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ABSTRACT The present study developed, evaluated and compared the prediction and simulating efficiency
of both, the response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS)
approaches for oil removal using a liquid-liquid hydrocyclone (LLHC) from surfactant and polymer (SP)
produced water. Six parameters were involved in the process: the surfactant concentration, polymer concen-
tration, salinity, initial oil concentration, feed flowrate and split ratio. For RSM, D-optimal design was used,
while the ANFIS model was developed in term of this process with the Gaussian membership function.
All models were compared statistically based on the training and testing data set by the coefficient of
determination (R2), root-mean-square error (RMSE), average absolute percentage error (AAPE), standard
deviation (STD), minimum error, and maximum error. The R2 for RSM and the ANFIS model for the testing
set were of 0.972 and 0.999, respectively. Both models made good predictions. Trend analysis has been done
to confirm the applicability of the models. From the results, it shows that the ANFIS model was more precise
compared to the RSM model, which proves that the ANFIS is a powerful tool for modelling and optimizing
the efficiency of the oil removal from the LLHC in the presence of SP.

INDEX TERMS SP produced water, produced water treatment, liquid-liquid hydrocyclone, oil-water
separation, RSM, ANFIS.

SYMBOLS SP Surfactant and polymer
STD Standard deviation

AAPE  Average absolute percentage error
RMSE Root-mean-square error

ANFIS  Adaptive neuro-fuzzy inference system

£ Feed flowrate R? Coefficient of determination

I, Initial oil concentration

LLHC Liquid-liquid hydrocyclone I. INTRODUCTION

E SM E(e):ls};]r:e surface methodology The oily wastewater produced in the petroleum and food
industry, the water that falls from the board ship, among oth-

S Sur.f a.c tant ers, are hazardous to both nature and human health and it con-

Sal Sah.mty. taminates water daily. This water needs to be treated before it

S; Split ratio
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is discharged or reused. In the offshore petroleum industry,
several specifications must be followed before the treated
produced water is discharged into the ocean. For example,
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FIGURE 1. Onshore and offshore produced water treatment
equipment [48].

the daily limit of oil in water established by the United
States Environmental Protection Agency (USEPA) is 42ppm,
in Australia the limit is 30ppm, and in the People’s Republic
of China, the monthly limit is 10ppm in average [1]. In 2000,
the EU Water Framework Directive (WFD) implemented a
tighter regulation setting to zero the discharge of oil in water
to protect the aquatic environment [2]. In Malaysia, the limit
of the monthly oil and grease removal is below 40ppm [3].
In order to fulfill these requirements, the offshore produced
water treatment system has to work under an increasingly
higher strain. Conventional separation process consisted on
gravity separators, hydrocyclones, flotation units, membrane
filters, among others, as shown in Figure 1 [4], where it can
also be seen that the induced gas flotation (IGF) and hydrocy-
clone are the most used types of equipment (44% and 32%);
These types of equipment are preferred because of their small
footprint, small size, lower weight, low maintenance costs,
and simple operation [5], [6], which means that optimizing
them is important for an efficient produced-water-treatment-
system.

The hydrocyclones were initially used in solid-liquid sep-
aration and liquid-liquid and gas-liquid streams [7]. The ear-
liest use of liquid-liquid hydrocyclone (LLHC) was recorded
in the 1940s. However, the application of the LLHC was not
studied in depth until the 1980s when Colman and Thew
conducted a fundamental study on the LLHC [8]. A schematic
drawing of the LLHC is shown in Figure 2. The LLHC was
made of conical and cylindrical sections. The feed is placed
tangentially into the upper cylindrical section which creates
a swirling effect. Due to the density difference between the
oil and water, the more dense water spin to the wall of the
LLHC while the less dense oil migrates towards the core of
the LLHC [9].

The efficiency of the LLHC was governed by factors such
as the initial oil concentration, temperature, and by operat-
ing parameters of the LLHC such as the feed flowrate and
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FIGURE 2. LLHC diagram.

split ratio. Split ratio is the difference between the flow rate
to the overflow divided by the flow to the feed. The split ratio
equation is shown in Equation 1, where Q,, is the flowrate at
the overflow while Q;j is the flowrate at the inlet.

