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ABSTRACT The advantages of stochastic resonance (SR) have received extensive attention and research in
the field of weak signal extraction. It can be used to extract fault signals from rotating machinery. To deeply
improve the output signal-to-noise ratio (SNR), a second-order underdamped tristable stochastic resonance
(SUTSR) is proposed in the present study. The potential function, the steady-state probability density of
particles and the SNR are used to evaluate the model. Firstly, the relationship between the noise intensity
and the SNR of SUTSR is studied. Then, using the steady-state solution curve, the output response of the
SUTSR system is discussed from the perspective of steady-state input, and the output response of the system
is further studied when inputting low-frequency harmonic signals. Finally, SUTSR model is used to process
bearing signal data with inner ring fault and rolling element fault, and the processing result is compared with
tristable system and second-order underdamped bistable system. The results show that, in the background of
strong noise, the SUTSR system can accurately identify the characteristic frequency of the fault signal and
then greatly improve the energy of the weak fault signal under appropriate system parameters.

INDEX TERMS Stochastic resonance, second-order, tristable system, damping factor, SNR.

I. INTRODUCTION
Stochastic resonance is a nonlinear system containing char-
acteristic signals and noise. Under suitable conditions,
the injected noise instead causes the intensity of the output
signal to exhibit a gain change. Benzi et al. [1], [2] firstly
proposed the concept of stochastic resonance. Since then,
the researchers have not only observed the phenomenon of
stochastic resonance in the experiment [3], but also constantly
proposed a new theory of stochastic resonance. For more
than 30 years, the concept of stochastic resonance has been
extensively appeared in many subjects such as meteorol-
ogy [4], optoelectronics [5], [6], biomedicine [7], [8], and
mechanical mechanics [9]–[12]. In recent years, researchers
have paid great attention to the field of stochastic resonance
and have yielded substantial results in the process of detecting
the weak signal [13]–[15]. The one-dimensional Langevin
equation model driven by weak signals and noise is the
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most classical stochastic resonance model [16]. In recent
years, new stochastic resonance models have been proposed,
such as monostable systems, multi-stable systems, time delay
systems, chaotic systems, and two-dimensional Duffing sys-
tems [17]–[19]. These models greatly enrich the theory of
stochastic resonance and extend the application of stochas-
tic resonance. Since the multi-stable system and the under-
damped system are particularly prominent in the filtering
ability, they have attracted the attention of many researchers.
However, few researchers have focused on underdamped
multi-stationary stochastic resonance systems.

Extensive research stochastic resonance in mechanical
fault diagnosis has been applied. Hu et al. proposed an
improved SR method for machine signal processing [20].
Nishiiguchi K et al. demonstrated that bistable stochas-
tic resonance of nano field effect transistors can detect
those weak signals submerged in noise [21]. Li et al.
proposed a second-order bistable stochastic resonance model
based on wavelet transform, which successfully realized
the extraction of weak fault characteristics in wind turbine
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vibration signals [22]. Lai et al. studied the dynamic response
of tristable SR system [23], [24]. Xu et al. studied the
mechanism of underdamped tristable SR by deriving the SNR
and the average first crossing time [25]. The effects of time-
delayed term as well as noise on SR systems were focused on
byWang et al. [26], [27]. By adopting the adaptive stochastic
resonance, Yang et al. improved the bearing fault diagnosis
efficiency and at the same time they used a new stochastic
resonance method to recover an unknown signal entirely
submerged in strong noise [28], [29]. He et al. conducted a
study on the measure of stochastic resonance and proposed to
use statistical complexity to quantify the stochastic resonance
system [30], [31]. Duan et al. investigated the noise benefits
to maximum likelihood type estimators to make a robust
estimation to a location parameter [32].

