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ABSTRACT A new energy management framework for multi-microgrid (MMG) systems composed of high
renewable energy sources (RES) is proposed in this paper. In traditional energy management system (EMS),
battery energy storage system (BESS) is only considered in a single microgrid (MG) optimization model,
which leads to underutilization of storage devices and waste of resources. Considering the advantages of
local consumption of RES, this paper develops a hierarchical multi-agent energy management strategy.
A two-step model aiming at maximizing the usage of RES is established to help determine the strategy.
In the first step, the strategy is developed to maximize the local consumption of RES based on the demand
response programs (DRP) and BESS within the independent MG. In the second step, the community
BESS and BESSs are used to share the RES of multiple MGs for increasing the utilization ratio of RES.
Simultaneously, the output of each controllable distributed generator (CDG) and the transaction with power
grid are determined through a distributed adjustable power generation plan query library (DGPS). Moreover,
the simulation with a three-MG system proves that the strategy can effectively increase the utilization ratio
of RES and reduce the transaction with power grid compared to the traditional strategy.

INDEX TERMS Demand response programs, energy management system, mixed integer linear program-
ming, multiagent system, multi-microgrids.

NOMENCLATURE
SETS AND INDICIS
t index of time slot.
i index of microgrid.
(̂•) index of variables in real-time market.
(̃•) index of variables in MMG optimization.

PARAMETERS
PRbuyt /PRsellt Buying/selling price.
PPVMGi,t/P

WT
MGi,t Forecasted output of PV / WT.

PRESMGi,t Forecasted renewable power.
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PLMGi,t Forecasted electricity load.

P
PV
MGi/P

WT
MGi Upper limits of PV/WT power

output.

P
CDG
MGi /P

CCDG
Upper limits of CDG/CCDG
power output.

ρCDGMGi Ramping up limits of CDG.
a1/a2/a3 Cost coefficients of CDG.
CCDG_star
MGi /CCCDG_star

MGi Star up cost of CDG/CCDG.

W
CDG
MGi Upper limits of greenhouse

gas emissions.
f CDGMGi emission coefficient of CDG.
PRfu Price of fuel.
PREN the macroeconomic price of

CO2 reduction.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 169931

https://orcid.org/0000-0003-2933-5587
https://orcid.org/0000-0002-1791-6459
https://orcid.org/0000-0002-4258-1013
https://orcid.org/0000-0003-2960-7968
https://orcid.org/0000-0002-7672-3681
https://orcid.org/0000-0001-6222-7065
https://orcid.org/0000-0002-5505-3252


W. Jiang et al.: Multiagent-Based Hierarchical Energy Management Strategy

EBMGi Rated capacity of BESS.

P
B+
MGi/P

B−
MGi Upper limits of BESS charg-

ing/discharging power.
ηB+MGi/η

B−
MGi BESS charging/discharging

efficiencies.
drMGi/incMGi maximum ratio of

reduced/incresed load.
α1/α2 The weighting factor of objec-

tive function.
1t/1̂t The time duration for convert-

ing power to energy.

VARIABLES
PNLMGi,t The net load.
Pvat Shortage power input value of DGPS.
µCDGMGi,t Commitment status indicator of a CDG.
vCDGMGi,t Status change indicator of a CDG.
PCDGMGi,t/P

CCDG
t CDG/CCDG power output.

WCDG
MGi,t/W

CCDG
MGi,t The amount of greenhouse gas emis-

sions.
γ B+MGi,t/γ

B−
MGi,t BESS charging/discharging indicator.

PB+MGi,t/P
B−
MGi,t BESS charging/discharging power.

PCB+t /PCB−t CBESS charging/discharging power.
SOCB

MGi,t BESS state of charge.
PdLMGi,t Electricity load after applying DRP.
PL+MGi,t/P

L−
MGi,t Increased/reduced load during DRP.

drMGi,t/incMGi,t Ratio of reduced/incresed load.
PsurMGi,t /P

va
MGi,t Surplus/shortage power in MG opti-

mization.
PbuyMGi,t/P

sell
MGi,t power purchase from / sell to the power

grid.
CCDG
MGi,t/C

CCDG
MGi,t Operation cost of CDG/CCDG.

CCDG_star
MGi,t Star up cost of CDG.

CEN
t /CCG

t The total environmental / power genera-
tion cost of CDGs.

C tr
MGi,t /C

rer
MGi,t Transaction/renewable energy residual

cost in MG optimization.

I. INTRODUCTION
Under the social background with the energy shortage and
environmental pollution, RES such as wind energy, solar
energy are the most important substituted energy sources
which are being the main energy of modern power sys-
tems [1]. Renewable energy is dispersively connected into
the distribution networks at present, and the adoption of
local consumption has been the trend of its development.
MG is a combination of distributed energy, energy storage
system, loads and other equipments [2]. The different forms
of power generation and electricity consumption unit are
connected into the distribution networks as smart nodes with
bidirectional scheduling capability, realizing the maximum
benefit in grid-tied mode and improving reliability of system
towards various accidents in islandmode, while satisfying the

user requirement [3], [4]. Hence, MG is the key part of the
power grid transition from the existing grid to the future smart
grid [5]. With the increasing penetration of distributed energy
and the facts that uncertainties of both supply and demand
in MG, MMG system is designed to handle those problem.
The integration of interconnected MGs’ resources and the
interaction with the distribution network are common in the
future smart distribution system [6], [7]. The cooperation of
MMG system is favorable to the reasonable distribution of
energy, the optimization of network operation costs and the
improvement of power grid reliability [8].

