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ABSTRACT Three-dimensional reconstruction of abdominal aortic aneurysm is the key technology to
improve the success rate of surgical and reduce complications. However, the outer contour of abdominal
aortic aneurysm(AAA)is fuzzy, which make it difficult for recent existing method to obtain its accurate
segmentation performance and high reconstruction accuracy. In this paper, an improved compressive sensing
reconstruction algorithm is proposed, which defines a differentiable and convex total variation (TV) function
as an optimization goal function and further reduces the number of projections and improve the quality
of reconstructed images. Our proposed algorithm improves the speed and stability of the reconstruction
algorithm in three-dimensional reconstruction of abdominal aortic aneurysm. The experimental results show
that the proposed model can be used for 3D modeling in 3-D printing to improve the accuracy of endovascular
repair and the adaptability of the stent, which is suitable for the application of bioengineering medicine.

INDEX TERMS 3-D printing, three-dimensional reconstruction, abdominal aortic aneurysm, compressive

sensing, total variation, endovascular repair, computed tomography angiography.

I. INTRODUCTION

Abdominal aortic aneurysm (AAA) is a common disease
amongst middle-aged and elderly people [1]. The main risk
is that cancer cells continue to expand and rupture, endanger-
ing patients’ lives [2]. 90% of abdominal aortic aneurysms
occur in the lower part of the renal artery, called as the
infrarenal abdominal aortic aneurysm [3]. Although 75% of
abdominal aortic aneurysms do not show significant clinical
symptoms, the patient’s mortality rate is as high as 78%-94%
once they rupture. The characteristic geometric parameters
of AAA, including the maximum diameter, the length of
the tumor, the diameter of the aneurysmal neck and the
length of the aneurysmal neck, have all been recommended
as important indicators for judging whether AAA is broken,
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but the correlation between these geometric parameters and
AAA rupture is not accurate [4]. For example, the largest
diameter of abdominal aortic aneurysm is often used as the
basis for judging whether the AAA rupture is present (male
patients with a tumor diameter >5.5cm and female patients
with a tumor diameter >5cm). However, in fact, there is a
phenomenon where some small-diameter abdominal aortic
aneurysms rupture and large-diameter tumors have not rup-
tured [5], [6]. Therefore, the accuracy of detection using only
geometric features is not high.

However, the geometric characteristic parameters of AAA
are very important for the formulation of AAA surgical
procedures. At present, endovascular repair (EVAR) is the
most common method for the treatment of abdominal aortic
aneurysms [7]. When making the surgical plan, doctors need
to use CT images to measure some characteristic geomet-
ric parameters of AAA, such as aneurysmal neck diameter,
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length of tumors, etc. to determine the appropriate type,
length, location of EVAR stent, and so on. Geometric param-
eters of abdominal aortic aneurysms are closely related to a
series of complications, including endoleak, stent lateral dis-
placement, aneurysm growth and final rupture [8]. Accurate
measurement of geometric parameters is of great significance
in preventing complications after EVAR.

Three-dimensional reconstruction of abdominal aortic
aneurysm is the key technology to improve the success
rate of surgical and reduce complications [9]. Obtaining
the internal and external contours of the abdominal aortic
aneurysm on the computed tomography angiography (CTA)
image sequence is the premise for accurate measurement
and research of the tumor, and also provides a reliable basis
for clinical diagnosis. With the development of computer
image processing technology, image segmentation technol-
ogy has been widely used in medical image processing [10].
Nowadays, segmentation and modeling of vascular lumen
have been realized. In recent years, according to three-
dimensional volume data, regional growth and level set and
the graph cutting method are adopted to realize the three-
dimensional segmentation of the significant object [11].
However, the outer contour of the abdominal aortic aneurysm
is relatively low, and the existing three-dimensional segmen-
tation method cannot be used to obtain accurate segmentation
results. The accurate segmentation of the outer contour of
the tumor mainly depends on manual operation of radiolo-
gist, so the continuous automatic segmentation of the outer
contour of abdominal aortic aneurysm in the CTA image
sequence is of great research significance and application
value [12]. The level set method based on the local binary fit-
ting (LBF) model makes full use of the gray level information
in the neighborhood of the evolution curve, which is suitable
for the segmentation of fuzzy contours [13], [14]. Based
on the LBF level set, combined with context information
and narrow-band constraints, the high-precision automatic
segmentation of the abdominal aortic aneurysm in the image
sequence is realized [16].

