITA), Dec. 2007, pp. 145-1438.

X.Li, D. Zhou, Q. Pan, Y. Tang, and J. Huang, ‘“Weapon-target assignment

problem by multiobjective evolutionary algorithm based on decomposi-

tion,” Complexity, vol. 2018, Oct. 2018, Art. no. 8623051.

B. Xin, J. Chen, Z. Peng, L. Dou, and J. Zhang, “An efficient rule-

based constructive heuristic to solve dynamic weapon-target assignment

problem,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 41, no. 3,

pp. 598-606, May 2010.

[9]1 Z. R. Bogdanowicz, “A new efficient algorithm for optimal assignment
of smart weapons to targets,” Comput. Math. Appl., vol. 58, no. 10,
pp. 1965-1969, 2009.

[10] W. Jian and C. Chen, “Sensor-weapon joint management based on
improved genetic algorithm,” in Proc. 34th Chin. Control Conf. (CCC),
Jul. 2015, pp. 2738-2742.

[11] B. Xin, Y. Wang, and J. Chen, “An efficient marginal-return-based
constructive heuristic to solve the sensor-weapon-target assignment
problem,” IEEE Trans. Syst, Man, Cybern., Syst., vol. 49, no. 12,
pp. 2536-2547, Dec. 2019.

[12] J. Zeng, L. Dou, and B. Xin, “Multi-objective cooperative salvo attack
against group target,” J. Syst. Sci. Complex., vol. 31, no. 1, pp. 244-261,
2018.

[13] J. Li, J. Chen, B. Xin, and L. Dou, “Solving multi-objective multi-stage
weapon target assignment problem via adaptive NSGA-II and adaptive
MOEA/D: A comparison study,” in Proc. IEEE Congr. Evol. Comput.
(CEC), May 2015, pp. 3132-3139.

[14] Y.Li, Y. Kou, Z. Li, A. Xu, and Y. Chang, ““A modified Pareto ant colony
optimization approach to solve biobjective weapon-target assignment
problem,” Int. J. Aerosp. Eng., vol. 2017, Mar. 2017, Art. no. 1746124.

[15] Y. Li, Y. Kou, and Z. Li, “An improved nondominated sorting genetic
algorithm IIT method for solving multiobjective weapon-target assignment
part I: The value of fighter combat,” Int. J. Aerosp. Eng., vol. 2018,
Jun. 2018, Art. no. 8302324.

[16] K. Volle and J. Rogers, “Weapon—target assignment algorithm for simul-
taneous and sequenced arrival,” J. Guid., Control, Dyn., vol. 41, no. 11,
pp. 2361-2373, 2018.

[17] M.Z. Lee, “Constrained weapon—target assignment: Enhanced very large
scale neighborhood search algorithm,” IEEE Trans. Syst., Man, Cybern.
A, Syst., Humans, vol. 40, no. 1, pp. 198-204, Jan. 2010.

[4

=

[7

(8

—

176359



IEEE Access

K. Zhang et al.: CMWTA for Area Targets by Efficient Evolutionary Algorithm

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

L. Li, F. Liu, G. Long, P. Guo, and X. Bie, ‘““Modified particle swarm opti-
mization for BMDS interceptor resource planning,” Appl. Intell., vol. 44,
no. 3, pp. 471-488, 2016.

D. Guo, Z. Liang, P. Jiang, X. Dong, Q. Li, and Z. Ren, “Weapon-target
assignment for multi-to-multi interception with grouping constraint,”
IEEE Access, vol. 7, pp. 34838-34849, 2019.

R. K. Ahuja, A. Kumar, K. C. Jha, and J. B. Orlin, “Exact and heuristic
algorithms for the weapon-target assignment problem,” Oper. Res., vol. 55,
no. 6, pp. 1136-1146, Dec. 2007.

C. Huaiping, L. Jingxu, C. Yingwu, and W. Hao, “Survey of the research
on dynamic weapon-target assignment problem,” J. Syst. Eng. Electron.,
vol. 17, no. 3, pp. 559-565, Sep. 2006.

T. Sikanen, “Solving weapon target assignment problem with dynamic
programming,” in Proc. Independ. Res. Projects Appl. Math., 2008, p. 32.
S.P.Lloyd and H. S. Witsenhausen, ‘“Weapons allocation is NP-complete,”
in Proc. Summer Comput. Simulation Conf., 1986, pp. 1054—1058.

