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ABSTRACT Accurate segmentation of test line and control line for colloidal gold immunochromatographic
strip (GICS) images with image processing algorithms is essential to quantitative analysis of GICS.
As common methods for GICS image segmentation, fuzzy c-means (FCM) algorithm and cellular neural
network (CNN) algorithm both require presetting initial conditions (specifying initial parameters or training
models) and take long running time, due to high calculation cost. Therefore neither is ideal for a point-of-care
testing (POCT) device, which has low hardware cost and limited computing power. This paper designs
a region growing algorithm combined with fast peak detection (RGFPD) to quickly and self-adaptively
segment GICS images. Compared with FCM algorithm and CNN algorithm, the RGFPD algorithm has
two obvious advantages. First, as a local algorithm rather than a local one, the region growing algorithm
requires low calculation cost, which better suits the POCT device. Second, the fast peak detection algorithm
calculates the seed points and growing criterions as initial conditions, realizing self-adaptive segmentation of
images. In this paper, RGFPD algorithm is applied to segment GICS images of actual samples, taking FCM
algorithm and CNN algorithm as contrast. The results show that RGFPD accurately segment images without
presetting initial conditions, with shorter algorithm running time, and performs better in anti-interference.

INDEX TERMS Colloidal gold immunochromatographic strip, image segmentation, peak detection, region
growing, point-of-care testing.

I. INTRODUCTION
Point-of-care testing (POCT) is a significant development
direction of modern laboratory medicine, see [1]–[3]. The
gold immunochromatographic assay is one of the most
widely used POCT technologies, due to its simple method,
rapid reaction, low cost and good stability, see [4]–[8].
Accurate segmentation of test line (T Line) and control line
(C Line) from the colloidal gold immunochromatographic
strip (GICS) image is essential in quantitative analysis of
GICS, [9], [10]. Fuzzy c-means (FCM) algorithm and cellular
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neural network (CNN) algorithm are two widely reported
GICS image segmentation algorithms.

As one of the most widely used algorithms in unsupervised
pattern recognition, FCM algorithm segments image via clus-
tering pixels based on pixels attribute characteristics. Some
authors in [11]–[16] have applied it to GICS image segmen-
tation and achieved good results. However, initial parameters,
such as the number of clusters and the weighting constant, has
to be preset, and improper initial parameter settings will lower
the segmentation effect. In addition, as a global algorithm,
the FCM algorithm requires high calculation cost.

Inspired by the idea of cellular automata and neural
networks, Chua and Yang in 1988 proposed cellular neu-
ral network [17], [18]. It is a large-scale nonlinear analog
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algorithm that particularly suitable for complex systems,
such as image processing, pattern recognition and artificial
intelligence (AI). The self-adaptive learning ability enables
CNN calculate the feedback template, control template and
threshold template automatically by training a given sample
set, without manually presetting initial parameters [17], [18].
Some authors in [19]–[21] have applied it to GICS image
processing and obtained high precision segmentation result.
However, it is not a self-adaptive algorithm in the real sense,
because its self-adaptive learning modeling process is based
on a given large amount of sample data. What’s more,
CNN algorithm requires higher calculation cost than FCM
algorithm.

Both FCM algorithm and CNN algorithm can achieve ideal
image segmentation effect on a powerful desktop computer.
However, for POCT devices that are meant for fast detection,
it is necessary to design a fast self-adaptive algorithm that
requires low calculation cost and no preset initial conditions.

In order to lower the calculation cost so as to shorten
the running time, this paper innovatively attempts to adopt
region growing algorithm to segment GICS image. As a local
algorithm, the region growing algorithm is easy to imple-
ment and produces excellent image boundary information and
segmentation results [22], [23]. It has been widely used in
segmenting CT andMRI images but scarcely applied in GICS
image segmentation, see [24]–[27]. Compared with global
algorithms like FCM and CNN, the region growing algorithm
requires lower calculation cost. However, it also requires pre-
specifying appropriate seed points and growing criterions.

In order to avoid presetting initial conditions of the region
growing algorithm, this paper designs a fast peak detection
algorithm to quickly calculate the seed points and growing
criterions. By integrating fast peak detection algorithm with
region growing algorithm, this paper proposes region grow-
ing algorithm combined with fast peak detection (referred to
as RGFPD) for GICS images segmentation. In order to eval-
uate its performance, RGFPD is applied to process a batch of
GICS images of actual samples, taking FCM algorithm and
CNN algorithm as contrast. The three algorithms are com-
pared in aspects of image segmentation accuracy, algorithm
running time, standard curve fitting and anti-interference
ability.