Energy management system (EMS) is used for optimally
scheduling power resources and energy storage systems in
multi-microgrids to maintain supply-demand balance [9].
A lot of research has sought to introduce the algorithm and
optimization models for the MMG EMS. In [10], [11], a con-
trol strategy for the coordinated operation of networked MGs
in a distribution system is proposed. They formulate the prob-
lem as a stochastic bi-level optimization problem in which
the upper level problem is solved by the distribution oper-
ator in order to guarantee the operational constraints while
the lower level problem is to minimize the operation costs
of MGs. However, the storage devices are not considered.
In [12]–[14], the authors present a bilevel optimal operation
model for distribution networks with grid-connected MGs.
The upper-level model determines the optimal dispatch of
the distribution network to achieve its power loss reduction
and voltage profile improvement, while the lower-level model
determines the optimal operation strategy of distributed gen-
erators in MGs considering the utilization of renewable
power. However, in [12], although the operation of multi-
ple grid-connected MGs are considered, only the interaction
between the distribution network and MGs is studied without
considering any power exchange among MGs. By contrast,
in [13], [14], the cooperative interaction between MGs and
energy storage systems is also taken into account. Specifi-
cally, the cooperation among MGs is modeled by an interac-
tive energy game matrix based on priority-based game theory
to take full advantage of energy storage systems. Moreover,
the authors in [14] introduce the responsive reserve of dis-
tributed generators to the model to improve the system oper-
ation. Additionally, in [15], a distributed algorithm for the
energy management of networked MGs based on the on-line
alternating direction method of multipliers algorithm is pro-
posed. Their objective is to coordinate the power schedul-
ing of various components in the MGs while satisfying the
underlying power network operation constraints. As reported
by [16], in order to minimize the MGs operational costs,
a decentralized markov decision based process has been pre-
sented. Multiagent system (MAS) has many features such
as autonomous, communication, which realizes the bidirec-
tional alternation of MGs’ data and energy. From the aspects
of modeling method, control, communication, energy coordi-
nation, etc., the application of MAS in distributed coordina-
tion control and optimization for micro-grid and multi-micro
network is discussed [17]. A multiagent-based hierarchical
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TABLE 1. Contribution comparison between our paper and related works.

EMS which considers DRP and distributed storage system
has been used to minimize the cost of electricity and reduce
the system peak demand [18], [19]. MMG system requires
the optimal operation of MGs with uncertainty management
taken into account. Under the circumstance, a robust opti-
mization based scheduling method for multi-microgrids con-
sidering uncertainties in RESs and forecasted electric loads is
designed [20], [28].

Compared with related works, this paper has some
improvements in different aspects. The contribution compari-
son between this paper and related works is shown in Table 1.

Review of the literature has identified that there are still
some issues to be improved in the scheduling and dispatch-
ing of MGs. With the increasing penetration of renewable
energy resources, the BESSs are becoming more and more
important. In [12]–[14], BESS only participates in MG layer
optimization, and ignores the remaining available capacity
that can be utilized in MMG layer optimization. In [19], [21],
the most remarkable one is that though the energy exchange
of grid-MGs/MG-MG in those literature have considered.
Specifically, they only allow exchange energy through the
traditional AC distribution network. In contrast, the DC
power lines enable the direct energy exchange among MGs.
In [10], [11], [15], all CDGs are running in MG optimization
under any circumstance, which leads to increase equipment
operating costs. Most of the optimization goals are to min-
imize operating costs, which are not an excellent in some
cases. In [20], [24], [28], although the uncertainty of RESs
is considered in MMG system, the authors only consider
it in day-ahead scheduling and ignore the RESs dynamic
fluctuations in real-time operation.

In order to address the above issues, this paper presents
a multiagent hierarchical energy management strategy for
interconnected multi-microgrids. From the Fig. 1, we can see
that each MG is connected to the traditional AC distribu-
tion network and at the same time, they are interconnected
by a dedicated DC power lines. The AC power lines can
provide sufficient energy. The DC power lines enables the
direct energy exchange among MGs and the connection to
the distribution network by DC/AC converter can ensure that
the surplus renewable energy is uniformly uploaded to the

power grid. Comparedwith previousmulti-microgrids energy
management strategy [10]–[15], [19]–[21], [24], the features
of energy management strategy proposed in this paper are
summarized as follows:
• In addition to participating in MG layer optimization,
BESS of each MG also participates in MMG layer
optimization. The purpose is to increase consumption
of renewable energy by taking full advantage of BESS
remaining available capacity.

• Considering maximizing local consumption of renew-
able energy in day-ahead scheduling control based on
a hierarchical optimization method, renewable energy
residual costs are added to the optimization goals.

• Rule-based energy scheduler is proposed in real-time
scheduling, Based on the MMG system architecture,
the energymanagement for the coordination between the
DC power lines and the AC power lines can effectively
cope with uncertainty.

• In the face of the shortcomings of always running all
CDGs to participate in MG optimization under any
circumstances, the concept of "distributed adjustable
power generation plan query library" is proposed. It is
a database that can find the best match and output of
CDGs based on the power shortage.

This paper is organized as follows. Section II presents
the energy management strategies. Section III introduces the
model for day-ahead scheduling. Section IV describes the
numerical simulations and discussion. Section V concludes
the paper.

II. ENERGY MANAGEMENT STRATEGIES
Configuration and components of MMG system under con-
sideration is outlined in this section.

A. SYSTEM DESCRIPTION
The MMG system, composed of three MGs (MG1, MG2,
MG3) and community MG (CMG), is used in this study in
order to study the problem of the renewable energy con-
sumption. The structure of the system is shown in Fig. 1.
Each MG contains a BESS, CDG, photovoltaic (PV), wind
turbine (WT), and electrical load. CMG is the shared dis-
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FIGURE 1. The structure of proposed MMG system.

tributed energy resources, which is comprised of community
CDG (CCDG) and community BESS (CBESS). In MMG
system, each MG is connected to the power grid via the AC
bus and can receive power in real time; all MGs and CMG
are connected via the DC bus and execute renewable energy
transactions. In addition, MMG’s surplus renewable energy
is delivered to the power grid through the DC/AC converter.
To ensure higher utilization ratio of renewable energy, it is
assumed that the storage devices do not store energy by
charging from the power grid.