F. Johansson and G. Falkman, “An empirical investigation of the static
weapon-target allocation problem,” in Proc. 3rd Skovde Workshop Inf.
Fusion Topics, 2009, pp. 63-67.

A. G. Kline, D. K. Ahner, and B. J. Lunday, “Real-time heuristic algo-
rithms for the static weapon target assignment problem,” J. Heuristics,
vol. 25, no. 3, pp. 377-397, 2017.

0. Kwon, D. Kang, K. Lee, and S. Park, “Lagrangian relaxation approach
to the targeting problem,” Nav. Res. Logistics, vol. 46, no. 6, pp. 640-653,
Jan. 1999.

W. A. Metler, F. L. Preston, and J. Hofmann, ““A suite of weapon assign-
ment algorithms for a SDI mid-course battle manager,” Nav. Res. Lab.,
Washington, DC, USA, Tech. Rep. ADA229189, 1990.

Z.-]. Lee, S.-F. Su, and C.-Y. Lee, “Efficiently solving general weapon-
target assignment problem by genetic algorithms with greedy eugenics,”
IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 33, no. 1, pp. 113-121,
Feb. 2003.

Z.-]. Lee, C.-Y. Lee, and S.-F. Su, “An immunity-based ant colony opti-
mization algorithm for solving weapon—target assignment problem,” Appl.
Soft. Comput., vol. 2, no. 1, pp. 39—47, 2003.

T. Chang, D. Kong, N. Hao, K. Xu, and G. Yang, “Solving the dynamic
weapon target assignment problem by an improved artificial bee colony
algorithm with heuristic factor initialization,” Appl. Soft. Comput., vol. 70,
pp. 845-863, Sep. 2018.

M. Cao and W. Fang, “Distributed MMAS for weapon target assignment
based on spark framework,” J. Intell. Fuzzy Syst., vol. 35, no. 3, pp. 3685—
3696, 2018.

X. Hu, P. Luo, X. Zhang, and J. Wang, “Improved ant colony optimiza-
tion for weapon-target assignment,” Math. Problems Eng., vol. 2018,
Oct. 2018, Art. no. 6481635.

Y. Zhou, X. Li, Y. Zhu, and W. Wang, “A discrete particle swarm opti-
mization algorithm applied in constrained static weapon-target assignment
problem,” in Proc. IEEE 12th World Congr. Intell. Control Automat.
(WCICA), Jun. 2016, pp. 3118-3123.

J. Wang, P. Luo, X. Hu, and X. Zhang, “A hybrid discrete grey wolf
optimizer to solve weapon target assignment problems,” Discrete Dyn.
Nature Soc., vol. 2018, Nov. 2018, Art. no. 4674920.

L. Zi-Fen, L. Xiang-Min, D. Jin-Jin, C. Jin-Zhu, and Z. Feng-Xia, “Sensor-
weapon-target assignment based on improved SWT-opt algorithm,” in
Proc. IEEE 2nd Int. Conf. Comput., Control Ind. Eng., vol. 2, Aug. 2011,
pp. 25-28.

M. A. Sahin and K. Leblebicioglu, “Approximating the optimal mapping
for weapon target assignment by fuzzy reasoning,” Inf. Sci., vol. 255,
pp. 3044, Jan. 2014.

D. Zhou, X. Li, Q. Pan, K. Zhang, and L. Zeng, ‘““Multiobjective weapon-
target assignment problem by two-stage evolutionary multiobjective par-
ticle swarm optimization,” in Proc. IEEE Int. Conf. Inf. Autom. (ICIA),
Aug. 2016, pp. 921-926.

Z. R. Bogdanowicz and K. Patel, “Quick collateral damage estimation
based on weapons assigned to targets,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 45, no. 5, pp. 762-769, May 2015.

J. Ma, “Constrained target clustering for military targeting process,”
Defence Sci. J., vol. 67, no. 5, pp. 523-528, 2017.

K. Deb, A. Pratap, and T. Meyarivan, “Constrained test problems for
multi-objective evolutionary optimization,” in Proc. Int. Conf. Evol. Multi-
Criterion Optim. Berlin, Germany: Springer, 2001, pp. 284-298.