Since the classical stochastic resonance model is an over-
damped first-order differential equation, which means that
the inertial term of the system is ignored, so the damping
factor is normalized. However, the output of SR is the tra-
jectory of Brownian particles in the potential well, so the
inertia term and damping of the system will affect the state
of stochastic resonance. When considering the inertial term
of the system, the stochastic resonance model becomes a
second-order stochastic differential equation. Lu et al. studied
the application of underdamped variable step size second-
order SR algorithm in fault diagnosis [33]. Dong et al. studied
the effects of second-Order matched stochastic resonance to
detect weak signal [34]. He et al. proposed a combination
of adaptive second-order stochastic resonance and modal
decomposition to detect bearing signals with early faults [35].
In terms of signal processing, the output of the underdamped
system equation is equivalent to the secondary filtering, so the
second-order stochastic resonancemodel has a better filtering
effect on signal processing. At the same time, it is well known
that multi-stable systems have also been widely studied by
scholars because of their excellent filtering effects. However,
little attention has been paid to multi-stable systems based on
underdamping. No one has explored the effect of the model
on actual signal processing.

This paper proposes a second-order underdamped tristable
SR system and further discusses whether it is feasible to
extract weak fault signature in the system. In Section 2,
the system model is given and the generalized potential func-
tion, steady-state probability density and output SNR are
derived. And then the intrinsic influence of system parameters
on the model is studied. In Section 3, the steady-state solution
curve is introduced and the output response of the SUTSR
system under harmonic excitation is analyzed. In Section 4,
the performance of the SUTSR model is tested with actual
data and compared with other stochastic resonance methods.
Finally, Section 5 draws some conclusions.

II. SYSTEM MODEL
A. THEORETICAL BACKGROUND
British botanist Brown discovered in 1827 that under
the impact of water molecules, the movement of pollen

particles showed strong irregularities, which is known as
Brownian motion. Later, based on this theory, Langevin pro-
posed an equation for describing the irregular motion of
particles Langevin Equation (LE):

m
d2x
dt2
= −λ

dx
dt
+ F(t) (1)

where m is the mass of the Brownian particle, x is displace-
ment, −λdx/dt is the resistance of liquid to particles, F(t) is
the noise force generated by an irregular collision. Random
noise has a Gaussian probability distribution with a mean of 1
and a variance of 0. When ignoring gravity and other external
forces, Eq. (1) can be rewritten as:

d2x
dt2
= −γ

dx
dt
+ ξ (t) (2)

where γ = λ/m, ξ (t) = F(t)/m
Noise can be used to enhance weak periodic signals under

suitable conditions. After the Langevin equation was pro-
posed, Benzi et al. used the Langevin equation to model the
underdamped stochastic resonance:

dx =
[
x
(
a− x2

)]
dt + εdw(t) (3)

where w(t) is the wiener process. The solutions of Eq. (2)
Which are x1,2 = ±

√
a and x = 0. Under the effect of small

periodic force, the Eq. (3) becomes:

dx =
[
x
(
a− x2

)
+ Acosωt

]
dt + εdw(t) (4)

When the noise intensity is appropriate (ε ∈ (ε1, ε2)), Eq. (3)
will have an output with the same period as the small period
force. But the amplitude of the output increases to 2

√
a.

B. SECOND-ORDER UNDERDAMPED TRISTABLE
STOCHASTIC RESONANCE SYSTEM (SUTSR)
It can be inferred from the above analysis that the classical
stochastic resonance uses an overdamped first-order stochas-
tic differential equation, which means that the inertial term
in the original LE is ignored. In fact, when we think that the
output of SR is the trajectory of the particle in the potential
well, the inertia and damping of the system will affect the
realization of SR.

According to the Brownian motion and LE of Section 2.1,
we consider both the damping coefficient and the iner-
tia term for the SR system model. A second-order under-
damped stochastic resonance system based on multi-stable
can be defined as:

d2x
dt2
+

dU (x)
dt
+ γ

dx
dt
= S (t)+ η(t) (5)

where S (t) = Acos (2π ft + ϕ) is the input periodic signal,
in which A represents the amplitude, f represents the driving
frequency and ϕ represents the phase. η (t) =

√
2Dξ (t) is

Gaussian white noise (zero mean, unit variance). γ represents
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FIGURE 1. The multi-stable potential function U(x).