Split ratio, R = %MOO (1)
Qi

Referring to Equation 1, increasing the split ratio increases
the volume of the fluid going to the overflow. However,
a higher split ratio is not preferred since the fluid would
need to undergo a re-treatment process that would increase
the operation cost. On the other hand, keeping the split ratio
below 1% is difficult [10].

At present, the LLHC was controlled by the Pressure Drop
Ratio (PDR), which is proportional to the efficiency of the
LLHC under the steady state [11]. However, a good PDR
control does not mean a high efficiency of the LLHC [11].
Moreover, at the end of the produced water treatment sys-
tem, the process will be analyzed based on the oil in water
concentration before discharging it into the ocean. Therefore,
in this study, the efficiency of the LLHC was calculated by
comparing the oil concentration of the effluents to the initial
oil concentration as shown in Equation 2, where Cynderflow
is the oil concentration in the underflow and Cjye¢ is the oil
concentration in the inlet.

Cunde}jﬂow

inlet

The efficiency of the LLHC diminishes during the imple-
mentation of the Enhanced Oil Recovery (EOR) because of
a surfactant and polymer (SP) flooding, which is due to the
breakthrough of the surfactant and polymer into the produced
water [12]. These chemicals alter the physical and chemical
properties of the produced water as well as the produced water
treatment system.
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Conventional LLHC was designed to process the effluents
from the gravity separator to ensure that the oil in the dis-
charged water is less than 40 ppm—as required by the envi-
ronmental rules and legislation. Given that many of the LLHC
in the offshore platforms have been struggling to meet the
environmental legislation for the oil in water because of the
presence of these chemicals, many researchers are seeking for
new ways to optimize the existing LLHC to meet this environ-
mental specification. LLHC performance can be improved
fine-tuning the process, for example, by adjusting the feed
flowrate and split ratio. The development of a modeling tool
will be beneficial to investigate the impact of the SP on
the performance of the oil removal from the LLHC, for this
reason, it is important to obtain the optimized parameters for
the LLHC.

In this research, two models were developed: RSM and
ANFIS and their capacity to predict the efficiency of oil
removal of the LLHC in the presence of SP was compared.
RSM, ANN and neuro-fuzzy techniques have been used in
the prediction of solid-liquid hydrocyclone [13]-[20], but to
the author knowledge, have not been used as the efficiency
prediction for the LLHC based on the prediction of the oil
concentrations at the ooutlet. Six parameters were involved
in the process: the surfactant concentration, polymer con-
centration, salinity, initial oil concentration, feed flowrate,
and split ratio. An LLHC test rig has been fabricated at
the Centre of Enhanced Oil Recovery (COREOR) in the
Universiti Teknologi PETRONAS, Malaysia. The dimension
of the LLHC is the same as the LLHC in one Malaysian
Oilfield. Furthermore, the test rig was constructed with the
same instrumentation of the offshore setup.

The efficiency of the LLHC was measured analysing the
levels of oil in water. All models were compared statistically,
based on the training and validation data set by the coefficient
of determination (R?), root-mean-square error (RMSE), aver-
age absolute percentage error (AAPE), standard deviation
(STD), minimum error, and maximum error.

TABLE 1. Properties of oil used in this study.

Properties of the crude oil from the real oilfield Values
Density (g/cm®) at 60°C 0.7987
Viscosity at 60°C (cP) 3.49
Waxy point (°C) 25.85
Pour point (°C) 33
Flashpoint (°C) for safety purpose 70.4

Il. MATERIALS AND METHODS

A. MATERIALS

The crude oil from one of the Malaysian Oilfield was used
in this study. The properties of the crude oil are shown
in Table 1. The anionic surfactant and polymer (S672 and
DL-333, respectively) that were used in this study were pro-
vided by PETRONAS Research Sdn. Bhd (PRSB), Malaysia.
The compositions of the brines are shown in Table 2.
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TABLE 2. Brine compositions.

Salts g/L
CaCl,.(H,0), 0.7251
MgCl.(H,0)s 0.7726
NaCl 10.0267
FeCl; 0.0009
SrCL.(H,0)s 0.0295
KCl1 0.3129
NaHCO; 3.6065
Na,SO, 0.7840
b) Overflow outlet

a) Feed inlet —.