176360

(41]

(42]

[43]

[44]

(45]

[46]

(47]

(48]

(49]

[50]

[51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

C. Peng, “A tunable constrained test problems generator for multi-
objective optimization,” in Proc. IEEE 2nd Int. Conf. Genetic Evol.
Comput., Sep. 2008, pp. 96-100.

C. A. C. Coello, “Theoretical and numerical constraint-handling tech-
niques used with evolutionary algorithms: A survey of the state of the art,”
Comput. Methods Appl. Mech. Eng., vol. 191, nos. 11-12, pp. 1245-1287,
Jan. 2002.

E. Mezura-Montes and C. A. Coello-Coello, “Constraint-handling in
nature-inspired numerical optimization: Past, present and future,” Swarm
Evol. Comput., vol. 1, no. 4, pp. 173-194, 2011.

Y. G. Woldesenbet, G. G. Yen, and B. G. Tessema, “Constraint handling
in multiobjective evolutionary optimization,” IEEE Trans. Evol. Comput.,
vol. 13, no. 3, pp. 514-525, Jun. 2009.

S. Salcedo-Sanz, “A survey of repair methods used as constraint handling
techniques in evolutionary algorithms,” Comput. Sci. Rev., vol. 3, no. 3,
pp. 175-192, 2009.

K. Deb, “An efficient constraint handling method for genetic algorithms,”
Comput. Methods Appl. Mech. Eng., vol. 186, nos. 2—4, pp. 311-338,
2000.

T. Ray, K. Tai, and C. Seow, ““An evolutionary algorithm for multiobjective
optimization,” Eng. Optim, vol. 33, no. 3, pp. 399-424, 2001.

Z. Cai and Y. Wang, “A multiobjective optimization-based evolution-
ary algorithm for constrained optimization,” IEEE Trans. Evol. Comput.,
vol. 10, no. 6, pp. 658-675, Dec. 2006.

D. Powell and M. M. Skolnick, “Using genetic algorithms in engineering
design optimization with non-linear constraints,” in Proc. 5th Int. Conf.
Genetic Algorithms. San Mateo, CA, USA: Morgan Kaufmann, 1993,
pp. 424-431.

C. M. Fonseca and P. J. Fleming, ““Multiobjective optimization and multi-
ple constraint handling with evolutionary algorithms. I. A unified formu-
lation,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 28, no. 1,
pp. 26-37, Jan. 1998.

F. Jiménez and J. L. Verdegay, ‘“‘Evolutionary techniques for constrained
optimization problems,” Tech. Rep., 1999.

E. Mezura-Montes and C. A. Coello Coello, “A simple multimembered
evolution strategy to solve constrained optimization problems,” IEEE
Trans. Evol. Comput., vol. 9, no. 1, pp. 1-17, Feb. 2005.

T. Takahama, S. Sakai, and N. Iwane, “Constrained optimization by the &
constrained hybrid algorithm of particle swarm optimization and genetic
algorithm,” in Proc. Australas. Joint Conf. Artif. Intell. Berlin, Germany:
Springer, 2005, pp. 389-400.

T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evo-
lutionary optimization,” IEEE Trans. Evol. Comput., vol. 4, no. 3,
pp. 284-294, Sep. 2000.

Z. R. Bogdanowicz, “Advanced input generating algorithm for effect-
based weapon—target pairing optimization,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol. 42, no. 1, pp. 276-280, Jan. 2012.

A. Humphrey, J. See, and D. Faulkner, “A methodology to assess lethality
and collateral damage for nonfragmenting precision-guided weapons,”
Sci. Appl. Int. Corp., Albuquerque, NM, USA, Tech. Rep. ADA513882,
2008.

F. Huitao, Air-to-Air Missile Conceptual Design. Beijing, China: Aviation
Industry Press, 2013.

Z. An, Introduction to Aviation Weapon System Analysis. Xi’an, China:
Northwestern Polytechnical Univ. Press, 2001.

K. Deb and R. B. Agrawal, “Simulated binary crossover for con-
tinuous search space,” Complex Syst., vol. 9, no. 2, pp. 115-148,
1995.

K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS)
for engineering design,” Comput. Sci. Inf., vol. 26, pp. 30-45,
Aug. 1996.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-IL,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182-197, Apr. 2002.

E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength Pareto evolutionary algorithm,” ETH Ziirich, Ziirich, Switzerland,
TIK-Rep. 103, 2001.

Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712-731, Dec. 2007.

VOLUME 7, 2019



