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ABSTRACT This paper develops a wearable sport activity classification system and its associated deep
learning-based sport activity classification algorithm for accurately recognizing sport activities. The pro-
posed wearable system used two wearable inertial sensing modules worn on athletes’ wrist and ankle to
collect sport motion signals and utilized a deep convolutional neural network (CNN) to extract the inherent
features from the spectrograms of the short-term Fourier transform (STFT) of the sport motion signals.
The wearable inertial sensing module is composed of a microcontroller, a triaxial accelerometer, a triaxial
gyroscope, an RF wireless transmission module, and a power supply circuit. All ten participants wore the
two wearable inertial sensing modules on their wrist and ankle to collect motion signals generated by
sport activities. Subsequently, we developed a deep learning-based sport activity classification algorithm
composed of sport motion signal collection, signal preprocessing, sport motion segmentation, signal nor-
malization, spectrogram generation, image mergence/resizing, and CNN-based classification to recognize
ten types of sport activities. The CNN classifier consisting of two convolutional layers, two pooling layers,
a fully-connected layer, and a softmax layer can be used to divide the sport activities into table tennis,
tennis, badminton, golf, batting baseball, shooting basketball, volleyball, dribbling basketball, running, and
bicycling, respectively. Finally, the experimental results show that the proposed wearable sport activity
classification system and its deep learning-based sport activity classification algorithm can recognize 10 sport
activities with the classification rate of 99.30%.

INDEX TERMS Wearable inertial sensing device, sport activity classification, deep learning, convolutional
neural network.

I. INTRODUCTION
With the rapid development of wearable intelligent and artifi-
cial intelligence technologies, performance analysis in sport
science has undergone major changes in recent years. In gen-
eral, manual recording and analysis performed by trained
analysts in sport science has some disadvantages such as
time intensive, time consuming, subjective in nature, and
prone to human error and bias. Objective measurement and
analysis for sport activities is essential to understanding the
technical and physical demands associated with sports per-
formance [1]. Automatic sport activity recognition (SAR)
systems are developed to provide objective measurement
and analysis in sport science, which have the potential to
improve the accuracy and efficiency of sports performance
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analysis and evaluate the effectiveness of training programs
designed by coaches. Common automatic SAR systems can
be achieved through machine and deep learning approaches
by using the data measured by computer vision and inertial
sensing technologies [2]–[5].

Sport activities captured by computer vision can be uti-
lized for athlete detection and tracking, pose estimation,
tactical analysis, and movement analysis [6]. The proce-
dures of the computer vision-based automatic SAR systems
consist of player detection and tracking, temporal cropping,
and targeted motion recognition, which are dependent on
the sport type and camera setup [5]. The computer vision-
based automatic SAR systems can provide rapid post-match
analysis and real-time objective feedback before the next
race for coaches and athletes. However, the computer vision-
based automatic SAR systems suffer from limited environ-
ments, where the cameras are expensive, installed, and should
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capture all player in the installed environment, which influ-
ence the measurement and analysis performance.

The alternative to computer vision for sport activity
detection is inertial sensing technology, where the sen-
sors are wearable and composed of accelerometers, gyro-
scopes, and magnetometers. Wearable devices embedded
with inertial sensors are widely used in numerous appli-
cations such as authentication, rehabilitation, gait analysis,
health care, activity recognition, disease monitoring, naviga-
tion, and so on [7]–[12]. Recently, a number of researchers
have developed wearable inertial-sensing-based sport activity
monitoring and analysis systems for running, football, tennis,
baseball, golf, fencing, basketball, cycling, badminton, table
tennis, volleyball, and so on [3], [4], [13]–[23]. The inertial
sensors can measure the acceleration, angular velocity, and
magnetic signals generated by the sport motions during sport
training and competitions, and further obtain the orientation,
velocity, and trajectory of the sport travel through the inte-
gration process of the inertial signals. The advantages of the
inertial-sensing-based automatic SAR systems include low
cost, lightweight, small size, low power consumption, self-
contained in operations, and being wireless.