¢) Underflow outlet

FIGURE 3. LLHC design.

B. LLHC DESIGN

The LLHC was fabricated based on the real dimensions of
the LLHC located in one of the Malaysian Oilfield pro-
duced water treatment system as shown in Figure 3. The of
the LLHC was 45mm while the length of the LLHC was
1125mm. It was made of Plexiglass, making the flow in the
separation visible. The LLHC consisted of the feed inlet (a),
the overflow outlet (b) and the underflow outlet (c). The
underflow outlet was connected to the underflow tank where
samples will be taken for oil in water concentration analysis.

C. LLHC TEST RIG

The hydrocyclone test rig is shown in Figure 4, and it had the
mixer tank, underflow tank, overflow tank, and the hydrocy-
clone. The facility was constructed to prepare the emulsions
of different compositions, feed them into the hydrocyclone
and separate the oil and water. The produced water was stored
in the mixing tank, and a pump was connected to the mixing
tank and the hydrocyclone feed. A temperature heater and
sensor were located at the mixing tank, and the tank can stand
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FIGURE 4. LLHC test rig.

up to 150 °C. A three-phases Induction Motor Pump with
2.2 kW and 3 HP was used in the experiment. The pump
can operate up to 1420 rpm and a flow of 85 L/min of the
emulsion. The pump was equipped with a bypass line and
connected to pressure gauges, control valves and flow meters
to provide pressure and flow rate readings. The schematic dia-
gram of the LLHC test rig is shown in Figure 5. A controlling
valve functions to control the volume of emulsion going to the
overflow. The split ratio was calculated using Equation 1. The
process started by mixing the emulsion in the mixing tank.
Then, the emulsion was pumped to the LLHC at different feed
flowrates. The samples were taken at the underflow of the
LLHC for oil in water analysis. The efficiency was calculated
using Equation 2.

D. OIL IN WATER CONCENTRATION MEASUREMENT

The oil in water concentration was measured with the
UV-fluorescence method (TD-500D) device. The instrument
works by sending a calibrated wavelength into the view cell,
and the reflected light is captured using a photosensitive
sensor. The aromatic oil absorbs the energy, and it emits
a lower wavelength which is captured by the sensor. This
data is then translated into relative fluorescence units (RFU).
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The calibrated RFU is proportional to a specific value of oil
concentration in the mixture, and it is showed in the unit
of ppm.

E. CALIBRATION OF TD-500D

The oil in water analyzer TD-500D was calibrated for the spe-
cific oil used in this test. Two calibrations were made based
on the solvent and no-solvent method. The solvent method
was used to analyze the oil in water concentration without the
presence of the surfactant while the no-solvent method was
used for the samples which contained the surfactant. For the
solvent method, n-hexane was used to extract the oil, and the
amount of n-hexane added to the water was typically 1/10 of
the water sample. For the no-solvent method, the dispersed
oil was converted to a microemulsion by using the surfactant
itself. The surfactant converts the oil into an optically clear
microemulsion when heated to a cloud point, which is ideal
for direct fluorescence measurements using the TD-500D
Oil-in-Water Analyzer [21].

F. SAMPLES PREPARATION
The synthetic SP produced water was prepared mixing:
the surfactant (0-500 ppm), polymer (0-1000 ppm),
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FIGURE 5. Schematic diagram of the LLHC test rig.

brine (14000-28000 ppm), and oil (1000-2000 ppm). The
mixture was stirred using the Ultra Turrax at 13000 rpm
for 10 minutes at 60°C. The concentration of the surfac-
tant and polymer was chosen based on the work from
Argillier et al. [22], Richerand et al. [23], and Al-Kayiem
and Khan [24]. The initial oil concentration was chosen
based on the set-up range of the effluents coming out from
the gravity separator in the actual oilfield produced water
treatment system.