High-level image information is a common method in
fuzzy target segmentation. Reference [15] combined with
principal component analysis and K-Means to achieve seg-
mentation of different aortic aneurysm segmentation, which
is suitable for medical image segmentation of specific com-
ponents with different brightness. In the segmentation of
abdominal aortic aneurysm, the outer contour can not be
obtained only by the brightness information. Reference [17]
uses the active contour model to realize liver segmentation
in CT images, which requires a large number of samples in
the early stage of training, and the selection of samples is
required for fuzzy medical images. In addition, the shape
of the abdominal aortic aneurysm is usually added to the
shape prior. Reference [18] use the elliptical model for outer
contour segmentation. Reference [8] analyze the gray his-
togram and morphological characteristics of the abdominal
aortic aneurysm area to segment the internal and exter-
nal contours. Reference [12] added geometric constraints to
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the thrombus and ectal segmentation of abdominal aortic
aneurysms. These simple shape-based methods are applied
to the outer contour segmentation of normal aorta and par-
tial tumor slices. The formation of the thrombus causes the
outer contour to be not similar to the ellipse or the inner
and outer contours, and the method is limited to a specific
geometry or lumen contour and cannot segment accurately
the three-dimensional reconstruction of abdominal aortic
aneurysm.

Since 3D reconstruction is mathematically a solution to
the inverse problem of the typical ill-posedness problem,
the solution of the ill-posedness problem is often performed
using a regularization method. Compressive sensing(CS)
theory points out that if a signal is compressible under
known orthogonal basis, or sparse in a certain transform
domain, then the observation matrix can be used to project
the high-dimensional signal onto the low-dimensional and
then the original signal can be restored by optimizing the
problem [19]. CS theory also believes that the sampling
rate depends on the sparsity and non-correlation of the
data. In theory, any signal can be compressed as long as
it has the proper sparse basis. In this paper, the compres-
sive sensing algorithm is improved and optimized to fur-
ther reduce the number of projections and improve the
quality of reconstructed images. An improved compres-
sive sensing reconstruction algorithm is proposed, which
defines a differentiable and convex total variation (TV) func-
tion as an optimization goal function and further reduces
the number of projections and improve the quality of
reconstructed images. Our proposed algorithm improves
the speed and stability of the reconstruction algorithm
in three-dimensional reconstruction of abdominal aortic
aneurysm.

Il. MATERIALS AND METHODS

A. MATERIALS

To obtain a three-dimensional reconstruction model, segmen-
tation of the abdominal aortic aneurysm is required. The
anatomical structure of an abdominal aortic aneurysm is
composed of inner and outer walls, and thrombus between
them. The cross-sectional structure and outer contour of the
abdominal aortic aneurysm are shown in Fig.1. It can be seen
from Fig. 1 that the tumors are closely connected with the
surrounding tissues on different sections of the sequence, and
the peripheral tissues and intratumoral thrombus are close in
brightness which makes the loss of part of the outer contour
section. The intratumoral cavity is complex and not simi-
lar to the outer contour under the influence of intracavitary
thrombus, which leads to low gradient differences at the
boundary of the outer wall and other neighboring structures..
Therefore, the precise segmentation of the outer contour on
high blur or even partial loss image is the main solution
that needs to solve problem. Once the segmentation result is
obtained, an efficient reconstruction algorithm is needed for
three-dimensional reconstruction [20].
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(b)

FIGURE 1. The composition of AAA and its outer contour; (a) AAA with
round shape (b) AAA with oval shape.