II. CAPTURE OF GICS IMAGES
In this study, the vomitoxin (DON) is chosen as the ana-
lyte. 100uL of different concentration of DON solution (0,
1, 2.5, 5, 10, 20, 40ng/ml) is taken and added respectively
to the sample pad of DON GICS in the same production
batch (Wuhan NDH Biotechnology Company, Ltd). After
the reaction, the strips are scanned with an optical scanner
(EPSON PERFECTION V200 PHOTO) so as to capture the
color GICS original images. The results are shown in Fig. 1.

III. DESIGN OF RGFPD ALGORITHM
Fig. 2 illustrates the implementation process of RGFPD,
which consists of the following three steps:

FIGURE 1. Images of colloidal gold immunochromatographic strip with
different DON concentration (from 1# to 7#: 0, 1, 2.5, 5, 10, 20, 40ng/ml).

i. The captured GICS original image is converted to
gray image.

ii. The gray image is compressed, along the vertical
direction of the GICS flow direction, into the one-
dimensional Initial Curve. Via baseline correction,
it is converted into the Corrected Curve, from which
the seed points and growing criterions are calculated
by extracting peak information.

iii. The binary image is formed by region growing of
the gray image, with the seed point and growing
criterions. Then the binary image is used as a mask to
segment the C Line and T Line image from the gray
image.

A. FAST PEAK DETECTION ALGORITHM
Peak detection algorithm is commonly used in
chromatographic analysis, for it can quickly extract the peak
information from a one-dimensional chromatographic curve,
see [28]–[33]. In this paper, the GICS image is firstly com-
pressed along the vertical direction of the GICS flow direc-
tion into a one-dimensional Initial Curve. Then a fast peak
detection algorithm for calculation of the seed points and
growing criterions is designed, using the chromatographic
peak detection for reference. The specific implementation is
as follows.

1) The gray image is compressed into one-dimensional
Initial Curve via (1).

Yi = (1/n)×
∑n

j=1
Uij(1 ≤ i ≤ m, 1 ≤ j ≤ n) (1)

where U is a gray image with m px × n px, Uij is the gray-
scale value of the pixel in the j-th column and the i-th row, Yi
is the ordinate value of the i-th point of the one-dimensional
Initial Curve.

2) Baseline correction is performed on the Initial Curve as
follow:

First, the Derivative Curve of the Initial Curve can be
calculated by:

Zi =

{
Yi+1 − Yi (i = 1)
Yi − Yi−1 (2 ≤ i ≤ m)

(2)

where Zi is the ordinate value of the i-th point of the
Derivative Curve.

Second, the Derivative Curve is converted into the
Square-wave Curve via (3). The starting and ending points
of square wave in Square-wave Curve determine the starting
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FIGURE 2. Flow chart of RGFPD algorithm.

and ending position (sk and ek , k = 1, 2, . . . ) of peak in
Initial Curve. The maximum value of k is corresponding to
the number of square wave.

Xi =


1 (Zi ≥ a)
0 (−a < Z i < a)
−1 (Zi ≤ −a)

(1 ≤ i ≤ m) (3)

where Xi is the ordinate value of the i-th point of the
Square-wave Curve, a is one tenth of the maximum ordinate
absolute value in the derivative curve. a is used to eliminate
the noises in the Derivative Curve (This process is also called
filtering).

Finally, according to sk and ek,, a continuous baseline is
calculated by cutting off the peak from the Initial Curve
and supplementing the missing part with linear interpolation.
Then the Corrected Curve is obtained by subtracting the
baseline from the Initial Curve. The detailed calculation of

the Corrected Curve is shown in (4) (The maximum value of
k is assumed to be 2).

Ci =


Ye1 − Ys1
e1 − s1

× (i− s1)− Yi (s1≤i ≤ e1)

Ye2 − Ys2
e2 − s2

× (i− s2)− Yi (s2≤i ≤ e2)

0 (1 ≤ i < s1∪e1 < i < s2 ∪ e2 < i≤m)

(4)

whereCi is the ordinate value of the i-th point of the Corrected
Curve, s1, e1, s2, and e2 are respectively the abscissa value of
the starting point and the ending point of the first peak, and
that of the second peak.

3) The peak information, including peak starting point
abscissa value sk , peak ending point abscissa value ek ,
peak point abscissa value pk , peak point ordinate value hk ,
is extracted from the Corrected Curve, with which the seed
points and growing criterions can be calculated. For the
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convenience of discussion, the detailed calculations of the
seed points and growing criterions are presented along with
region growing algorithm.