B. SYSTEM MODEL
1) PV AND WT
PV and WT are considered as uncontrollable power genera-
tion units due to their stochastic output power. The historical
forecast data in day-ahead market are used as correlated
scenarios in this paper. PPVMGi,t and P

WT
MGi,t are the forecasted

output of PV / WT (in kW), and they should satisfy the
following power limits.

0 ≤ PPVMGi,t ≤ P
PV
MGi (1)

0 ≤ PWTMGi,t ≤ P
WT
MGi (2)

where P
PV
MGi and P

WT
MGi are the upper limits of PV/WT power

output (in kW).
PRESMGi,t is the forecasted renewable power of MGi in t (in

kW).

PRESMGi,t = PPVMGi,t + P
WT
MGi,t (3)

2) CDG
It is assumed that a diesel generator is controllable power
generation unit, which can produce energy based on the
reference value. In this paper, a diesel generator is used to
represent CDG. PCDGMGi,t is CDG power output (in kW), and it
should satisfy the following constraints.

0 ≤ PCDGMGi,t ≤ µ
CDG
MGi,t · P

CDG
MGi (4)

µCDGMGi,t ∈ {0, 1} (5)

|PCDGMGi,t − P
CDG
MGi,t−1| ≤ ρ

CDG
MGi · P

CDG
MGi (6)

The generation limit and ramp up rate constraints for a
diesel generator are illustrated in Equations (4)-(6). P

CDG
MGi

represent upper limits of CDG power output (in kW). µCDGMGi,t
is a binary variable indicating on/off status of generator. ρCDGMGi
represents ramp up limits of CDG.
CCDG
MGi,t , the cost of a diesel generator (in $), can be formu-

lated as in equation (7). At the same time, CCDG_star
MGi,t as a star

up cost (in $) is considered in equation (8).

CCDG
MGi,t = a1 · (PCDGMGi,t )

2
+ a2 · PCDGMGi,t + a3 (7)

CCDG_star
MGi,t = vCDGMGi,t · C

CDG_star
MGi (8)

vCDGMGi,t = max{(µCDGMGi,t − µ
CDG
MGi,t−1), 0} (9)

where a1, a2 and a3 are generator cost function coefficients.
vCDGMGi,t represents the change in the status of generator.
A diesel generator uses oil, which is fossil fuels. At the

same time, it can release harmful gases such as sulfur, nitro-
gen and carbon oxides, and cause environmental pollution.
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Thus, the cost of pollution is considered in this paper.WCDG
MGi,t ,

the amount of greenhouse gas emissions (in tCO2), relies
on the amount of used fuel in the diesel generator. so it is
calculated using equation (10).

WCDG
MGi,t = f CDGMGi ·

CCDG
MGi,t

PRfu
(10)

In above equations, f CDGMGi is the emission coefficient of the
generator (in tCO2/m3 ), which depends on the fuel type and
generator characteristics. PRfu is the fuel price of generator
(in $/m3 ).

Equation (11) is restriction about the amount of the carbon
dioxide. W

CDG
MGi is the maximum value of MGi allowed (in

tCO2). ∑
WCDG
MGi,t ≤ W

CDG
MGi (11)

3) BESS
In practice, various storage systems have their own character-
istics. EBMGi , the maximum energy storage capacity (in kWh),
is used for a battery model:

EBMGi = ABMGi · V
B
MGi (12)

where ABMGi is the current-hour(Ah) rating of the battery, and
V B
MGi (in V) is the maximum voltage of the battery when it is

fully charged (100% state of charge).
The operation of BESS should meet the following con-

straints.
PB+MGi,t and P

B−
MGi,t represent BESS charing and discharging

power (in kW). Equation (13) and (14) limit BESS charing
and discharging power capacity.

0 ≤ PB+MGi,t ≤ γ
B+
MGi,t · P

B+
MGi (13)

0 ≤ PB−MGi,t ≤ γ
B−
MGi,t · P

B−
MGi (14)

γ B+MGi,t + γ
B−
MGi,t ≤ 1 (15)

γ B+MGi,t , γ
B−
MGi,t ∈ {0, 1} (16)

where P
B+
MGi and P

B−
MGi are the upper limits of BESS charg-

ing and discharging power (in kW), respectively. Equa-
tion (15) means that BESS cannot operate in charging
mode and discharging mode simultaneously. γ B+MGi,t and
γ B−MGi,t are the state of BESS charing and discharging in t
(=1,charing/discharging; =0, otherwise).

Equation (17) shows the change of electricity stored in
BESS at t > 1, which includes net energy injection and
energy losses during charging/discharging process.

SOCB
MGi,t = SOCB

MGi,t−1

+
1

EBMGi
(PB+MGi,t ·1t · η

B+
MGi −

PB−MGi,t ·1t

ηB−MGi

)

(17)

where SOCB
MGi,t is BESS state of charge (SOC) at time t .

ηB+MGi and η
B−
MGi are the charging and discharging efficiencies.

1t is the time duration for converting power to energy.

FIGURE 2. Modeling participated load in DRP.

The limit and initial of SOC in a BESS is constrained by
equations (18) and (19).

0 ≤ SOCB
MGi,t ≤ 1 (18)

SOCB
MGi,t=1 = SOCB

MGi,initial (19)

4) LOAD
Two types of loads are considered in MG: shiftable load and
fixed load. Shiftable loads can be shifted in time, but a definite
amount of energy must be consumed in the planning horizon.
On other hand, fixed loads are critical loads, which are not
allowed to be shifted or shedded. PL−MGi,t , the amount of
shiftable loads from interval t to other time (in kW), is shown
by the Equation (20).

PL−MGi,t = drMGi,t · P
L
MGi,t (20)

0 ≤ drMGi,t ≤ drMGi (21)

In above equations, PLMGi,t indicates the primary electric
loads in interval t (in kW). drMGi,t and drMGi represents
the percentage factor of load shifting from hour t and its
maximum value.