In general, there are several signal processing procedures
required to generate a suitable input data for machine learn-
ing classifier algorithms to recognize sport activities, which
include filtering, window motion durations, signal normal-
ization, feature extraction, feature reduction/selection, and
classification. For example, Margarito et al. [24] selected the
11 acceleration features from the 13 most commonly time-
and frequency-domain features by using the Relief method,
which are input to the Naïve Bayes (NB), decision tree (DT),
logistic regression (LR), and artificial neural network (ANN)
classifiers for recognizing the 8 sport activities including
cycling, cross trainer, rowing, running, squatting, stepping,
walking, and weight lifting. Ermes et al. [25] utilized the
custom decision tree combined with the ANN to classify the
9 sport activities which consist of lying down, sitting and
standing, running, walking, rowing with a rowing machine,
cycling with an exercise bike, Nordic walking, playing foot-
ball, and cycling with a regular bike, using the 7 time- and
frequency-domain features extracted from the accelerome-
ters and GPS measurements. Mitchell et al. [26] presented
the discrete wavelet transform (DWT)-based support vector
machines (SVMs) optimized by the sequential minimal opti-
mization (SMO) algorithm to recognize the 7 sport activities
using the measurements of the smartphone accelerometers.
Wang et al. [27] used the principle component analysis (PCA)
to obtain 3 features from the 12 statistical features and 3 mor-
phological features extracted from the microelectromechan-
ical systems (MEMS) motion sensors’ signals, which are
input to the SVM classifier for classifying elite, sub-elite, and
amateur volleyball players with an average accuracy of 94 %.

Deep learning techniques represent an alternative to these
deep learning-based classifiers for dealing with inertial
sensing data. Deep learning models can extract suitable
discriminative features from inertial sensing data to train

the deep learning models [22], [28]–[31]. In recent years,
some researchers have focused on developing effective deep
learning-based automatic SAR systems to measurements
gathered from wearable inertial sensing devices. To name a
few, Kautz et al. [32] employed a deep convolutional neural
network (DCNN)-based sport monitoring system for beach
volleyball using the Bosch BMA280 accelerometer sensor
placed on the player’s wrist. The proposed DCNN had suc-
cessfully recognized the ten beach volleyball actions such as
underhand serve, overhead serve, jump serve, underarm set,
overhead set, shot attack, spike, block, dig, and null class.
Jiao et al. [33] presented the DCNNs called GolfVanillaCNN,
GolfVGG,Golflnception, andGolfResNet to classify the nine
types of swing shapes using the strain-gage, accelerometer,
and gyroscope sensors. The accuracy of the abovementioned
DCNN-based classifiers reached 95.04%, 96.70%, 97.36%,
and 92.07%, respectively.

From our literature review, many researchers in the field of
machine learning have paid attention to the inertial-sensing-
based sport activity classification tasks. However, there is
a few of literature that utilizes deep convolutional neural
networks (CNNs), which can extract inherent features from
the inertial sensing measurements, to recognize sport activ-
ities. In this paper, a wearable sport activity classification
system and its associated deep learning-based sport activ-
ity classification algorithm are presented for sport activity
classification tasks. The wearable sport activity classification
system consists of two wearable inertial sensing modules
worn on athletes’ wrist and ankle to collect motion signals
of sport activities. The proposed deep learning-based sport
activity classification algorithm composed of sport motion
signal collection, signal preprocessing, sport motion segmen-
tation, signal normalization, spectrogram generation, image
mergence/resizing, and CNN-based classification is devel-
oped for classifying ten types of sport activities. The CNN
classifier is composed of two convolutional layers, two pool-
ing layers, a fully-connected layer, and a softmax layer, which
is utilized to extract the inherent features from the spectro-
grams of the STFT of the inertial signals and divide the sport
activities into table tennis, tennis, badminton, golf, batting
baseball, shooting basketball, volleyball, dribbling basket-
ball, running, and bicycling, respectively. The contribution
of this paper is to develop a low cost wearable sport activity
classification system and its deep learning-based sport activ-
ity classification algorithm for providing an effective tool
for sport activity classification tasks, which utilizes the deep
CNN classifier for obtaining more accuracy for sport activity
classification.