B. REGION GROWING ALGORITHM COMBINED
WITH FAST PEAK DETECTION
Region growing algorithm generally require artificially pre-
specified seed points and growing criterions, which often
leads to local optimization and fails to achieve the global
optimal effect [22]. Therefore, the fast peak detection algo-
rithm is adopted to self-adaptively calculate the seed points
and growing criterions in this paper.

Calculation of seed points: The abscissa value pk of each
peak point in the Corrected Curve corresponds to the number
of the row in which the seed point is located. In the pk -th row
of the gray image, the pixel point, whose gray-scale value is
closest to the gray-scale average value of the row, is set as the
seed point.

Calculation of growing criterions: 1). The growing thresh-
old of each seed point is one third of its corresponding peak
point ordinate value hk . 2). The maximum region growing
range of each seed point is sk -th row to ek -th row ([sk , ek ]).

Using the seed points and growing criterions, region
growing is performed on the gray image as shown in the
following process, where the total number of pixel point
of each row in the gray image is n, the region formed by
region growing is named seed region (The initial seed region
contains only the seed point), whereas the growing point is a
pixel point that does not belong to the seed region within the
growing range.

i. The initial value of seed region average gray-scale
value Ga is set as the gray-scale value of seed point.

ii. Region growing is performed on the row where the
seed points are located. If the difference between the
gray-scale value of the growing point and Ga is less
than the growing threshold, it is an effective growing
point and will be merged into the seed region.

iii. After step 2, region growing will continue if the total
number of pixel points in the formed seed region is
greater than or equal to 70% of n. Otherwise, region
growing will stop, with the existing growing result
cleared and the region growing result reported blank.

iv. The value of Ga is updated by calculating the average
gray-scale value of the newly formed seed region.

v. The seed region continues to grow outward (the upper
row and next row), with the growing range controlled
within [sk , ek ]. If the difference between the gray-
scale value of the growing point and Ga is less than
the growing threshold, the growing point is effective
and will be merged into the seed region. If no growing
point is merged into the seed region, the region grow-
ing will stop, and the latest formed seed region will
be output as the result.

vi. Define the total number of pixel points in the top
row in the newly formed seed region as Tt, the total
number in the bottom row as Tb. If both Tt≥0.7∗n and

Tb≥0.7∗n, step 4 and 5 will repeat. If Tt≥0.7∗n and
b<0.7∗n, step 4 and 5 will continue, but the down-
ward growing will stop. If Tt<0.7∗n and Tb≥0.7∗n,
step 4 and 5 will continue with the upward growing
stopped. If both Tt<0.7∗n and Tb<0.7∗n, the region
growing will stop with the latest formed seed region
as output.

After all the seed points have completed region growing,
the final result is formed by merging all region growing
results, usually in the form of a binary image for better
display, in which the white portion is the latest formed seed
region. Using the binary image as a mask, the C Line and T
Line image can be segmented from the gray image.

IV. EVALUATION OF RGFPD
Comprehensive evaluation of the RGFPD algorithm is
conducted by analyzing its image segmentation accuracy,
algorithm running time, standard curve fitting and anti-
interference ability. Peak Signal to Noise Ratio (PSNR) is
introduced for image segmentation evaluation, and the stan-
dard curve fitting requires quantitative calculation of GICS
image.

A. EVALUATION OF GICS IMAGE SEGMENTATION RESULT
Peak Signal to Noise Ratio (PSNR) is adopted as standard to
evaluate the accuracy of image segmentation [34]. The higher
the PSNR value, the higher the accuracy. Firstly, a binary
mask that classifies the pixels of GICS image as belonging
to either signal (the T Line and C Line, which is assigned 0)
or background (which is assigned 1) is produced. Then the
PSNR can be calculated by:

PSNR = 10× lg
[
R2

MSE

]
(5)

where R is the maximum fluctuation in the input image data
type. For example, if the data type of the input image is
double-precision floating-point, R equals to 1. If the data type
is an 8-bit unsigned integer, R equals to 255. MSE describes
the cumulative squared error between the binarymask and the
normalized gray image.