C. CONCEPTS: TERMINOLOGIES AND DEFINITIONS
1) DRP
The aim of DRP is to shift the shiftable load from high
electricity price time intervals to the low electricity price
time intervals. So each MG will adjust their shiftable loads
regarding to day-ahead forecasting electricity price in order
to minimize purchase cost as well as maximizing sale profit.
It is noted that each MG can shift only the limited portion of
the load which can be different during scheduling horizon.
Modeling participated load in DRP is illustrated by Fig. 2.
PL+MGi,t is the shiftable loads from other time intervals to
interval t (in kW). PdLMGi,t , the load after applying DRP (in
kW), can be formulated as:

PdLMGi,t = (1− drMGi,t ) · P
L
MGi,t + P

L+
MGi,t (22)

To prevent the excessive shift of load in the intervals,
the increased load PL+MGi,t in each interval (in kW) is limited
by the following constraint:

PL+MGi,t = incMGi,t · P
L
MGi,t (23)

0 ≤ incMGi,t ≤ incMGi (24)
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FIGURE 3. All changes of BESS state.

FIGURE 4. Distributed power generation plan come from query library.

where incMGi,t and incMGi represents the incremental factor
and its maximum value.

For the load, the total daily consumed energy ofMGwill be
the same before and after applyingDRP, which can be defined
by the Equation (25).∑24

t=1
PL−MGi,t =

∑24

t=1
PL+MGi,t (25)

2) STATE CHANGE OF BESS
BESS has three state changes: charge, unchange, and dis-
charge. Since BESS cannot be charged and discharged at
the same time, all possible state changes of BESS in the
day-ahead two-level scheduling is shown in Fig. 3. From the
Fig. 3, we can see that BESS state of MMG optimization is
affected by BESS state of MG optimization. For example,
if BESS state of MG optimization is charged, in MMG opti-
mization, its state can only be one of the two state (charge or
unchange). so here is one of the constraints of BESS inMMG
optimization.

3) DGPS
DGPS is a database which have 1-to-1 mappings between
the input value and the output value. Fig. 4 shows that the
corresponding power output of CDGs can be queried by
entering Pvat into the database.
CCG
t and CEN

t indicate the total power generation cost and
environmental cost of CDGs.

CCG
t =

N∑
i

(CCDG
MGi,t + C

CDG_star
MGi,t )+ CCCDG

t + CCCDG_star
t

(26)

CEN
t = (

N∑
i

WCDG
MGi,t +W

CCDG
MGi,t ) · PR

EN (27)

where PREN is the macroeconomic cost of CO2 reduction
(in $/t).
Objective function: Considering the total power genera-

tion cost and environmental cost, the best cooperative power
generation schedule for all CDGs under all circumstances
is developed, which utilized for minimizing the operational
cost of MMG system and avoid unnecessary trading with the
power grid. Equation (28) is the objective function.

minf1 = α1CCG
t + α2C

EN
t (28)

In order to solve multi-objective optimization, a weight-
ing method is used to integrate the two objectives into one
objective.where α1, α2 are the weighting factor according to
the importance degree of the optimization goal, and their sum
is 1. In this study, α1 = 0.6, α2 = 0.4.
Constraints: Some equality and inequality constraints

should be met.
The generation of CDGs is limited in Equation (4)-(11).
Pvat is the shortage power ofMMG system (in kW)which is

a independent variable. Equation (29) indicates that its range
of values contains all possible conditions in the database.
Equation (30) shows the equivalent relationship between
input and output.

0 ≤ Pvat ≤
∑N

i=1
PCDGmaxMGi,t + P

CCDGmax
t (29)

Pvat =
∑N

i=1
PCDGMGi,t + P

CCDG
t (30)

wherePCDGMGi,t andP
CDGmax
MGi,t represent the output power (in kW)

and its upper limits of CDG (in kW). PCCDGt and PCCDGmaxt
represent the output power (in kW) and its upper limits of
CCDG (in kW).

4) RULE-BASED ENERGY SCHEDULER
In real-time dispatch, a rule based energy scheduler was
carried out to solve uncertainties (i.e. RES and Load) in MG.
It is determined by the actual measured and predicted value of
the net load (load minus the amount of renewable energy gen-
erated) and is addressed by coordinating energy management
between the DC/AC power line and the grid. Note that the
real-time dispatch interval could be any short uniform time
interval (e.g. 1-second interval). In this paper, the proposed
dispatching interval is assumed to be 1 s (1̂t = 1s). As the
time scale is 1 s, the time window of the dispatch covers
86400 intervals (i.e. 24h). t̂ ∈ {1, 2, . . . ,RT } RT =
86400. In day-ahead dispatch, the proposed dispatching inter-
val is assumed to be 1 hour (1t = 1h). t ∈ {1, 2, . . . ,T }
T = 24.
The net load (in kW) at the time t is presented by the

equation (31).

PNLMGi,t = PdLMGi,t − P
RES
MGi,t (31)

P̂NLMGi ,̂t
= P̂LMGi ,̂t

− P̂RESMGi ,̂t
(32)

where PNLMGi,t is the day-ahead prediction of the net load. Note

that (
∧
• ) is used to denote the variables in real time market.
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Algorithm 1 Real-Time Processing of Prediction Error

Input: PNLMGi,t , P̂
NL
MGi ,̂t

,PbuyMGi,t and P
sell
MGi,t

Output: P̂buyMGi ,̂t
and P̂sellMGi ,̂t

1 Running Rule-based energy scheduler;
2 while t̂ ≤ RT do
3 t = T ∩ [ t̂

3600 ,
t̂

3600 + 1);

4 ENLMGi ,̂t
=

PNLMGi,t
·1t

3600 ;
5 ÊNLMGi ,̂t

= P̂NLMGi ,̂t
· 1̂t;

6 EbuyMGi ,̂t
=

PbuyMGi,t
·1t

3600 ;

7 EsellMGi ,̂t
=

PsellMGi,t
·1t

3600 ;
8 if ENLMGi ,̂t

≤ ÊNLMGi ,̂t
then

9 a = ÊNLMGi ,̂t
− ENLMGi ,̂t

;
10 if 0 ≤ a < EsellMGi ,̂t

then

11 P̂buyMGi ,̂t
=

EbuyMGi ,̂t

1̂t ;