B. THE IMPROVED COMPRESSIVE SENSING ALGORITHM
In this paper, an improved Compressive Sensing (CS) recon-
struction algorithm is proposed to improve the reconstruction
accuracy of complex structures in AAA, which achieves good
quality of the reconstructed image by using a very small num-
ber of projections. The compressive sensing reconstruction
algorithm defines a total variation function with differentiable
convex as the optimization objective, which improves the
speed and stability of finite difference transform calcula-
tion [20]. In addition, the maximum likelihood expectation
maximization (MLEM) algorithm is proposed as the Projec-
tion on Convex Set (POCS) process of CS. The POCS process
of traditional compressive sensing algorithm is implemented
by ART algorithm. The access mode of projection data and
the selection of relaxation factor of ART algorithm will affect
the number of iterations and the quality of reconstructed
image [18]. These two parameters are closely related to
the number of projections and image features, which are
usually difficult to determine. The improved CS algorithm
proposed in this paper uses MLEM as its POCS process to
avoid such problems. On the basis of theoretical analysis,
real experiments were carried out with CT scanning, and the
reconstruction effects are compared and evaluated [21].
Because of the characteristics of biological tissues,
the changes of tissues in the same organ will not be great
under normal conditions. The image has the characteristics
of local smoothness, so it can be considered that its finite
difference image is sparse. Experiments also show that the
finite difference of biological projection image has good spar-
sity and can reflect the edge information of the image [22].
Therefore, the finite difference transformation (FDT) is used
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as its sparse transformation, and the norm/jof FDT, namely
total variation (TV), is used as the optimization objective
function.

Two-dimensional total variation is defined as:

TV (F) = [\ IVF*dxdy = [/|0F /dy|*dxdy (1)
Q Q

This function is non-convex and non-differentiable. The
speed and stability of solving non-convex functions are worse
than that of convex functions. In this paper, we transform the
two-dimensional total variation into another form, which is
shown as follows:

IV (F) = 1/VF2
dxdy = [OF /0x|2dxd / OF /9v|2dxdy (2
xy—/ I /x|xy | /Y| }’()

For two-dimensional images, FDT can be defined as:
2 2
TV (F) =) (\/(fi,j —fi-1g)” + \/(fu —fi-1j) ) 3
iJj

Then, image F is reconstructed by solving the following
optimization problem:

minTV (F), st.P=AF, F>0 )

where, P is a transmission projection image; A is observation
matrix; F is a reconstructed image. Constraint P = AF is
solved by Projection on Convex Set (POCS), and optimiza-
tion problem is solved by gradient descent method (GDM).
For the scanning mode of optical CT, the measurement matrix
satisfies the RIP characteristics. Therefore, the reconstruction
of sparsely sampled signals has a stable solution. The specific
calculation process consists of two steps, one is the MLEM
process under constraints, and the other is the solution of
TVM (Total Variation Minimization) process.

Step 1: the POCS (Project on Convex Set) process with
constraint P = AF is shown as follows:

(1) Initialize the reconstructed image, shown as follows

forem (k=0)=0 (5)

where k is the total number of iterations.
(2) Using MLEM iterative image, we can obtain as the
following equation,

Uty _ L p
. =17. a; ;
50 = s M

1

l
6
S g (6
l
where, k is the total number of iterations; f.k is the estimated
value after k iterations; p; is the i-th ray projection value; and
a; j represents the probability that photons emitted from the
object pixeljwill be detected by the i-th unit of the detector.
(3) Calculate the value of the following equation with non-
negative constraint:

) Fyurem (k) Fyrem (k) >0
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Step 2: TVM process
(1) Initialize the TVM image

Fyy (k) = Fpocs (k) (®)
(2) Calculate the incremental factor
d (k) = | Xfyuous 00 Xpocs (0| ©)