B. QUANTITATIVE CALCULATION OF GICS IMAGE
In order to quantitatively calculate the GICS system,
the relative integral optical density (RIOD) based on the
Beer-Lambert law is introduced to represent the concentra-
tion of the measured substance [34]. The RIOD is given as
follows:

RIOD =
IODT
IODC

=

∑N
i=1 lg

G0
GiT∑M

j=1 lg
G0

GjC

(6)

where IODT and IODC respectively describe the reflective
integral optical density of the T Line and C Line. GT and GC
denote the gray-scale value of pixel in the T Line and C Line.
G0 represents the mean gray-scale value of the background in
the reading window.
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FIGURE 3. Result of fast peak detection. (a) The color GICS image (sample concentration is 2.5 ng/ml). (b) The gray image. (c) The Initial Curve. (d) The
Derivative Curve. (e) The Square-wave Curve ( sk and ek are the abscissa value of the starting and ending points of the square wave ( k = 1,2)). (f) The
Corrected Curve ( sk and ek are the abscissa value of the starting and ending points of the peak. pk and hk are the abscissa value and ordinate value of
peak point.)

V. RESULTS AND DISCUSSION
RGFPD, FCM, and CNN algorithms are adopted to process
the same batch of GICS images, in order to compare their
performance in aspects of image segmentation accuracy,
algorithm running time, standard curve fitting and anti-
interference ability. These algorithm programs are written
in Matlab Version R2014a (The MathWorks, Inc.), and they
run on a desktop computer with a 3.90 GHz Intel Core and
4.00 GB RAM on a Windows 10 operating system.

A. RESULT OF FAST PEAK DETECTION
The fast peak detection process of the GICS image with
DON concentration of 2.5 ng/ml is shown in Fig. 3. First,
the gray image (Fig. 3(b)) obtained by converting the color
GICS image (Fig. 3(a)) is compressed by (1) to form the
Initial Curve (fig. 3(c)). Second, the Initial Curve is computed
into the Derivative Curve (Fig. 3(d)) by (2), which is then
converted to the Square-wave Curve (fig. 3(e)) by (3). The
starting and ending point of square wave determine the start-
ing and ending position (sk and ek , k = 1, 2) of peak in Initial
Curve. Third, according to sk and ek , the Corrected Curve
(Fig. 3(f)) of Initial Curve is calculated by (4). Finally, The
peak information of Corrected Curve is extracted for the seed
points and growing criterions calculation, including peak
starting point abscissa value sk , peak ending point abscissa
value ek , peak point abscissa value pk and peak point ordinate
value hk .

B. RESULT OF REGION GROWING
The region growing results of the GICS image with DON
concentration of 2.5 ng/ml are shown in Fig. 4. First, with
the peak information of Corrected Curve (Fig. 4(a)), the seed
points and growing criterions are calculated. Then, region
growing is performed on the gray image (Fig. 4(b)) to form
the binary image (Fig. 4(c)). Finally, using the binary image
as a mask, the T Line and C Line image (Fig. 3(d)) are
segmented from the gray image. Comparing b and d, it can be
observed that the algorithm proposed in this paper segments
the T Line and C Line accurately.

C. COMPARISON OF ALGORITHM RUNNING TIME
RGFPD, FCM, and CNN algorithms are adopted to process
the seven captured GICS images. Their running time are
recorded and shown in Fig. 5.

FCM algorithm and CNN algorithm are global algorithms,
whereas region growing algorithm is a local algorithm,
which runs significantly faster than the other two. The fast
peak detection algorithm also requires short running time.
Therefore, the running time of RGFPD is significantly shorter
than that of FCM and CNN. The average running time of
RGFPD, FCM, and CNN are respectively 34.2ms, 331.6ms,
and 882.6ms. RGFPD takes about 1/10 of FCM running
time and 1/26 of CNN, which has obvious superiority in
calculation cost.
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FIGURE 4. Result of region growing. (a) The Corrected Curve. (b)The gray image with the seed points. (c) The binary image. (d) The T Line and C Line
image.

FIGURE 5. Algorithm running time of RGFPD, FCM and CNN. 1# to 7#

corresponds to GICS images with different DON concentration.

D. COMPARISON OF IMAGE SEGMENTATION ACCURACY
The PSNR is introduced to evaluate the image segmentation
accuracy of RGFPD, FCM, and CNN for seven captured
GICS images. Their PSNR are calculated by (5) and shown
in Table 1.

Taking running time and PSNR value into consideration,
we can conclude that: i. CNN has the longest running time but
the highest image segmentation accuracy. ii. RGFPD achieves
similar image segmentation accuracy with only 1/26 of CNN
running time. iii. FCM has the lowest image segmentation
accuracy.