FIGURE 2. The system model of the underdamped second-order SR based
on tristable.

the system damping factor. U (x) is a tristable potential well
can be represented as follows:

U (x) =
b
2
x2 +

c
4
x4 +

d
6
x6 (6)

where b, c, and d are system parameters.
According to Eq. (2), the potential functionU (x), as shown

in Fig. 1, is symmetrical and has three stable points and two
potential barriers.

Substitute Eq. (6) into Eq. (5), then the following equation
can be written as:

d2x
dt2
=−bx−cx3−dx5−γ

dx
dt
+Acos (2π ft+ϕ)+

√
2Dξ (t)

(7)

The system model of Eq. 7 is shown in Fig. 2. It can be
deduced that the output of SUTSR is a secondary integral
output process. At the same time, the integration process can
be equal to the low-pass filtering process. So, the SUTSR
system will greatly improve the output SNR compared with
the general first-order system.

Fig. 3 shows the motion of Brownian particles subjected
to periodic driving forces in a multi-stationary well. The
potential well contains three steady-state points and two non-
steady-state points. The Brownian particles are driven by the
driving force from the leftmost potential well to the rightmost
potential well, and finally return to the left potential well to
complete a cycle of motion.

C. SIGNAL TO NOISE RATIO (SNR) ANALYSIS
In order to facilitate the calculation, we make γ = 0, ϕ = 0,
and dx

dt = y, and then we transform the second-order system

FIGURE 3. State transition of the tristable system in the presence of
periodic force and noise.

of Eq. (7) into the first-order system, which can be defined
as: 

dx
dt
= y

dy
dt
= −bx−cx3 − dx5

+Acos (2π ft)+
√
2Dξ (t)

(8)

Next, we let A = 0, D = 0, dx
/
dt = 0, dy

/
dt = 0.

Therefore, we can obtain five singularities of nonlinear sys-
tems:

(x2−, y2−) = (−

√
−c− k
2d

,0)

(x1−, y1−) = (−

√
−c+ k
2d

,0)

(x0, y0) = (0, 0)

(x1+, y1+) = (

√
−c+ k
2d

,0)

(x2+, y2+) = (

√
−c− k
2d

,0).

where
√
c2 − 4bd = k .

After deducing the Fokker-Planck equation, the probability
density function of particle motion can be shown as follows:

∂

∂t
ρ (x, y, t)

= −
∂

∂x
[yρ (x, y, t)]

−
∂

∂y

[
(−bx − cx3 − dx5 + A cos (�t))ρ (x, y, t)

]
+D(

∂

∂x2
+

∂

∂y2
)ρ (x, y, t) (9)

Subsequently, according to adiabatic theory, the quasi-
steady-state distribution function of Eq. (9) can be
defined as:

Pst (x, y, t) = Nexp(−
Ũ (x, y, t)

D
) (10)
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FIGURE 4. (a) The stationary probability. (b) The contour of stationary
probability as a function of versus x and different values b with
c = −0.46, d = 0.05, D = 0.35.

whereN represents the normalization constant, and Ũ (x, y, t)
is generalized potential function based on underdamped
multistable stochastic resonance system, which can be
obtained as:

Ũ (x, y, t) =
b
2
x2 +

c
4
x4 +

d
6
x6 +

1
2
y2 − xA cos (�t) (11)

The steady state probability density function is the impor-
tant physical quantity of the nonlinear dynamic system.
The noise induced phase transition is an important phe-
nomenon in the random dynamics. Therefore, we study the
steady state probability density evolution based on the multi-
stable underdamped system under Gaussian white noise.
Fig. 4, 5, 6, and 7 respectively analyze the effects of system
parameters b, c, d and noise intensity D on the steady-state
probability density function. We can observe that the steady-
state probability density of the particle is closely related to the
position of the well in which it is located. When the particle is
in the middle of the potential well, the particle is in the most
stable state. As the system parameters b, c, and d change,
the potential well changes, resulting in a change in the steady-
state probability density.