G. RESPONSE SURFACE METHODOLOGY (RSM)

In this study, D-optimal design was used for the RSM
model. Optimal designs were introduced in the 1900s as
an alternative to more traditional designs such as the fac-
torial and fractional factorial design [25]. The D-optimal
designs were used when: there was an irregular experimental
region, a non-standard model was used for the experiments,
there was a restriction on the number of samples that could
be tested, or when accounting for non-linearity [26]. The
D-optimal design is computer-generated using the Design
Expert 9.0 software. All the factors were designed in a way
that it will not set a higher or lower value than the upper
and lower set limits. Statistical analysis has been used to
investigate the correlation between the variables and the
formulation work. In this work, D-optimal design has been
selected as a design for the oil removal from the SP produced
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TABLE 3. Low and high value for each of the parameter.

Parameter Level
Low (-1) High (1)
Actual Value
Surfactant concentration (ppm) 0 500
Polymer concentration (ppm) 0 1000
Feed flowrate (L/min) 20 60
Split ratio (%) 2 20
Salinity (ppm) 14000 28000
Initial oil concentration (ppm) 1000 2000

water by using the LLHC. The variables included in the
study were: surfactant concentration, polymer concentration,
salinity, initial oil concentration, feed flowrate, and split ratio.
The variables are shown in Table 3.

H. ANFIS MODELLING

Fuzzy systems are rule-based-expert-systems that work on
fuzzy rules and fuzzy inference. Instead of using the exact
rules to present the data and knowledge, the use of fuzzy rules
can provide a solution to a nonlinear model because these
rules are closer to human-like thinking. This nonlinear model-
ing is handled by rules, membership functions, and the infer-
ence process, which result in improved performance, simpler
implementation, and reduced design costs [27]. On the other
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hand, the Neuro-fuzzy system (from now on referred as
Neuro-fuzzy) combines an artificial neural network (ANN)
and a fuzzy system, and instead of using simple input and out-
put nodes, it consists of fuzzy nodes that use a neural network
learning system to refine each part of the fuzzy knowledge
separately. This method will work faster compared to the
learning in the whole network [28].

layer 1 layer 2

layer 3 layer4  layer5

FIGURE 6. ANFIS architecture.

ANFIS architecture is shown in Figure 6. It had m number
of inputs, and each of them has n membership functions,
a fuzzy rule base of R rules, and one output, y. The network
had five layers that were used to train the Sugeno-type FIS
through the adaptive learning process.

In the first-order Takagi-Sugeno fuzzy model, the FIS was
composed of two inputs x and y that followed *“if-then’’ rules,
as shown below.

Rule 1 =Ifxis Ajandyis By Thenf; = (p1x + q1y + r1)

Rule2 =Ifxis Ay andyis By Thenf, = (pax + g2y + r2)

where Al, A2, and B1, B2 = membership functions of each
input x and y

pl, ql, rl and p2, 2, 12 = linear parameters in part -Then
(consequent part) of Takagi—Sugeno fuzzy inference model.
The FIS system has five layers as shown in Figure 6 [29]. The
function of each layer is as follow:

Layer 1- The node in the layer adapts to a function parame-
ter and the output for each node is a degree of the membership
value that is given by the input of the membership functions.
In fuzzy theory, the membership function is defined as the
degree of truth that falls between 0 and 1, which contributes
to the design of a system that has uncertainty. Each of the
membership function has a different shape of the curve with
a particular name such as triangular, bell-shaped, trapezoidal,
and Gaussian membership functions. The membership func-
tion used in this work was the Gaussian membership function
(Equation 3), which gives the shape shown in Figure 7.

X —Ci 2
i (x) = exp |:— < o ) :| 3

where (14; is the degree of the membership functions for the
fuzzy sets Ai, and both a; and c¢; are the parameters of the
membership function that can change the shape.

Layer 2- The node in this layer is fixed. The output node is
obtained by multiplying the signal that enters the node with
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FIGURE 7. Gaussian membership function.

the signal that is delivered to the next node. Each of the nodes
in this layer represents the firing strength for each rule. The
T-norm operator with general performance such as AND is
applied to obtain the output.

02 = wi = pai (x) * ugi (y),
=1,2 )

where w; is the output that represents the firing strength of
each rule.

Layer 3- In this case, the node is also fixed, and each node
is obtained from the calculation of the ratio between the i-th
rules firing strength and the sum of the rules firing strength.
This result is known as the normalized firing strength.