E. STANDARD CURVE FITTING
The standard curve fitting is the basis for quantitative anal-
ysis. First, RGFPD, FCM, and CNN algorithms are adopted

to segment six of the acquired GICS images of known DON
concentrations (concentrations: 1, 2.5, 5, 10, 20, 40 ng/m).
With their respective RIOD calculated by (6), the curve
fitting of RIOD and DON concentration are performed by
logical four-parameter fitting method. The results are shown
in Fig. 6.

As indicated in Fig. 6, good corresponding relationship
is seen between RIOD and DON concentration in GICS
images segmentation via RGFPD. The correlation coefficient
of RGFPD reached 0.999, slightly higher than that of FCM
0.998, and 0.995 of CNN. It shows that RGFPD segmentation
result achieve better effect of curve fitting, which will serve
quantitative analysis of GICS images.

F. COMPARISON OF SEGMENTATION RESULTS
OF GICS IMAGES WITH INTERFERENCE
In practical applications, GICS samples with interference,
such as noise point, water traces and shadow, are often
captured, due to uneven illumination and improper oper-
ation. In the actual test, RGFPD exhibits good anti-
interference ability. In this section, RGFPD, FCM and CNN
are utilized to process four GICS images with different
interference. The image segmentation results are shown
in Fig. 7.

We can conclude from Fig.7 that RGFPD has stronger
anti-interference ability than FCM and CNN. One reason
is that RGFPD filters some noise during the fast peak
detection, eliminating some small-area interference, such
as large noise points and small sundries. Another is that
RGFPD sets effective growing-stop conditions in the pro-
cess of region growing, which eliminates some large-area
interference, such as large-area water traces and large-area
shadow.
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TABLE 1. PSNR values of RGFPD, FCM, and CNN.

FIGURE 6. Curve of RIOD and DON concentration.

FIGURE 7. Results of processing the GICS images with interference via
RGFPD, FCM and CNN. (a), (e), (i) and (m) The GICS gray image with
sundries, large noise, water traces and shadow, respectively. (b), (f), (j),
(n)Corresponding results by RGFPD.(c), (g), (k), (o)Corresponding results
by FCM. (d), (h), (l), (p)Corresponding results by CNN.

VI. CONCLUSION
POCT technology has drawn growing concern in modern
trend of diagnosis-and-treatment integration and personalized
medicine [35], [36]. Although the existing PC-based graphics

processing algorithms achieve adequate accuracy, it is too
complex to be fully applicable to POCT devices with low
cost and limited computing power. In this paper, a fast and
self-adaptive RGFPD algorithm is proposed for GICS image
segmentation. First, in order to lower the calculation cost,
the region growing algorithm, a local algorithm, is adopted
for image segmentation algorithm. Then, in order to avoid
the initial conditions preset of the region growing algorithm,
a fast peak detection algorithm is designed to calculate the
seed points and growing criterions.

In order to evaluate the RGFPD algorithm, two commonly
used GICS image segmentation methods (FCM algorithm
and CNN algorithm) are selected as contrast. RGFPD, FCM,
and CNN are compared in perspectives of image segmenta-
tion accuracy, algorithm running time, standard curve fitting
and anti-interference ability. The results show that RGFPD
has three advantages. First, the region growing algorithm
is adopted as the image segmentation method that requires
lower calculation cost. RGFPD shortens the running time by
over 90%, compared to FCM and CNN. Second, a fast peak
detection algorithm is utilized to calculate the seed points
and growing criterions required by region growing, which not
only avoids the image segmentation deviation caused by the
unreasonable conditions setting, but also require no learning
modeling process, realizing self-adaptive segmentation of
GICS images.

Meanwhile, RGFPD has better anti-interference ability in
the process of segmenting GICS images. On the one hand,
RGFPD includes a filtering process that eliminates some
small-area interference before region growing. On the other
hand, by setting effective growing-stop conditions, some
large-area interference is avoided during region growing.
Therefore, when segmenting GICS images with interference,
RGFPD acquires more accurate result than FCM and CNN
algorithms.

In this paper, for the first time, the region growing
algorithm is applied to greatly shorten the GICS segmentation
time. What’s more, by combining the fast peak detection
algorithm, the region growing algorithm avoid manual set of
initial conditions, such as seed points and growing criterions,
realizing the real self-adaptivity. However, this algorithm has
some limitations. If the interference area is large and the
width is close to the width of the strip, the RGFPD algorithm
may not be able to accurately distinguish the interference.
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If an obvious fault exists in the C Line or T Line signal,
under-segmentation may occur. In addition, the RGFPD algo-
rithm is only studied and applied based on GICS images,
the application of which in fluorescent labeling immunochro-
matography, dot gold immunochromatography and other
fields is yet to be expanded.
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