Subsequently, according to the theory of adiabatic elim-
ination, the probability transfer rate of particles between

FIGURE 5. (a) The stationary probability. (b) The contour of stationary
probability as a function of versus x and different values c with b = 0.45,
d = 0.05, D = 0.35.

potential wells can be written as:

R1 (t) =
|U ′′ (−x1)U ′′ (−x2) |

1/2

2π
exp{

−
Ũ (−x1,−y1, t)− Ũ (−x2,−y2, t)

D

}
(12)

R2 (t) =
|U ′′ (x1)U ′′ (x2) |

1/2

2π
exp{

−
Ũ (x1, y1, t)− Ũ (x2, y2, t)

D

}
(13)

Make x1 = 0, x0 = −
√
−c+k
2d , x2 =

√
−c−k
2d −

√
−c+k
2d

R0 = 2R1(t)|A cos (�)t=0

=
b2−3bc2d−3bc

√
(c2−k2)d2+5b

(
2c2−k2

)
d−10bc

√
(c2−k2)d2

π

exp(
bg2+ cg24+ dg36

D
)

1
2
R1 = −

dR1(t)
d(A cos (�t))

|cos (�t)=0

R1β =
R0A(x2 − x1)

D
(14)

where g = − c
d −

√
c2−k2
d2
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FIGURE 6. (a) The stationary probability. (b) The contour of stationary
probability as a function of versus x and different values d with b = 0.45,
c = −0.46, D = 0.35.

The output power spectrum of the system is as follows:

S (ω) = S1 (ω)+ S2 (ω) (15)

S1 (ω) and S2 (ω) are power spectra of signal and noise, which
can be written as:

S1 (ω) =

(
−c
8d
−

1
4

√
b
d
−
c+ k
8d

)

·
πR21β

2

2
(
R20 +�

2
) [δ (ω −�)+ δ(ω +�)] (16)

S2 (ω) =

(
−c
8d
+

1
4

√
b
d
−
c+ k
8d

)
·

2R0
R20 + ω

2
(17)

The output signal-to-noise ratio of the system can be deduced
as:

SNR =

∫
∞

0
S1 (ω) dω

S2 (ω = �)
=

−
1
8

(
c
d
+ 2

√
b
d

)
−
k + c
8d

1
8

(
c
d
+ 2

√
b
d

)
−
k + c
8d

·
πR0A2

4D2 (
−c
d
− 2

√
b
d
) (18)

Fig. 8 shows the output SNR of several different stochastic
resonance systems as a function of noise intensity. As can

FIGURE 7. (a) The stationary probability. (b) The contour of stationary
probability as a function of versus x and different values D with b = 0.45,
c = −0.46, d = 0.05.

FIGURE 8. The output SNR with noise intensity.

be seen, the signal-to-noise ratio is first enhanced as the
noise increases, reaching the maximum value, and finally
decreasing. However, the signal-to-noise ratio peaks and the
optimal noise corresponding to each model are different. As
can be seen from the figure, the SUTSR system has strong
noise transfer capability compared to other systems.

In this section, under the small parameters and combined
with progressive elimination theory’s condition, the output
SNR of the second order stochastic resonance model based
on multi-steady state is deduced. It can be seen from Fig.8,
Fig.9 and Fig.10 that non-monotonic change in SNR indi-
cates the presence of stochastic resonance phenomenon of
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FIGURE 9. (a) SNR. (b) The contour of SNR as a function of the noise
intensity D and the system parameter b with c = −0.46, d = 0.05, A = 0.2.

nonlinear systems. Fig. 9 shows the change trends of SNR and
its contour as a function of noise intensity D and the system
parameters b with c = −0.46, d = 0.05, A = 0.2. When
0.35 < b < 0.45, first, the SNR increases with the increase
of D, after the maximum value is reached, it decreases with
the increase of D. At the same time, with the increases of b,
the peak value of the SNR begins to increase and the position
of the peak shifts to the left. When b = 0.45, the SNR reaches
the maximum value of 13.91. Fig.10 shows the SNR’s change
trends and its contour as a function of noise intensity D and
the system parameters c with b = 0.45, d = 0.05, A = 0.2
and Fig.11 shows the change trends of SNR and its contour as
a function of noise intensity D and the system parameters d
with b = 0.45, c = −0.46, A = 0.2. We found that the SNR
functions of the parameter b, c within a certain range trends
are very similar. The peak value of the SNR increases with the
increase of system parameter b and c. Meanwhile, the peak is
shifted to the left by the noise intensity D. Therefore, when
we use this model to extract weak signal features, we must
fully consider the influence of parameters on the system.