The rest of this paper is organized as follows. In Section II,
we introduce hardware architecture of the proposed wear-
able sport activity classification system in detail. The
deep learning-based sport activity classification algorithm,
consisting of sport motion signal collection, signal pre-
processing, sport motion segmentation, signal normaliza-
tion, spectrogram generation, image mergence/resizing, and
CNN-based classification, is then described in Section III.
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FIGURE 1. Wearable sport activity classification system mounted on an
athlete’s dominant wrist and ankle.

FIGURE 2. The proposed wearable inertial sensing module.

The experimental results and discussions are presented in
Section IV. Finally, the conclusion is given in Section V.

II. WEARABLE SPORT ACTIVITY
CLASSIFICATION SYSTEM
The proposed wearable sport activity classification system
shown in Fig. 1 was designed in order to collect motion
signals of sport activities, which consists of two wearable
inertial sensingmodules worn on the subjects’ dominant wrist
and ankle. The wearable inertial sensing module as shown
in Fig. 2 was measured 56 mm × 37 mm × 15 mm with
16 grams. The wearable inertial sensing module is composed
of a microcontroller (Arduino Pro Mini), a six-axis iner-
tial sensor module (MPU-6050), an RF wireless transmis-
sion module (nRF24L01), and a power supply circuit. The
schematic diagram of the wearable sport activity classifica-
tion system is shown in Fig. 3. In this paper, we utilize an
Arduino Pro Mini device as the microcontroller embedded in
the wearable inertial sensing module, which is based on an
ATmega328 core operating at a frequency of 16 MHz and
32 Kbytes of flash memory. The microcontroller collected
the sport motion signals measured from the six-axis inertial
sensormodule (MPU-6050) through an I2C interface and then
transmitted the signals to a personal computer (PC) via the RF
wireless transmission module (nRF24L01) through an SPI
interface. The six-axis inertial sensor module, including a
triaxial accelerometer, a triaxial gyroscope, and 16 bit analog
to digital converters (ADCs), is applied to simultaneously

FIGURE 3. Schematic diagram of the wearable sport activity classification
system.

collect the accelerations and angular velocities of the sport
activities in a three-dimensional space and output the digital
sport motion signals. The triaxial accelerometer is used to
measure the gravitational and motion accelerations of hand
and foot motions during executing sport activities and pos-
sesses a user selectable full scale of ±2, ±4, ±8, and ±16 g.
The gyroscope can detect the angular velocities of hand and
foot motions generated from sport activity movement and has
a full scale of ±250, ±500, ±1000, and ±2000 ◦/s. In this
paper, the sensitivity and range of the accelerometer were set
as 2048 LSB/g and±16 g, while which of the gyroscope were
configured as 16.4 LSB/◦/s and±2000 ◦/s. The sampling rate
of the accelerometer and gyroscope are both set as 100 Hz.
The power consumption of the wearable inertial sensingmod-
ule is provided by the power supply circuit consisting of a Li-
ion battery, a Li-ion battery charging module, and regulators.
The wearable inertial sensing module is powered by a 3.7 V
polymer Li-ion battery with a nominal capacity of 450 mAh.

III. DEEP LEARNING-BASED SPORT ACTIVITY
CLASSIFICATION ALGORITHM
In this paper, a deep learning-based sport activity classifi-
cation algorithm has been developed for recognizing sport
activities by using the accelerations and angular velocities
measured by the accelerometer and gyroscope. The deep
learning-based sport activity classification algorithm is com-
posed of the following procedures: 1) sport motion signal
collection, 2) signal preprocessing, 3) sport motion segmen-
tation, 4) signal normalization, 5) spectrogram generation,
6) image mergence/resizing, and 7) CNN-based classifica-
tion. First, the wearable inertial sensing modules worn on
subjects’ wrist and ankle collect the sport motion signals
and transmit them to the PC-based sport analysis interface
through the RF wireless transmission module. Second, in the
signal preprocessing procedure, the processes of the cali-
bration, lowpass filtering, and highpass filtering are carried
out to reduce the sensitivity and offset errors from the mea-
surements generated by the accelerometer and gyroscope,
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FIGURE 4. The proposed deep learning-based sport activity classification
algorithm.