12 P̂sellMGi ,̂t
=

EsellMGi ,̂t
−a

1̂t ;

13 else if EsellMGi ,̂t
≤ a then

14 P̂buyMGi ,̂t
=

EbuyMGi ,̂t
+(a−EsellMGi ,̂t

)

t̂ ;
15 P̂sellMGi ,̂t

= 0;
16 end
17 else
18 a = ENLMGi ,̂t

− ÊNLMGi ,̂t
;

19 if 0 ≤ a < EbuyMGi ,̂t
then

20 P̂buyMGi ,̂t
=

EbuyMGi ,̂t
−a

1̂t ;;

21 P̂sellMGi ,̂t
=

EsellMGi ,̂t

1̂t ;

22 else if EbuyMGi ,̂t
≤ a then

23 P̂buyMGi ,̂t
= 0;

24 P̂sellMGi ,̂t
=

EsellMGi ,̂t
+(a−EbuyMGi ,̂t

)

t̂ ;

25 end
26 end
27 t̂ ++;
28 end

MGA calculates P̂buyMGi ,̂t
and P̂sellMGi ,̂t

(power purchased
from / sold to power grid in real-time operation schedul-
ing) based on PbuyMGi,t and PsellMGi,t (power purchase from /
sell to the power grid in day-ahead operation) according to
Algorithm 1.

D. MULTI AGENT SYSTEM STRUCTURE
The structure of the proposed MMG hierarchical MAS is
shown in Fig. 5. The communication between the agents and
the time sequence they take place are contained in this figure.
The agents are briefly described in accordance to the nature
of the task they are responsible for.

1) LOCAL AGENTS
Local agents that are responsible to represent a single com-
ponent of MMG system, such as PV agent, WT agent,
Load agent, BESS agent, CDG agent, CBESS agent, CCDG
agent. These are responsible for communicating with their
MG agent to upload relevant data and receiving operational
commands.

2) MG AGENT
MG agent (MGA), which is MG EMS, performs MG layer
optimization based on the data from local agents and uploads
the result ofMGoptimization (surplus/shortage power aswell
as the energy storage status information ) to the MMG agent.
In addition, it also inform the local agents about the state of
operation change commands from MMG agent.

3) MARKET AGENT
Market agent (MA) is responsible for providing the
day-ahead buying and selling prices signals for MMG agent.

4) MMG AGENT
MMG agent (MMGA), which is community EMS, is respon-
sible for the global optimization of MMG system. It receives
all the information from MA and MGA and inform the state
of operation change commands to MGA.

The communication between agents is shown in Fig. 5.
Firstly, a message about getting the forecast market price
signals is sent by MMGA to MA. MA sends the forecast
buying and selling prices to MMGA. Secondly, The infor-
mation (info) request about MG optimization results and the
forecast market price signals from MMGA are destined to
MGA. Thirdly, each MGA will inform its local agents about
the information request messages, such as the forecast power
of PV, WT, and Load and the initial value of BESS/CBESS.
Based on the information replied from their local agent, each
MGA will performMG layer optimization. The result of MG
optimization is calculated in Algorithm 2. Fourthly, All the
MGAwill reply theMMGA about the result ofMG optimiza-
tion/the initial value of CBESS. Based on the information
replied from all the MGA, MMGA will perform MMG layer
optimization. The result of MMG optimization is calculated
in Algorithm 3. At last, MMGA will inform MGA about the
state of operation change commands and Respective MGA
will inform their local agents about the state of operation
change commands.

E. PROPOSED STRATEGIES
With high renewable penetration, MMG system has the abil-
ity to make full use of renewable energy. A multiagent-based
hierarchical energy management strategy, with demand side
management and power scheduling in interconnectedMMGs,
is shown in Fig. 6.

The proposed operation framework have two operation
module: Day-ahead operation module and real-time opera-
tion module. MG optimization and MMG optimization are
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FIGURE 5. The structure of proposed hierarchical MAS.

FIGURE 6. Proposed operation framework.

included in the day-ahead operation module. The objec-
tive of the proposed day-ahead energy scheduling is max-
imizing the renewable energy consumption to identify the
optimal amount of electricity to be purchased from/sold
to the power grid and the commitment of CDGs over the
next 24 hours. In MG optimization, renewable power gen-
eration, electricity load and electricity price are predicted
based on historical database and forecasting tools. Consid-
ering DRP, the shiftable load and BESS are utilized by MG
EMS to perform demand side optimization management. The
objective of optimization is to maximize local renewable
energy consumption, as well as minimize the cost of power

exchange based on the day-ahead electricity price. In MMG
optimization, Firstly, community BESS and all MG’s BESS
are utilized by MMG EMS to perform MMG optimization
based on the load deficiencies and renewable energy surplus
information uploaded by each MG EMS. The objective of
optimization is to further consume renewable energy. Then,
DGPS performs judgment based on the optimized power
information. If the power is short, the optimal generation plan
for CDGs and purchase amount from power grid through the
AC bus can be obtained. Otherwise, excess renewable energy
will be sold to the power grid through shared DC bus. A rule
based energy scheduler is proposed in the real-time operation
module. It is determined by the actual measured and predicted
value of the net load (load minus the amount of renewable
energy generated) and is addressed by coordinating energy
management between the DC/AC power line and the grid.

III. HOURLY DAY-AHEAD OPTIMAL SCHEDULING MODEL
In this section, problem formulation is based on MILP. MILP
problems can be easily implemented through commercial
software like CPLEX, which guarantee global optimality.

The first step is MG optimization considering DRP carried
out by MG EMS. The second step is MMG optimization,
which contains two parts. That is, the global optimization of
distributed energy storage and distributed controllable power
generation is completed by community EMS. Mathematical
models are established in the following sections in detail.