III. OUTPUT RESPONCE OF THE SUTSR SYSTEM
A. DYNAMIC RESPONSE ANALYSIS BASD ON
STEAD-STATE SOLUTIONCURVE
When it has a steady input case, the system equation of
constant excitation can be obtained from Eq. (7) as follows:

d2x
dt2
+ γ

dx
dt
+ bx+cx3 + dx5 = h (19)

FIGURE 10. (a) SNR. (b) The contour of SNR as a function of the noise
intensity D and the system parameter c with b = 0.45, d = 0.05, A = 0.2.

The dynamic equation in state space can be defined as:
dx
dt
= y

dy
dt
= −γ y−bx−cx3 − dx5 + h

(20)

From the perspective of Brownian particlemotion, the steady-
state response of Eq. (12) means that the velocity and accel-
eration of Brownian motion are both zero.

dx
dt
= y = 0

dy
dt
= −γ y− bx− cx3 − dx5 + h = 0

(21)

Equivalent to {
−bx− cx3 − dx5 + h = 0
y = 0

(22)

This shows the steady state solution of the system Eq. (7)
is equivalent to the solution of Eq. (22), so the implicit
expression of the steady-state solution of the system equation
as follows:

−bx−cx3 − dx5 + h = 0 (23)

At the same time, the potential function of the system equa-
tion modulated by the constant r is

V (x) =
b
2
x2 +

c
4
x4 +

d
6
x6 − hx (24)
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FIGURE 11. (a) SNR. (b) The contour of SNR as a function of the noise
intensity D and the system parameter d with b = 0.45, c = −0.46, A = 0.2.

It is not difficult to find that Eq. (24) is equivalent to
dV (x)

/
dx = 0.

Fig. 12 plots the potential function u(x) before the constant-
state system is modulated by the constant r and the poten-
tial function V (x) after modulation, at this time h = 0.5.
At this point, the minimum point of u(x) is xs1,s2,s3 and the
maximum point of u(x) is xu1 and xu2. Due to the constant r
modulation, the extreme point of V (x) also changes. Under
this parameter condition, it can be seen that V (x) still has
three minimum points (x ′s1, x

′

s2, x
′

s3) and twomaximum points
(x ′u1, x

′

u2). Obviously, the abscissa of these extreme points
is the solution of Eq. (23), which is the possible form of
the output response of the underdamped multi-stable system.
Because of the high-order terms in the equation, we use the
graphical method to address it. Define the curve:{

g1(x) = bx + cx3 + dx5

g2(x) = h
(25)

Fig. 13 plots curves g1 and g2, and the number setting is
the same as Fig. 12. First, g1(x) is equal to the derivative
du(x)

/
dx of the potential function u(x). The abscissa values

of the five intersections of g1(x) and the x-axis correspond to
the positions of the five extreme points of u(x). Meanwhile,
the abscissa value of the intersection of g1(x) and g2(x) is
the solution of Eq. (23). This solution is also the position of

FIGURE 12. The system is modulated by the constant h before and after
the modulation of the potential function.

the extreme point of V (x) in Fig. 12, and is also a possible
form of the response solution of the SUTSR system Eq. (19).
Among the five intersections of g1(x) and g2(x), x ′u1 and x

′

u2
correspond to the maximum points of the potential function
V (x), which are also its unstable points. Brownian particles
deviate from this equilibrium point under any slight perturba-
tion, so these points are the unsteady solutions of the system.
Only the abscissa x ′s1, x

′

s2 and x ′s3 of the intersection of the
curves at the middle and the sides are the steady-state solution
of the Eq. (19).