— Wi
O3 =W = —— 5
3i i Z,’ Wi &)

Layer 4- Every node in this layer is an adaptive node to an
output with a node function defined as:

O4; = wif;
= w; (pix + qiy +ri) (6)

where w; is the normalized firing strength from the previous
layer and (p;x + g,y + r;) is the parameter in the ride.

Layer 5- This layer consists of a single layer that is fixed
and has computed the overall output as a summation of all the
signals that come from layer 4.

%=ZW=%? ™

1

The outline of the optimization is shown in Figure 8.
In ANFIS application, a common method is to classify the
whole data set into training and testing data. The training and
testing sets are chosen randomly, and it is expected that the
training set have an example space including all situations.
This training data is used in developing the model of ANFIS
method by setting the input membership function, which was
determined by trial and error, while the testing data set eval-
uates the performance of the model. 75% of the experimental
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data were used to train the model, and 25% of the data was
used to test it. This selection was made based on the literature
from various background of researches that used ANFIS as
the modelling tool for the prediction [30]-[33].

I. ANFIS MODEL DEVELOPMENT

The ANFIS for predicting the efficiency of the oil removal
from the SP produced water by using LLHC was devel-
oped using the procedure that was described in Section G.
Six input parameters were involved in this process: the sur-
factant concentration, polymer concentration, salinity, initial
oil concentration, feed flowrate, and split ratio. The output
was LLHC efficiency, which was calculated with Equation 2.
For the ANFIS implementation, one type of the command
line function ‘genfis2’ was used. The difference between
genfis 1 and 2 is the genfis 1 produces grid partitioning
of the input space while genfis 2 uses subclust for produc-
ing scattering partition. Moreover, genfis 1 produces a FIS
where each rule has zero coefficients in its output equa-
tion, while genfis 2 uses the backslash (“\”’) command in
MATLAB to identify the coefficients. Hence, the FIS gener-
ated by the genfis 1 always needs subsequent optimization
by ANFIS command, while the for genfis 2, a good input-
output mapping precision can sometimes be achieved easily.
The command was trained several times to find the best
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ANFIS model. In this study, the Gaussian membership func-
tion was used to generate good performance.

The ‘genfis2’ code does not deliver the same quality in
the training data results as it does in the test data results,
except for the radii value. Furthermore, a small training
option parameter is selected which may result in overfitting
the problems [34]. The value of the training options must be
optimized until it reaches a tolerable value for both the train-
ing and testing sets. An error threshold value is determined
from the difference between the actual and desired output.

Moreover, the difference between the predicted data and
the actual data of each pair was calculated, and if the error
were lower than the threshold value, the process would end.
The best-optimized value is shown in Table 4. The ‘Mapin-
max’ function of MATLAB was implemented in the model to
normalize the data between —1 and 1.

TABLE 4. Learning options for the learning algorithm.

No Training Options Value
1 Clustering radius 0.65
2 Learning step size 0.05
3 Decreasing rate 0.5

4 Increasing rate 2

IIl. RESULTS AND DISCUSSIONS

A. RSM MODELLING

In the RSM modeling, a cubic equation was developed,
as shown in Equation 8. Figure 9 shows the scattered plot for
the predicted value versus the actual value of the data that was
used to develop the RSM equation. Most of the points located
on the cross line, which indicates that there is a good agree-
ment between the model prediction and the experimental
data. The R? was found to be 0.98 while the average absolute
percentage error (AAPE) was 0.39%. Table 5 represents the
significance of the parameters that affect the efficiency of oil
removal from the LLHC. It can be observed that the terms that
have significance effect to the efficiency of the oil removal
from the LLHC (p-value < 0.05) are all of the one-factor-
terms (S, P, f, S;, Sai, 1), as well as the interaction terms of:
SSr, SSal, Sailo, S2, 2, SPS; SS;Sal, SSi1o, SSailo, PSilo, S?P,
S2Sa1, S°Io, S°Io, SP?, Sf2, P21, Pf%, f°1,,, and P3.

To test this equation, several experiments were conducted
to compare the actual values and the predicted data. The
scattered plot of the actual and predicted data is shown
in Figure 10. The R? was 0.971 while the AAPE was 3.72%.