remove the users’ unconscious trembles, and eliminate the
gravitational acceleration, respectively. Third, an adaptive
magnitude threshold method is developed to obtain sport
motion intervals, which is based on the magnitude thresholds
of the signal vector magnitudes of the filtered accelerations
and angular velocities. Fourth, the size and amplitude of the
sport motion signals within the sport motion intervals are
normalized. Subsequently, the short-term Fourier transform
(STFT) analysis is applied to the normalized accelerations
and angular velocities for generating the spectrograms of the
sport motion signals. Later, the spectrograms of the normal-
ized accelerations and angular velocities are merged together
to produce a new spectrogram, and then we perform spectro-
gram resize where set to 150 × 200 pixels. Finally, a CNN
can be used for extracting the characteristic features from the
resized spectrograms and classifying the ten types of sport
activities, which comprises two convolutional layers, two
pooling layers, a fully-connected layer, and a softmax layer.
Fig. 4 shows the block diagram of the proposed deep learning-
based sport activity classification algorithm. The details of
the proposed deep learning-based sport activity classification
algorithm are now described below.

A. SIGNAL PREPROCESSING
Both the accelerometer and gyroscope measurements always
contain contamination of sensitivity and offset errors, envi-
ronmental effects, and users’ unconscious trembles in
real-world applications. Therefore, the signal preprocessing
composed of calibration and lowpass filter is essential in
order to obtain the accurate measurements of the inertial

sensors before the applications [34], [35]. On the other hand,
the gravitational component of the measured accelerations is
needed to be removed for acquiring the motion accelerations
generated from the sport activities.

In this paper, the measurements of the triaxial accelerom-
eter and gyroscope are calibrated firstly to reduce sensitivity
and offset errors from the inertial sensors’ rawmeasurements.
For the accelerometer calibration, we first place the triaxial
accelerometer on a leveled surface. Subsequently, each axis
of the triaxial accelerometer are placed alternately upward
and downward to align with the Earth’s gravity which is only
measured by the accelerometer when the wearable inertial
sensing module is stationary. After then, the scale factors
and offsets for all axes of the accelerometer can be obtained,
which can be utilized to calibrate the rawmeasurements of the
accelerometer as equation (1). For the gyroscope calibration,
the sensitivity values for all axes represented in the datasheet
can be used to be the scale factors of the gyroscope. Then,
the mean of the angular velocities collected by keeping the
wearable inertial sensing module stationary at the beginning
are used to be the offsets for all axes of the triaxial gyroscope.
Finally, we can calibrate the raw measurements of the gyro-
scope by using the scale factors and offsets as equation (1).

Mc =

 SFx 0 0
0 SFy 0
0 0 SF z

×Mr +

OxOy
Oz

 , (1)

whereMc is the calibrated accelerations (ac = [acx acy acz]T )
or angular velocities (ωc = [ωcx ωcy aωcz]T ). Mr is the
raw accelerations (ar = [arx ary arz]T ) or angular velocities
(ωr = [ωrx ωry ωrz]T ). SFx , SFy, and SF z are the X-, Y-, and
Z-axis scale factor of the triaxial accelerometer or gyroscope.
Ox , Oy, and Oz are the X-, Y-, and Z-axis offset of the triaxial
accelerometer or gyroscope. The more detailed information
for the calibration procedures for the accelerometer and gyro-
scope can be found in [7] and [35].

Subsequently, the high frequency noise and users’ uncon-
scious trembles of the calibrated accelerations or angular
velocities are further reduced by using a digital lowpass filter.
In this paper, according to our empirical tests, we used a
15-point and a 5-point moving average filter for the sport
motion signals generated from the hand and foot movements,
respectively. Finally, the gravitational acceleration contained
in the lowpass-filtered accelerations should be eliminated by
using a digital highpass filter [36]. In this paper, the lowpass-
filtered acceleration is passed through a three-order highpass
elliptic filter with cut-off frequency of 0.005 Hz to remove
the gravitational acceleration component for obtaining the
motion accelerations generated by sport activities.