(3) Calculate the gradient and direction of total variation
G ()" (k)
61 k)|

(10)

. A IFlIzy e
1 1
G 0= gt 60

where n (1 < n < N) is the iteration number.
(4) Correct the image in negative direction of gradient

n=n+1
(1)

Fiin (k) = Flyut (k) — hda (k) G*" (k) ,

where, A is regulation factor.
(5) If the calculation results satisfy the following condition

”Fllgocs (k) — Fgo_c]s (k) H <& 12

where ¢is an arbitrarily small positive number, the algorithm
terminates.
Otherwise,

Fopem (k+1) = FN,y, (k) (13)

and run the next iteration.

Ill. EXPERIMENTAL ANALYSIS AND ITS APPLICATION

IN 3D PRINTING

A. EXPERIMENTAL PLATFORM AND EVALUATION INDEX
The experimental software environment is 64-bit
Matlab2013a, and the hardware environment is a computer
equipped with Core i5-3320 2.60 GHz and 8 GB memory.
The experimental data is the abdominal LTA image sequence
data set of the two groups of abdominal aortic aneurysm
patients. The image resolution is 512 x512, and the corre-
sponding spatial resolution is 0. 628 mm x 0. 628 mm and
0.646 5 mmx0.646 5 Mm[27].

The average value of DICE score, Jaccard and volume
overlap error (VOE), relative volume difference (RVD), aver-
age symmetric surface distance (ASSD) and maximum sym-
metric surface distance (MSSD) are used in this paper to
evaluate the segmentation performance of abdominal aortic
aneurysm [24].

B. QUALITATIVE AND QUANTITATIVE ANALYSIS

The traditional level set method and the graph-cut method are
used to perform the comparison analysis of the extracorporeal
contours segmentation on the single layer LTA image [25].
The segmentation results are shown in Fig. 2. Fig. 2(a) is
the original image. The Snake segmentation method uses a
randomly generated initialization curve. Figure 2(c) uses a
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(b)

(d)

FIGURE 2. The segmentation results by different method.(a)original
image; (b)Snake; (c)literature [6]; (d)LBF; (e)Proposed method.

TABLE 1. Average evaluation indicators of different models.

Models Dice VOE RVD ASSD MSSD
Snake 0.841 0.112 0.021 3.028 41.188
Literature[6]  0.838  0.111 0.011 4.860 48.301
LBF 0.821 0.110 0.024 3.487 42.110
Proposed 0.870  0.078 0.006 1.821 31.183

method

horizontal set segmentation method based on local region
information and shape constraints [6]. Figure 2(d) uses a
binary level set based on LBF [26]. Method. Figure 2(e) is
the result of our proposed method. The experiment selects
the same LTA slice, Figure 2(b) uses global initialization,
and Figure 2 (c-e) uses the same level set to initialize the
outline and width. Table 1 is the quantitative segmentation
results of different segmentation models. It can be seen that
the proposed model can accurately segment the outer and
inner contours in AAA.

C. THREE-DIMENSIONAL RECONSTRUCTION AND ITS
APPLICATION IN 3D PRINTING

Once the segmentation result is obtained, an efficient
reconstruction algorithm is needed for three-dimensional
reconstruction. CTA image is used as the experimental model.
Projections from 360, 180, 90, 60, 30 and 18 angles are
carried out within 360 degrees. Then FBP algorithm and
improved CS algorithm are used to reconstruct the pro-
jected image. FBP algorithm is an analytical algorithm.
Because of its clear concept and fast reconstruction speed,
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TABLE 2. Quality comparison and evaluation of reconstructed images.

Algorithm RMSE PSNR SSIM
Proposed 3.49 21.87 0.85
FBP 9.15 17.56 0.43

the reconstructed image of its dense angle projection is often
used as the criterion to evaluate other algorithms.