Figure 11 shows the effect of the surfactant concentration
and feed flowrate on the efficiency of the oil removal of the
LLHC without the polymer. The other variables such as the
split ratio, initial oil concentration, and salinity were kept
constant at 14%, 1000 ppm, and 14000 ppm, respectively.
In this contour plot graph, the lines that are perpendicular
to the axes mean that a factor has the highest influence on
the efficiency, while the parallel lines mean that there is no
influence on the efficiency of LLHC oil removal. As shown
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validate the RSM equation.

in Figure 11, the surfactant has the dominant effect on the effi-
ciency of oil removal by the LLHC. The surfactant decreased
the interfacial tension (IFT) of the oil and water. The decrease
in the IFT reduced the size of the oil droplets, which directly
decreased the efficiency of oil removal, and these results are
similar to previous research [35], [36].

Efficiency = 41.30 —27.57 %S — 10.12 %« P+ 3.15 % f
+6.69 %S, +6.86 %Sy + 14.39 x I, — 5.52

179612

*SP — 0.36 % Sf + 4.49 % SS, + 1.87 % SSu
+1.08 % SI, + 0.11 % Pf — 0.17 % PS + 0.94
% PSq — 0.11 % PI,+0.006 * fS, — 0.69  fS
+ 112 % fl, + 0.12 % S, Su + 0.47 % 8,1,
+3.02% Syl, +7.29 %S> — 1.57 « P* — 5.14
#f2 —0.99 % S? +3.26 % SPS, + 1.33 % SfS,
+1.89 % 88,8, +2.34 % SS.1, + 2.06 % SS,1,
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where S = surfactant concentration (ppm), P = polymer
concentration (ppm), f = feed flowrate (L/min), S; =
split ratio (%), Suq = salinity (ppm), I, = initial oil
concentration (ppm).

On the other hand, the feed flow rate increased the effi-
ciency of oil removal from 20 L/minute to 40 L/minute.
Increasing the feed flowrate over 40 L/minute decreased the
efficiency of oil removal. At a low feed flowrate, a weak
centrifugal force was generated.

This weak force resulted in an inefficient separation. When
the flowrate increased, the centrifugal force also increased
causing the oil droplets to migrate to the center of the LLHC.
As a consequence, the efficiency increased, as more oil
droplets were removed from the system. However, when the
flowrate was increased beyond its optimum point, the effi-
ciency dropped because of the sheer effect generated by
the high turbulence and instability of the fluid flow. This
sheer effect broke the oil droplets to a smaller size which
increased the stability of the emulsion and directly decrease
the efficiency of oil removal. This trend is in agreement with
several findings based on the previous works done by the
researches [37]-[39].

The effect of increasing the polymer concentration (in the
absence of surfactant) is shown in Figure 12. The other vari-
ables such as the split ratio, initial oil concentration, and salin-
ity were kept constant at 14%, 1000 ppm, and 14000 ppm,
respectively. It was found that increasing polymer concentra-
tion increased the efficiency of oil removal until an optimum
point after which the efficiency decreased. The increase in
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FIGURE 12. The effect of increasing polymer concentration and feed
flowrate to the efficiency of the oil removal at 0 ppm of surfactant
concentration.

Feed Flowrate (L/minute)

the feed flowrate increased the efficiency of oil removal when
the polymer was present in the produced water. Increasing the
polymer concentration made the oil droplets coalesce, which
increased the efficiency of oil removal. However, when the
polymer concentration was increased beyond the optimum
point, the higher viscosity overlapped the flocculation effect
caused by the polymer. The viscosity decreased the efficiency
of oil removal. Similar findings have been observed in other
studies [35], [40].

Efficiency (%)

500

n w a
3 3 3
8 3 38

Surfactant Concentration (ppm)

3
8

® Design Points
83.36

0.02

Feed Flowrate (L/minute)

FIGURE 13. The effect of increasing surfactant concentration and feed
flowrate on the efficiency of the oil removal at 500 ppm of polymer
concentration.

Figure 13 and Figure 14 show the effect of the surfac-
tant concentration and feed flowrate on the efficiency of
the oil removal in the presence of 500 ppm and 1000 ppm
of polymer, respectively. It can be seen that the effect of
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TABLE 5. Significance of the parameters.