B. SPORT MOTION SEGMENTATION
The adaptive magnitude threshold method proposed in [4],
consisting of calculation of signal vector magnitudes, calcu-
lation of adaptive magnitudes of signal vector magnitudes,
finding start points of sport activity motion, and finding end
points of sport activity motion, is utilized to automatically
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FIGURE 5. The partition of the sport motion interval by the proposed
sport motion segmentation method for periodic sports. (a) Detection of
the ta,start

wrist and ta,end
wrist for the hand acceleration. (b) Detection of the

tω,start
wrist and tω,end

wrist for the hand angular velocity. (c) Detection of the

ta,start
foot and ta,end

foot for the foot acceleration. (d) Detection of the tω,start
foot

and tω,end
foot for the foot angular velocity. (e) Partition of the sport motion

interval of the foot angular velocity into sport motion and static phases
based on tstart

motion and tend
motion simultaneously.

segment sport motion of each sport activity from the fil-
tered accelerations and angular velocities generated from
hand and foot motions. A detailed sport motion segmentation
procedure can be found in [4]. The filtered accelerations
and angular velocities measured from the wearable inertial
sensing modules mounted on users’ wrist and ankle for peri-
odic (running) and aperiodic (tennis) sports are showed in
Figs. 5 and 6. Figs. 5 and 6 are used to illustrate how to

FIGURE 6. The partition of the sport motion interval by the proposed
sport motion segmentation method for aperiodic sports. (a) Detection of
the ta,start

wrist and ta,end
wrist for the hand acceleration. (b) Detection of the

tω,start
wrist and tω,end

wrist for the hand angular velocity. (c) Detection of the

ta,start
foot and ta,end

foot for the foot acceleration. (d) Detection of the tω,start
foot

and tω,end
foot for the foot angular velocity. (e) Partition of the sport motion

interval of the foot angular velocity into sport motion and static phases
based on tstart

motion and tend
motion simultaneously.

segment the sport motion interval for running and tennis by
using the proposed sport motion segmentation method. The
region with no color and the region with a grey color repre-
sent the sport motion and static intervals, respectively. From
Figs. 5 and 6, we can found that the proposed sport motion
segmentation method is reliable for all periodic and aperiodic
sports.
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C. SIGNAL NORMALIZATION
Once the sport motion interval has been segmented through
the sport motion segmentation procedure, the size and ampli-
tude of the sport motion signals collected by different users
are inconsistent. To be able to eliminate the effect of human
differences, each sport motion signal within the sport motion
interval has been normalized into the size of the signal with
the longest length via interpolation. Subsequently, we utilize
the Z-score method to normalize the sport motion signals for
reducing the single magnitude differences between the users.
The Z-score normalization equation is shown as follows:

SMn(k) =
SM (k)− SMmean

SM std
, (2)

where SM (k) and SMn(k) are the original and normalized
sport motion signals within the sport motion interval, respec-
tively, and k is the time steps in the sport motion interval.
SMmean and SM std are the mean and standard deviation of
the sport motion signals within the sport motion interval,
respectively.

D. SPECTROGRAM GENERATION
After the procedure of signal normalization, the short-time
Fourier transform (STFT) is applied to generate the spec-
trograms of the normalized sport motion signals. The spec-
trogram representation is a suitable domain for time-series
data when a deep learning-based classifier is applied, which
is indispensable to obtain interpretable features that can rep-
resent the intensity differences among nearest measurement
data points [37]. The spectrogram of the normalized sport
motion signal is the magnitude squared of the STFT of the
normalized sport motion signal, which is a time-frequency
signal representation. The computational procedure of the
spectrogram is firstly to use a window function to divide
a longer time signal into short segments with equal length
and then compute the Fourier transform separately of each
segment. The STFT of the normalized sport motion signal is
defined as follows:

STFT {x[n]}(m, ω) = X (m, ω)

=

∑∞

n=−∞
x[n]ω[n− m]e−jωn, (3)

where x[n] is the normalized sport motion signals (SMn),
ω[n] is the window function, and m is the center of the
window function. In this paper, the STFT is computed using
a 64-point fast Fourier transform with a Hamming window
overlapping with 50%. Subsequently, the spectrogram is the
magnitude squared of the STFT of the normalized sport
motion signals, which is defined as follows:

spectrogram {x[n]} (m, ω) = |X (m, ω)|2 . (4)

The examples of the spectrograms across different sport activ-
ities are shown in Fig. 7.