The reconstruction result of FBP from various angles and
the reconstruction result of our proposed algorithm are ana-
lyzed in experiment. It can be seen intuitively that when
the number of projections is more than 150, the quality of
reconstructed image of FBP algorithm is not significantly
different from that of our proposed algorithm; when the num-
ber of projections is less than 90, the reconstructed image
of filtered back-projection algorithm has obvious artifacts,
while our proposed algorithm has better image quality; when
the number of projections is less than 40, it is difficult
for both algorithms to achieve better reconstruction results.
Therefore, 40 reconstructed images are used for comparison
and evaluation [28].

In order to accurately compare the difference between the
reconstructed image and the original image, we use verti-
cal and horizontal central sections as comparison objects.
In our experiment analysis, the reconstructed image using
the improved our proposed algorithm is very close to the
original image, while the reconstructed image based on FBP
algorithm is quite different from the original image and has
obvious artifacts.

As can be seen from Table 2, the improved our proposed
algorithm can obtain better reconstruction results at 40 sparse
projection angles. Next, we use CTA to scan, and use the
improved our proposed algorithm to reconstruct. According
to the experiment results, FBP algorithm has obvious artifacts
in 90 projection angles, and the proposed algorithm has a
very good reconstruction quality in 40 angles. Different from
the simulation, CS algorithm uses the actual scanned image
to reconstruct. When CS algorithm has less than 40 angles,
the quality of reconstruction cannot meet the actual applica-
tion requirements. Therefore, the projections from less than
40 angles should not be adopted in practical applications.

D. DISCUSSION

Most of the AAA is associated with intratumoral thrombosis,
and the mechanical effects of intracavitary thrombosis on
AAA are currently controversial. Because of the presence of
thrombus in the clinical rupture of the tumor, some scholars
believe that the presence of thrombus will lead to the degen-
eration of the AAA wall, which in turn reduces the strength of
the tumor wall. It has also been suggested that blood flow can
be transmitted to the wall of the tumor through loose porous
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wall thrombus, resulting in increased pressure on the wall of
the tumor. These factors can lead to an increase in the growth
rate of AAA tumors and an increased risk of rupture. Some
scholars further compared the effects of the thrombus on the
anterior and posterior parts of the tumor on the growth of the
tumor. The results showed that the thrombus in the front of the
tumor had a stress on the vessel wall that was larger than that
in the posterior part of the tumor [27]. The former has a faster
growth rate of the tumor diameter than the latter. However,
some studies have suggested that the presence of intracavitary
thrombosis is protective against AAA, which can alleviate the
stress on the tumor wall and thus reduce the risk of AAA
rupture. The effect of endovascular thrombus on the rupture
of AAA remains to be further studied, but the addition of true
thrombus information to the AAA model will certainly help to
improve the authenticity of the simulation results. In addition,
because there are large differences in the composition and
microstructure of thrombus between different individuals,
obtaining individualized thrombus data can simulate more
accurate results. Therefore, our proposed compressed sens-
ing 3D reconstruction method uses this prior information to
improve the reconstruction accuracy. In particular, there is no
subsequent 3D printed structural support structure, which has
better adaptability.

IV. CONCLUSION

Three-dimensional reconstruction of abdominal aortic
aneurysm is the key technology to improve the success rate
of surgical and reduce complications. However, the outer
contour of abdominal aortic aneurysm(AAA)is fuzzy, which
make it difficult for recent existing method getting its
accurate segmentation performance and high reconstruction
accuracy. In this paper, an improved compressive sensing
reconstruction algorithm is proposed, which defines a dif-
ferentiable and convex total variation (TV) function as an
optimization goal function and further reduces the number of
projections and improve the quality of reconstructed images.
Our proposed algorithm improves the speed and stability of
the reconstruction algorithm in three-dimensional reconstruc-
tion of abdominal aortic aneurysm. The experimental results
show that the proposed model can be used for 3D modeling
in 3-D printing to improve the accuracy of endovascular
repair and the adaptability of the stent.
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