Obviously, the number of intersections of curves g1 (x) and
g2 (x) is related to the value of r. Deriving the function g1 (x) :

dg1 (x)
dx

= b+ 3cx2 + 5dx4 (26)

The four extreme point positions of the solution curve g1 (x)
are: 

x1,2 = ±

√
−6c−

√
9c2 − 20bd
10d

x3,4 = ±

√
−6c+

√
9c2 − 20bd
10d

(27)

Among them, x1 and x2 represent the two extreme point
abscissas closer to the origin, and x3 and x4 represent the two
extreme point abscissas farther from the origin. Define the
extreme point coordinate values of g1 (x):{

l1 = g1 (x1)
l2 = g1 (x4)

(28)

l1 and l2 are the two critical values of the constant h.
Assume the l1 < l2, the intersection of the curves g1 (x)
and g2 (x) and the change of the potential function can be
summarized as Table 1.

Based on the above analysis, we define the curve g (x)
as the steady state solution curve of the tristable system
equation. Therefore, for a steady-state multi-stable system
equation, the output response of the input of the system is
a stable intersection of the steady-state solution curve g1 (x)
and the input amount curve g2 (x).
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TABLE 1. The intersection numbers of g1 (x) and g2 (x), the potential structure form of V (x) and their relationships with invariable r.

B. DYNAMIC RESPONSE ANALYSIS OF BASED ON
STEAD-STATE SOLUTIONCURVE
In Eq. (7), let D = 0, consider the underdamped multi-stable
system of harmonic signal input:

d2x
dt2
= −bx − cx3 − dx5 − γ

dx
dt
+ Acos (2π ft + ϕ) (29)

When f is small enough, the input of the system is a
very slow harmonic signal. When t = tp, h = sn(tp).
Therefore, the output response of the system is at a stable
intersection of the input quantity curve g2 (x) = sn(tp) and
g1(x) = bx + cx3 + dx5. If an infinite number of steady-
state solution xs is connected in the order of time t , the output
response solution of Eq. (17) can be obtained.

We use Eq. (4) Runge-Kutta to solve Eq. (30). The sim-
ulation results are shown in Fig. 13. Let e = 0.4, b = 0.45,
c = −0.47, d = 0.5 and f0 = 0.1HZ. Set the initial value
of the input signal x0 = x1 = 0. When A = 0.1, the input
signal of the system (Fig. 14 (b)) and the output response map
(Fig. 14 (c)) can establish a one-to-one mapping relationship
through the steady state solution curve (Fig. 14 (a)).

The abscissa in Fig. 14(b) is the amplitude of the input
signal, which corresponds to the curve g2 (x) of Fig. 14(a).
As shown in Fig. 12, the initial time system output is at the
steady state solution x ′s1. In the first quarter cycle, the input
signal gradually increases, which is equivalent to the g2 (x)
curve in Fig. 14(a) moving to the left, while the steady-state
point x ′s1 increases along the curve g1 (x), so the output of
the system gradually increases. When g2 (x) = A, the input
signal amplitude reaches the maximum, and the output signal
is also at the maximum value. Then, in the second quarter
cycle, the input signal gradually becomes smaller, equivalent
to g2 (x)moving to the right. Currently, the steady-state point
x ′s1 gradually decreases along the curve g1 (x), so the output
of the system gradually decreases. When g2 (x) = 0, the
output becomes 0. Similarly, in the third quarter and the fourth
quarter cycle, the system input signal first increases and then
decreases, curve g2 (x) move right first to g2 (x) = −A,
then move left to g2 (x) = 0. At this point, the steady-state
point increases first and then decreases. Similarly, the output
response of the system is also increased to its maximum value
and then reduced to zero. Between the extreme positions
of the intersection of g1 (x) and g2 (x), a small amplitude

oscillation is achieved between the potential wells, and its
oscillation period coincides with the period of the input
signal. 