E. IMAGE MERGENCE/RESIZING
Once the spectrograms of the X-, Y-, and Z-axis normalized
sport motion signals measured by the accelerometers and

gyroscopes mount on user’s wrist and ankle are obtained via
the spectrogram generation procedure, an image mergence
method is utilized to merge the spectrograms of normalized
sport motion signals generated from all axes of all iner-
tial sensors. In the procedure of the spectrogram mergence,
the spectrograms obtained from the X, Y, and Z axes are
grouped column wise while the spectrograms computed on
different sensors are grouped together row wise. After then,
we magnify the merged spectrograms via nearest neighbor
interpolation, which employs the value of the nearest point
and ignores the values of other neighboring points, yielding
a piecewise-constant interpolation [38]. In this study, each
merged spectrogram is resized to 150 × 200 pixels for pro-
viding the inherent important features for the CNN classifier.

F. CNN-BASED CLASSIFICATION
Once the merged and resized spectrogram is obtained, each
spectrogram image can be considered as the input data of the
CNN classifier. The CNN classifier can divide the sport activ-
ities into 1) table tennis (backhand block), 2) tennis (fore-
hand flat), 3) badminton (forehand clear), 4) golf (swing),
5) batting baseball (batting swing), 6) shooting basketball
(set shot), 7) volleyball (underhand pass), 8) dribbling bas-
ketball, 9) running, and 10) bicycling, respectively. The CNN
is utilized in this study for recognizing the ten sport activities,
which is typically composed of one or more convolutional
and pooling layers followed by several fully-connected lay-
ers. The CNN has a number of convolutional layers that can
act as a feature extractor in order to obtain the high-level
features from input data. The overall structure of the CNN
is described below:

1) CONVOLUTIONAL LAYER
The convolutional layers use sliding filters to perform a con-
volution operation with the input spectrogram image. Subse-
quently, the values computed by the convolution operation are
used to form the outputs of the convolutional layers, whose
aspect ratio is roughly the same as that of the inputs of the
convolutional layers. The outputs of the convolutional layers
are referred to feature maps [39] and shown as follows:

cl,ki,j = f
(
blk +

∑M

m=1

∑N

n=1
wl,km,nx

l−1,k
i+m−1,j+n−1

)
, (5)

where l is the layer index, M and N are the length and width
of the kernel/filter size, blk is the bias for the kth feature
map of the lth layer, wl,km,n is the weight between the input
x l−1,ki+m−1,j+n−1 and the kth feature map of the lth layer, and f
is the activation function where the ReLU is adopted as the
activation function in this paper, which can be expressed as
follows:

f (x) = max (0, x) . (6)

2) POOLING LAYER
the pooling layer usually follows the convolutional layer
to perform a summary statistic of nearby outputs, which is
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FIGURE 7. Examples of spectrogram extracted from the ten sport activities. (a) table tennis, (b) tennis, (c) badminton, (d) golf, (e) batting baseball,
(f) shooting basketball, (g) volleyball, (h) dribbling basketball, (i) running, and (j) bicycling.
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FIGURE 7. (Continued.) Examples of spectrogram extracted from the ten sport activities. (a) table tennis, (b) tennis, (c) badminton, (d) golf, (e) batting
baseball, (f) shooting basketball, (g) volleyball, (h) dribbling basketball, (i) running, and (j) bicycling.

derived from cl,ki,j . The pooling operation used in this paper
is max-pooling, which outputs the maximum value among
nearby feature maps, and can be calculated as follows:

pl,ki,j = max
q∈Q

(cl,ki×R+q,j×R+q), (7)

where Q = 2 × 2 is the pooling size and R = 2 is pooling
stride in this paper.