F p-value
Source Value Prob > F
Model 124.39 <0.0001 Significant
S-Surfactant Concentration 271.33 <0.0001 Significant
P-Polymer Concentration 17.04 <0.0001 Significant
f-Feed Flowrate 25.61 <0.0001 Significant
Sr-Split ratio 186.79 < 0.0001 Significant
Sa-Salinity 52.89 < 0.0001 Significant
I,-Initial oil concentration 77.47 <0.0001 Significant
S*P 94.38 <0.0001 Significant
S*f 0.39 0.5327
S*S¢ 62.93 <0.0001 Significant
S*Sal 8.71 0.0036 Significant
S*I, 291 0.0899
P*f 0.029 0.8650
P*S, 0.086 0.7700
P*Sa 2.76 0.0985
P*I, 0.040 0.8426
*S, 1.285E-004 0.9910
£*Sa 1.20 0.2745
*1, 3.04 0.0827
S*Sal 0.053 0.8174
Si*1o 0.72 0.3971
Sa*Lo 33.69 <0.0001 Significant
S? 50.12 <0.0001 Significant
p? 1.03 0.3126
2 32.08 <0.0001 Significant
S/ 0.85 0.3564
S*P*S; 25.42 <0.0001 Significant
S*F*S, 3.72 0.0552
S*S,*Sal 10.43 0.0015 Significant
S*S:*1, 14.10 0.0002 Significant
S*Sa*1o 10.96 0.0011 Significant
P*f*I, 2.95 0.0878
P*S,*1, 15.65 0.0001 Significant
*Sa*1o 3.49 0.0635
S**P 117.78 <0.0001 Significant
S8, 5.89 0.0162 Significant
S2*], 46.20 <0.0001 Significant
S*p? 24.50 <0.0001 Significant
S*f? 15.42 0.0001 Significant
S*S.2 2.92 0.0892
P2*], 8.54 0.0039 Significant
p*f? 26.13 <0.0001 Significant
2%, 8.22 0.0046 Significant
P3 11.70 0.0008 Significant

the surfactant was more predominant compared to the effect
of the polymer. With the presence of the polymer alone in
the emulsion (without surfactant), the efficiency increases
because of the coalescence effect brought by the polymer,

at least until a certain point before decreasing again.
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However, in the presence of the SP mixture, the efficiency
of the oil removal decreased with a high surfactant concen-
tration. It seems that the presence of the surfactant prevented
the oil droplets from coalescing, making them flocculate with
each other, and also countered the coalescence effect caused
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TABLE 6. Comparison of RSM and ANFIS model.

RSM ANFIS Model
Training Testing Training Testing
AAPE (%) 0.385 3.715 0.00002 1.131
R? 0.983 0.972 1 0.999
MINABSERROR 0.003 0.437 0.0000 0.011
RMSE 49.181 16.36 0.0000 1.41
STD 4.474 7.46 0.0000 0.72
Min Error -12.936 -22.144 0.0000 -2.382
Max Error 13.225 22.796 0.0001 1.816
; Efficiency (%) @
400 )
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FIGURE 14. The effect of increasing surfactant concentration and feed
flowrate to the efficiency of the oil removal at 1000 ppm of polymer
concentration.
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by the polymer. Both effects, the oil coalescence induced by
the polymer and the oil droplets flocculation caused by the
surfactant can be seen in Figure 15.

It is easier to re-break the flocculated oil droplets than the
coalesced oil droplets. Therefore, the efficiency of the oil
removal decreased in the presence of the SP mixture.

B. ANFIS MODELLING

The ANFIS model was employed to predict the efficiency
of the oil removal of the LLHC. The trial an error method was
the only option to achieve the optimum value of ‘raddi’. The
value of raddi was specified to 0.65 to avoid both underfitting
and overfitting of the predictions. In this work, 75% of the
data was used to train the model while 25% of the data was
used to test the trained model. Figure 16 shows the actual
distribution of the data against the distribution predicted after
the training. The distribution of the data clearly indicates that
the actual and predicted value were similar, which means

VOLUME 7, 2019

FIGURE 15. The microscopic image of the oil droplets (a) with no SP
present (b) in the presence of the polymer (c) in the presence of SP [35].

that using 0.65 as the raddi value in the training option
was appropriate for this experiment. The correlation coeffi-
cient (R?) was 1 for the training data, and the absolute average
percentage error (AAPE) was 0.00002%. After training the
model, 25% of the data (test data) was used to test the model.
Figure 17 shows the distribution of the actual and predicted
data for the test data. Almost all of the data had fallen on the
diagonal model which shows the high accuracy of the model.
The R? was 0.999 while the AAPE was 1.13%. These values
illustrate that there is a good agreement between the actual
and the predicted data.