A. STEP 1: MG OPTIMIZATION
Considering maximizing consumption of renewable energy
in day-ahead scheduling, Crer

MGi,t , renewable energy residual
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cost is adopted. The calculation of Crer
MGi,t is defined as:

Crer
MGi,t =P

sur
MGi,t ·1t · max{PR

buy
1 ,PRbuy2 , . . . ,PRbuy24 } (33)

where PsurMGi,t and P
va
MGi,t are the surplus power (in kW) and

shortage power (in kW) inMGoptimization.PRbuyt andPRsellt
are the price of power buying/selling (in $/kWh).
C tr
MGi,t indicates the transaction cost.

C tr
MGi,t =



PsurMGi,t ·1t · PR
sell
t

when
T∑
t=1

(PRESMGi,t − P
L
MGi,t ) ·1t > 0

PvaMGi,t ·1t · PR
buy
t

when
T∑
t=1

(PRESMGi,t − P
L
MGi,t ) ·1t < 0

(34)

T∑
t=1

(PRESMGi,t − P
L
MGi,t ) ·1t is the difference of RE gener-

ation and load for the future 24h. C tr
MGi,t (in $) conforms

the constraints that when the load is higher than the RE
generation, C tr

MGi,t is equal to the cost of power bought from
the power grid; when the load is lower than the RE generation,
C tr
MGi,t is equal to the profit of power sold to the power grid

or other MGs.
Objective function: The objective of MG optimization

is to maximize renewable energy consumption of individual
MG, as shown below:

minf2 =
T∑
t=1

{α1 · Crer
MGi,t + α2 · C

tr
MGi,t } (35)

Constraints: Some equality and inequality constraints
should be met.

The generation of RE (PV and WT) is limited in Equa-
tion (1)-(3).

The operational constraints of a BESS are shown in Equa-
tion (12)-(19).

The constraints of load and DRP are specified in Equa-
tion (20)-(25).

For eachMG, the balance between RE generation, shortage
power, discharge power of BESS and surplus power, charge
power of BESS, load after DRP is described by Equation (36).

(PRESMGi,t + P
va
MGi,t + P

B−
MGi,t ) ·1t

= (PsurMGi,t + P
B+
MGi,t + P

dL
MGi,t ) ·1t t ∈ T (36)

After completingMG optimization by eachMGA at step 1,
each MGA calculates PsurMGi,t , P

va
MGi,t , P

B+
MGi,t , P

B−
MGi,t and

part of P̃B+MGi,t /P̃
B−
MGi,t (some BESS determinable charge and

discharge power in distributed energy storage optimization)
according to Algorithm 2. The calculated values are commu-
nicated to the MMGA.

B. STEP 2: MMG OPTIMIZATION
There are two-stage optimization of the community EMS.
In the first stage, according to the surplus power, shortage

Algorithm 2 Computation of MG Optimization Result

Input: PRESMGi ,P
L
MGi ,PR

buy
t ,PRsellt

Output: PsurMGi,t ,P
va
MGi,t ,P

B+
MGi,t ,P

B−
MGi,t ,

part of P̃B+MGi,t /P̃
B−
MGi,t

1 Running MG optimization;
2 return PB+MGi,t , P

B−
MGi,t ,P

dL
MGi,t ;

3 while t ≤ T do
4 if PRESMGi,t ≤ P

dL
MGi,t then

5 PvaMGi,t = PdLMGi,t − P
RES
MGi,t − P

B−
MGi,t ;

6 PsurMGi,t = 0;
7 if PB+MGi,t > 0 then
8 P̃B−MGi,t = 0;

9 else if PB−MGi,t > 0 then
10 P̃B+MGi,t = 0;
11 end
12 else
13 PvaMGi,t = 0;
14 PsurMGi,t = PRESMGi,t − P

dL
MGi,t − P

B+
MGi,t ;

15 if PB+MGi,t > 0 then
16 P̃B−MGi,t = 0;

17 else if PB−MGi,t > 0 then
18 P̃B+MGi,t = 0;
19 end
20 end
21 t++;
22 end

power and the charge/discharge margin of BESS in each
MG, the optimization of all the batteries in MMG sys-
tem will be performed to further consumption of renew-
able energy. In the second stage, the generation schedule
of all the CDG in MMG system is made based on the
update of shortage power obtained from the first stage.
Details of the two-stage optimization control are presented as
follows:

1) DISTRIBUTED ENERGY STORAGE OPTIMIZATION
Similarly, the objective of this optimization is to further max-
imize renewable energy consumption of the MMG system.
In themeantime, the BESS of eachMGand community BESS
participate in global optimization.

Objective function:

minf3 =
N∑
i=1

T∑
t=1

{α1 · C̃rer
MGi,t + α2 · C̃

tr
MGi,t } (37)

C̃rer
MGi,t = P̃

sur
MGi,t ·1t · max{PR

buy
1 ,PRbuy2 , . . . ,PRbuy24 } (38)

where P̃surMGi,t and P̃vaMGi,t are the surplus power (in kW)
and shortage power (in kW) in distributed energy storage
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optimization.

C̃ tr
MGi,t =



−P̃surMGi,t ·1t · PR
sell
t

when
N∑
i=1

T∑
t=1

(PsurMGi,t − P
va
MGi,t ) ·1t > 0

P̃vaMGi,t ·1t · PR
buy
t

when
N∑
i=1

T∑
t=1

(PsurMGi,t − P
va
MGi,t ) ·1t < 0

(39)

N∑
i=1

T∑
t=1

(PsurMGi,t − P
va
MGi,t ) ·1t is the difference between the

total surplus power and the total shortage power of MMG
system after each MG optimization. C̃ tr

MGi,t (in $) conforms
the constraints that when the total surplus power is higher than
the total shortage power, C̃ tr

MGi,t is equal to the cost of power
bought from the power grid; when the total surplus power is
lower than the total shortage power, C̃ tr

MGi,t is equal to the
profit of power sold to the power grid.
Constraints: Some equality and inequality constraints

should be met.
The operational constraints of CBESS are shown in

Equation (12)-(19).
Based on the state of the BESS after MG optimization,

the new constraints of BESS are presented as follows.