y1 = y [n] ;
x1 = −U ′ (x [n])− γ y1 + S [n]
+N [n] ;

y2 = y [n]+
x1h
2
;

x2 = −U ′
(
x [n]+

y1h
2

)
− γ y2

+ S [n]+ N [n] ;

y3 = y [n]+
x2h
2
;

x3 = −U ′
(
x [n]+

y2h
2

)
− γ y3

+ S [n+ 1]+ N [n+ 1] ;
y4 = y [n]+ x3h;

x4 = −U ′
(
x [n]+

y3h
2

)
− γ y4

+ S [n+ 1]+ N [n+ 1] ;
y [n+ 1] = y [n]

+
x1 + 2x2 + 2x3 + x4

6
;

x [n+ 1] = x [n]

+
y1 + 2y2 + 2y3 + y4

6
;

(30)

IV. ENGINEERING APPLICATION
A set of bearing inner ring fault data come from CWRU and
bearing roller fault data collected by our own experimental
platform to examine the SUTSR model. In the first example,
the paper compares the second-order underdamped multi-
stability model with the traditional multi-stable stochastic
resonance system in fault feature extraction. In the sec-
ond example, the paper compares the SUTSR method with
the second-order underdamped bistable stochastic resonance
(SUBSR) to extract weak signal in strong noise background.

A. BEARING INNER RACEWAY FAULT DETECTION
The data for this study comes from the CWRU Bearing Data
Center website [36]. Fig. 15 and Fig. 16 are the experimental
platform composition diagrams. The drive end bearing model
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FIGURE 13. Schematic diagram of solving system output response.

is the 6205-2RS type JEMSKF deep groove ball bearing. The
spindle speed is 1730 r/min and the sampling frequency is
12 kHz. The bearing parameters are shown in Table 2. After
calculation, the characteristic frequency of the bearing inner
ring failure is 156.14 Hz.

Fig. 17 shows the time domain diagram and its frequency
domain diagram. An obvious periodic shock signal caused
by the fault can be seen from the time domain diagram. Very
strong high-frequency signal interference can be observed
from the Fig.17 (b), and their frequency components are
mainly concentrated in 0-2 kHz. The characteristic frequency
of the fault signal is flooded by noise. Since the charac-
teristic frequency cannot be directly read from the spec-
trogram, the paper uses the SR system to extract the fault
signal.

In this part, we verify the feasibility of the SUTSR system
in fault signal extraction with actual data. At the same time,
the processing results are compared with the TSR system.
Fig. 18(a) and (b) show the result of processing by the multi-
stable stochastic resonance system. It can be observed that
the time domain signal impact component is more obvi-
ous, but it is still interfered by some noise components.
In Fig. 18(b), it can be observed that the amplitude of the
signal of 156 Hz is amplified and higher than the amplitude of
the other frequencies. It is very similar to 156.14 Hz, which
is the theoretical value, so the fault signal is detected after
the TSR system. The frequency of the characteristic signal
is emphasized, and a periodic signal with a clear principal
component has been obtained in the time domain diagram.
At the same time, the fault signal is clearly seen in the
power spectrum, there is almost no interference of other
noise signals. Since the noise energy is transferred to the
characteristic signal through the SR system, the amplitude of
the signal with a frequency of 156 Hz is greatly improved to
0.7827. This is 0.4259 higher than the characteristic signal
amplitude of 0.3532 processed by the TSR system. This is
enough to show that the SUTSR system has better noise
suppression and weak periodic signal enhancement than the
TSR system.

FIGURE 14. System output response map based on steady state solution
curve. (a) Steady state solution curve. (b) System input signal. (c) System
out signal.

B. BEARING ROLLING ELEMENT FAULT DETECTION
To deeply verify the efficiency of the algorithm, this section
tests a test platform with faulty bearings. Fig. 19 shows the
test bench. The bearing type is cylindrical roller bearing,
model NU205EM. The bearing ball is faulty and the faulty
bearing is at the load end. The parameters of the bearing
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FIGURE 15. Experiment platform.

FIGURE 16. Experimental platform composition diagram.

TABLE 2. The main parameters of the rolling bearings.