C. COMPARISON OF RSM AND ANFIS

The comparison of the RSM and ANFIS for the training
and testing sets is shown in Table 6. The criteria used for
measuring the model’s performance were: the correlation
coefficient R%2, RMSE, AAPE, STD, minimum error, and
maximum error. For the testing sets, the R? was found to
be 0.972 for the RSM and 0.999 for the ANFIS. The RSME
for the RSM and ANFIS was 16.36 and 1.41, respectively.
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FIGURE 16. Distribution of the training data set used to train the ANFIS model vs. the
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FIGURE 17. Distribution of the test data set used to test the ANFIS model vs. the

actual data.

From the obtained results, it can be seen that the RSM has
a greater STD compared to ANFIS. Both models can predict
the efficiency of the oil removal from the LLHC. However,
it is clear that the ANFIS performed better than the RSM;
it had a higher R2 value, and lower values of RMSE, AAPE,
STD, minimum error, and maximum €error.

In order to visualize the influence of the input param-
eter, the actual trend, RSM, and ANFIS were compared.
Figure 18-23 show the effect on the efficiency of oil removal
of the surfactant concentration, polymer concentration, feed
flowrate, salinity; initial oil concentration, and split ratio.
From all of these trends, it seems that the RSM and ANFIS
models followed the actual trend for each input parameters.
The effect of the surfactant, polymer concentration and feed
flowrate (Figure 18, 19 & 20) have been explained in the
previous section (Section 3.1).

Figure 21 shows that increasing the salinity concentration
increases the efficiency of oil removal. The reason is that
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FIGURE 18. The effect of surfactant concentration on the efficiency of oil
removal.

there is lower stability of the emulsion at higher levels of
salinity; furthermore, the IFT value also increased [41]. The
salts screen charge on the surface of the oil droplets and
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FIGURE 20. The effect of feed flowrate on the efficiency of oil removal.
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FIGURE 21. The effect of salinity on the efficiency of oil removal.

reduce the stability of the emulsions, which reduces the time
needed to separate the oil and water [42].

Figure 22 shows the effect of increasing the initial oil
concentration on the efficiency of oil removal. Increasing
the initial oil concentration increased the efficiency of oil
removal; the oil droplets coalesce because of the increasing
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FIGURE 22. The effect of initial oil concentration on the efficiency of oil
removal.
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FIGURE 23. The effect of the split ratio to the efficiency of oil removal.

oil volume. However, this also leads to a higher reading of
oil concentration at the outlet [43]. This trend is in agreement
with findings from other researchers [43], [44].

Figure 23 shows the effect of the split ratio on the efficiency
of oil removal. It can be seen that the increase in the split
ratio caused an increase in the efficiency of oil removal to
14% before it started to reach a plateau state. Increasing the
split ratio also increased the volume of fluid that went to
the overflow, meaning that there is more water present in the
overflow compared to the underflow. Having too much water
going to the overflow is not good as it will transport more
oil to the tertiary separator. This trend agrees with previous
studies [45]-[47].

IV. CONCLUSION

In this study, RSM and ANFIS models were developed to
predict the efficiency of oil removal from the SP produced
water of the LLHC. Experimental works were conducted
using a fabricated LLHC that had similar dimension to the
LLHC in one Malaysian Oilfield. The D-optimal design was
used for the RSM and Gaussian membership function was
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used for the ANFIS modeling. The models were compared
based on the testing and training sets in the criteria of R?,
RMSE, AAPE, STD, minimum error, and maximum error.
The ANFIS model had a higher R?> compared to the RSM
model. The results confirmed that the ANFIS model was
more robust and accurate for the prediction of the efficiency
of oil removal from the LLHC in the presence of SP. The
results can be useful as a guide for the future optimization
of the LLHC to treat the EOR produced water.
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