0 ≤ P̃B+MGi,t ≤ γ̃
B+
MGi,t · P

B+
MGi (40)

0 ≤ P̃B−MGi,t ≤ γ̃
B−
MGi,t · P

B−
MGi (41)

where P̃B+MGi,t and P̃
B−
MGi,t represent BESS charing and dis-

charging power (in kW) in distributed energy storage opti-
mization. Equation (40) and (41) limit BESS charing and
discharging power capacity. γ̃ B+MGi,t and γ̃

B−
MGi,t are the state of

BESS charing and discharging in distributed energy storage
optimization (=1,charing/discharging; =0, otherwise).
Equation (42) shows the change of electricity stored in

BESS at t > 1 in distributed energy storage optimization.

S̃OCB
MGi,t = S̃OCMB

MGi,t−1

+
1

EBMGi
{(PB+MGi,t + P̃

B+
MGi,t ) ·1t · η

B+
MGi

−
(PB−MGi,t + P̃

B−
MGi,t ) ·1t

ηB−MGi

)} (42)

where S̃OCB
MGi,t is BESS SOC at time t in distributed energy

storage optimization. Here, the initial of SOC in a BESS is
constrained by Equation (43).

S̃OCMB
MGi,t=1 = SOCB

MGi,t=1 (43)

Equation (44) shows that power surplus, BESS discharg-
ing, power shortage (such as bought from the power grid) and
CBESS discharging should be balanced with power shortage,
BESS charging, power surplus (such as sold to the power
grid) and CBESS charging.

N∑
i

(PsurMGi,t + P̃
B−
MGi,t + P̃

va
MGi,t ) ·1t + P

CB−
t ·1t

=

N∑
i

(PvaMGi,t + P̃
B+
MGi,t + P̃

sur
MGi,t ) ·1t + P

CB+
t ·1t (44)

2) DISTRIBUTED GENERATION OPTIMIZATION
In this stage, the dispatchable units can produce electrical
energy based on the update of shortage power obtained from
the first stage. The corresponding power output of CDGs can
be queried by entering Pvat into the DGPS.

Pvat =



N∑
i
P̃vaMGi,t

when
N∑
i
P̃vaMGi,t ≤ (

N∑
i
PCDG_maxMGi,t + PcCDG_maxt )

N∑
i
PCDG_maxMGi,t + PcCDG_maxt

when
N∑
i
P̃vaMGi,t > (

N∑
i
PCDG_maxMGi,t + PcCDG_maxt )

(45)

After completing MMG optimization by each MMGA at
step 2, MMGA calculates PbuyMGi,t and PsellMGi,t according to
Algorithm 3.

IV. NUMERICAL SIMULATIONS
In this paper, All MILP-based models developed for simula-
tions of the proposed operation of MMG system have been
simulated in MATLAB software with integration of Yalmip
and IBM ILOG CPLEX.

A. CASE CONFIGURATION
In order to investigate the proposed strategy for MMG sys-
tem, we consider the system depicted in Fig. 1 and Table 2
summarizes the major components in the system. BESS
parameters in MG and CMG are shown in Table 3. The
parameters related to CDGs of each MG and CMG are tabu-
lated in Table 4. The emission coefficient of oil is set as 3.51
tCO2/m3 based on the information provided in [27], and the
macroeconomic cost ofCO2 reduction is $598.97/t [28]. The
price of diesel oil is set as $820/m3 [29].

The forecast output data of PV and WT from the responsi-
bility area of 50Hertz in Germany is used. those data were
generated by the weather models(e.g. GFS,ECMWF) and
the master data(geographic coordinates, address) of PV and
WT [30]. The forecast output power of the renewable power
generation was shown in Fig. 7 and Fig. 8.
In this paper, day-ahead total load forecast from three

areas (Latvia, Bosnia and Slovakia) of entsoe transparency
platform are used [31]. The data of load profile was shown
in Fig. 9. In DRP, both drMGi and incMGi are assumed to be
20%. It means that only 20% of the MGs’ load is shifted, also
just 20% increment in the MGs’ load is permitted in all time
intervals [32].

Typically, the electricity price changes as the demand for
electricity changes. day-ahead prices forecast from entsoe
transparency platform is plotted in Fig. 10 [31]. For our
simulations, we supposed a selling price equal to half the
purchasing cost.
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Algorithm 3 Computation of MMG Optimization Result

Input: PsurMGi,t ,P
va
MGi,t ,P

B+
MGi,t ,P

B−
MGi,t

Output: PbuyMGi,t ,P
sell
MGi,t

1 Running Distributed energy storage optimization;
2 return P̃B+MGi,t , P̃

B−
MGi,t ,P

CB+
t ,PCB−t ;

3 while t ≤ T do

4 if
N∑
i
PsurMGi,t ≤

N∑
i
PvaMGi,t then

5
N∑
i
P̃vaMGi,t =

N∑
i
(PvaMGi,t − P

sur
MGi,t − P̃

B−
MGi,t )− P

CB−
t ;

6
N∑
i
P̃surMGi,t = 0;

7 if
N∑
i
P̃vaMGi,t ≤ (

N∑
i
P
CDG
MGi + P

CCDG
) then

8 Running Distributed generation
optimization;

9 return PCDGMGi,t ;
10 PCCDGt ;
11 Psellt = 0;
12 Pbuyt = 0;
13 else
14 return PCDGMGi,t = P

CDG
MGi ;

15 PCCDGt = PCCDG;
16 Psellt = 0;

17 Pbuyt =
N∑
i
P̃vaMGi,t − (

N∑
i
P
CDG
MGi + P

CCDG
);

18 end
19 else

20
N∑
i
P̃vaMGi,t = 0;

21
N∑
i
P̃surMGi,t =

N∑
i
(PsurMGi,t − P

va
MGi,t − P̃

B+
MGi,t )− P

CB+
t ;

22 return PCDGMGi,t = 0;
23 PCCDGt = 0;

24 Psellt =
N∑
i
P̃surMGi,t ;

25 Pbuyt = 0;
26 end
27 t++;
28 end

B. STEP 1: MG OPTIMIZATION
In this paper, the load participates in DRP, considering the
purchase cost and sales profit based on the maximum con-
sumption of renewable energy. Results of the optimization of
MG are illustrated in Fig. 11. The figure shows three MGs

TABLE 2. Components of the MMG system.