FIGURE 17. Waveform (a) and spectra (b) of a bearing inner ring fault
signal.

are shown in Table 3. In this experiment, the motor speed
is 1500 r/min and the sampling frequency is 3000 Hz. The
theoretical value of the ball fault of the bearing is 82.28 Hz.

FIGURE 18. Analyzed results by different methods: (a) and (b) optimal
output of traditional TSR at b = 0.45, b = −0.65, d = 0.38;
(c) and (d) optimal output of SUTSR at h = 0.05, γ = 0.04 b = 3.83,
c = −0.25, d = 0.75.

FIGURE 19. Experiment platform.

TABLE 3. The main parameters of the rolling bearings.

The waveform and its spectrum of the bearing ball fault
signal are shown in Fig. 21. Obvious periodic modulation
signals are observed from the time domain diagram, but this
is not an impact signal caused by rolling element failure.
From Fig. 21(b), it can be deduced that the vibration signal
is modulated by the frequency of the main shaft (24.75 Hz),
and the characteristic signal is submerged. At the same time,
the strength of the fault signal is very weak, and the amplitude
is 0.008. The frequency conversion and its multiplication,
as well as the noise signal, are very strong. Therefore, this
section uses SUTSR and second-order underdamped bistable
stochastic resonance (SUBSR) systems to process the data.
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FIGURE 20. Rolling element failure.

FIGURE 21. Waveform (a) and spectra (b) of a bearing ball fault signal.

FIGURE 22. Analyzed results of the inner raceway defective signals by
using different methods: (a) and (b) optimal output of traditional USBSR
at γ = 0.14, h = 0.17, b = 1, c = 0.9; (c) and (d) optimal output of SUTSR
method at h = 0.01, γ = 0.04 b = 8.83, c = −0.05, d = 0.18.

Fig. 22 (b) and (d) show the frequency domain distribution
of the signal after processing by the SR system. The detected
signal characteristic frequency is 82.5 Hz. This is very close
to 82.28 Hz, which is the theoretical value. Simultaneous
observation of Fig. 22 (a) and (c) show that the signal noise
is drastically reduced and the periodicity is more prominent.
Fig. 22(c) and (d) show the results of the fault signal extracted
by the SUBSR and SUTSR method. Obviously, the fault

signal is well detected by the SUTSR system. The optimal
output signal of the system has almost no noise interfer-
ence from other frequency components. The time domain
signal shows significant periodic fluctuations. By comparing
Fig. 22(b) and (d), both methods can complete the extraction
work of the weak fault signal, but the filtering effect of the
SUTSR system ismore obvious, whichmeans thatmore noise
energy to the signal can be transferred. The fault frequency
amplitude increases from 0.3236 to 0.858. This result shows
that the SUTSR system is more effective for bearing fault
feature extraction in the background of strong noise.

Therefore, the proposed SUTSR system can extract the
weak fault signal under strong noise background more
effectively comparing with the traditional multi-stationary
stochastic resonance system and the underdamped second-
order bistable stochastic resonance system.

V. CONCLUSION
Considering the secondary filtering effect of underdamped
nonlinear systems and the classical stochastic resonance are
often using overdamped first-order stochastic differential
equations, this paper studies the SUTSR model and its appli-
cation in fault diagnosis. From the previous analysis, some
conclusions can be listed as follows:

1. The effective potential function and steady-state prob-
ability density function of the system are deduced and
the influences of system parameters are discussed.

2. The output SNR of the SUTSR system is derived and
the effect of the parameters b, c and d are discussed.
At the same time, the SUTSR system is compared with
the output SNR simulation results of several common
systems. It can be deduced that the SUTSR system has
obvious advantages in improving SNR.

3. The steady-state solution curve is used to discuss the
output response of the SUTSR system from the per-
spective of steady input, and the output response of
the system is further studied when the low-frequency
harmonic signal is input.

4. The fault bearing signal detection effects of SUTSR,
TSR and SUBSRmodels are compared by actual exam-
ples. Analysis shows the SUTSR system performs
more accurately and clearly in extracting the charac-
teristic signals. The SNR of the output signal is greatly
improved at the same time.
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