TABLE 3. Parameters of BESSs in MMG system.

TABLE 4. Parameters of CDGs in MMG system.

FIGURE 7. The forecast values of PV output power in the 50Hertz grid
area.

that have different loads and generation capacity of renewable
energy. In Fig. 11(a), the load is less than generation capac-
ity of renewable energy at any time in MG1. Considering
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FIGURE 8. The forecast values of WT output power in the 50Hertz grid
area.

FIGURE 9. The forecast values of hourly load profile.

FIGURE 10. The forecast values of hourly grid electricity price.

the surplus sales of renewable energy, the load from the
peak price interval is shifted to the off-peak intervals, while
ensuring the load demand. Fig. 11(b) shows that the load is
shifted as much as possible to the intervals that the generation
capacity of renewable energy is more than the load in MG2.
The load is more than the generation capacity of renewable
energy at any time in MG3, so it needs to buy electricity.
According to the electricity price of Fig. 9, load from the peak
price interval is shifted to the off-peak intervals after DRP
in Fig. 11(c).

TABLE 5. Comparison of result of these cases, (a) MG1, (b) MG2 and
(c) MG3.

The amount of power exchange, utilization of renewable
energy, costs, and profits of all MGs are given in Table 5.

It is obvious that the utilization of renewable energy has
been improved. Cases 1-3 reduce the amount of purchasing
from the power grid or other MGs by making full use of local
consumption of renewable energy. At the same time, although
the proposed method achieves the lowest power exchange,
it still has good results in terms of cost and profit.

In order to elaborate the impact of the proposed strat-
egy, three cases have been compared in MG optimization:
(1) case 1-1: optimal scheduling of MG does not consider
DRP [33]. (2) case 1-2: optimal scheduling of MG considers
DRP, aiming to minimize the operation cost. The operation
cost is the difference between purchase price and sales price
[19], [21]. (3) case 1-3: The proposed optimal scheduling
based on the maximum consumption of renewable energy.

C. STEP 2: MMG OPTIMIZATION
1) DISTRIBUTED ENERGY STORAGE OPTIMIZATION
In order to further consume renewable energy, not only con-
sider CBESS, but also the BESS of each MG are utilized to
participate in optimal scheduling of MMG. It can be clearly
seen from the Fig. 12 that the power scheduling of MG’s
BESS in the first step MG optimization and the second step
MMG optimization. It is obvious that BESS is fully utilized
through 2-steps optimization scheduling.

To verify the effectiveness of the proposed optimal
scheduling, four cases are compared: (1) case 2-1: An un
coordinated operation strategy. Although the operation of
multiple grid-connected MGs are considered, only the inter-
action between the distribution network and MGs is stud-
ied without considering any power exchange among MGs
[11], [12], [15], [34]. The system total operation cost is the
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FIGURE 11. Load of MG in response to DRP, (a) MG1, (b) MG2 and (c) MG3.

FIGURE 12. Power scheduling of BESS, (a) BESS1, (b) BESS2 and (c) BESS3.

TABLE 6. performance comparison in terms of RES consumption.

summation of individual’s cost. (2) case 2-2: An coordinated
operation strategy. In addition to considering the interaction
between the distribution network and MGs, power exchange
among MGs is also considered [22], [23]. (3) case 2-3: In
order to reduce the overall operating cost of MMG system,
CBESS is considered [19], [21]. (4) case 2-4: The proposed
optimal scheduling based on the maximum consumption of
renewable energy.

Fig. 13 demonstrates that buying and selling power
between power grid for all the cases. It can be seen from
Fig. 13 that the amount of purchased power and sold power
has been significantly reduced due to the application of the
proposed strategy. Through this strategy, MMG system can
make full use of renewable energy and reduce transactions
with power grid.

FIGURE 13. Buying and selling amount of electricity in all cases.

The amount of power exchange, utilization of renew-
able energy, costs, and profits of MMG system are given
in Table 6. Obviously, due to share the renewable energy
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FIGURE 14. The generation schedule of all the CDG in MMG system.

with other MGs, the cost of MMG system is reduced and the
utilization of renewable energy is improved.

2) DISTRIBUTED GENERATION OPTIMIZATION
For the shortage of power, first, we get all the CDGs’
power generation plans through DGPS, and then power
exchang with the power grid.The schedule for the gen-
eration of all CDGs in the MMG system is shown in
Figure 14.

V. CONCLUSION
In this paper, a new strategy for improving renewable energy
local utilization of MMG system through MAS has been pro-
posed. In contrast to the traditional energy management strat-
egy, the BESSs of eachMG is also considered byMMGEMS
in addition to the CBESS and the CDGs for achieving global
optimization. The surplus and shortage power of eachMGhas
been not only compensated by trading power within power
grid and the shared distributed energy resources, but also
adjusted by exchanging power with other MGs. At the same
time, all BESSs participate in the use of renewable energy
and the global optimal power generation strategy of all CDGs
are enforced, which significantly increases the transactions
among MGs. Through these transactions, local utilization of
the renewable energy is promoted within the whole MMG
system. What’s more, in order to maximize renewable energy
local consumption, DRP has been taken into consideration
and the simulation results proves the improvement effect. In a
typical scenario, renewable energy utilization of the entire
MMG system is improved by 12.32% using the proposed
strategy. Considering big data calculation, this paper proposes
optimization strategy based on hierarchical EMS. Simulation
results show that, the cooperation of all BESSs is more
effective in maximizing renewable energy local consumption
and the cooperation of all CDGs is beneficial in reducing the
operational cost of MMG system.
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