3) FULLY-CONNECTED LAYER
Inherent features extracted from the stacked convolutional
and pooling layers are flattened into a one-dimensional fea-
ture vector as the input for the fully-connected layer:

olh = f (
∑

g
(wlhgp

l−1
g )+ blh), (8)

where wlhg is the weight between the gth node on layer l − 1
and hth node on layer l, blh is the bias for the hth node on the
lth layer, and f is the relu activation function.

4) SOFTMAX LAYER
the output of the last layer, softmax layer, computes probabil-
ity distribution over the predicted sport activity classes.

P (c | o) = argmax
c∈C

exp(oLh )∑NC
m=1 exp(o

L
m)

, (9)

where c is the sport activity class, NC is the total number of
sport activity classes, and L is the last layer index. in the train-
ing phase, we utilize the stochastic gradient descend (SGD)
algorithm to update the network parameters for minimizing a
categorical cross-entropy loss function [28].

In this paper, the structure of CNN classifier is determined
by a trial-and-error process. The proposed CNN classifier
shown in Fig. 4 contains two convolutional layers, two pool-
ing layers, one fully-connected layer, and one softmax layer.
Each convolutional layer followed by an ReLU activation
function and a 2 × 2 max-pooling layer. The first convolu-
tional layer uses the 150 × 200 × 3 image and applies ten
1× 10 filters. Subsequently, the volume of the original image

TABLE 1. Participant characteristics for sport activity classification
experiment.

becomes 75 × 95 × 10 through an ReLU and a 2 × 2 max-
pooling layer. The second convolutional layer has ten 1 ×
10 filters and is followed by an ReLU and a 2 × 2 max-
pooling layer, resulting in a 37 × 43 × 10 image volume.
Once all convolution and max-pooling are performed, the
37× 43× 10 image volume is flattened into a 15910× 1 fea-
ture vector in the fully-connected layer. The fully-connected
layer reduces the size of the feature vector from 15910 to 10,
and then the softmax layer takes the 10 × 1 reduced feature
vector and outputs the final classification result. In this paper,
the output of the CNN classifier is represented as the label
of the ten types of sport activities (i.e., table tennis (S1),
tennis (S2), badminton (S3), golf (S4), batting baseball (S5),
shooting basketball (S6), volleyball (S7), dribbling basketball
(S8), running (S9), and bicycling (S10) are labeled as ‘1’, ‘2’,
‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, and ‘10’) for the sport activity
classification task.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
Our experiments were performed on a PC running Microsoft
Windows 10 operating system with an Intel R©Core Processor
i7-7700 and 16-GBRAM that drive a NVIDIAGeForce GTX
1080 Ti GPU. The video observation was regarded as the cri-
terion measure which was used to validate the classification
results classified by the proposed deep learning-based sport
activity classification algorithm. The measures of accuracy
(Acc), specificity (Sp), sensitivity (Se), and correct classifica-
tion rate (CCR) were utilized to evaluate the performances of
the proposed deep learning-based sport activity classification
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FIGURE 8. Motion signals generated from the badminton activity. (a)
Hand accelerations. (b) Hand angular velocities. (c) Foot accelerations. (d)
Foot angular velocities.

algorithm, and defined as follows:

Acc(%) =
TP+ TN

TP+ TN + FP+ FN
× 100, (10)

Sp(%) =
TN

TN + FP
× 100, (11)

Se(%) =
TP

TP+ FN
× 100, (12)

CCR(%) =

∑C
i=1 TPi

TP+ TN + FP+ FN
× 100, (13)

where TP, TN, FP, and FN are true positive, true negative,
false positive, and false negative, respectively. The overall
classification performance is evaluated by CCR, where C is
the number of classes. In addition, we evaluated the classifi-
cation performances of the deep learning-based sport activity
classification algorithm by using the 2-fold, 5-fold, 10-fold,
leave-one-out (LOO), and leave-one-subject-out (LOSO)
cross-validation strategies.

A. PARTICIPANTS AND EXPERIMENTAL SETUP
In this paper, ten subjects (six males and four females; age=
21.4 ± 0.8 years; height = 168.7 ± 7.2 cm; mass = 60.1 ±
12.7 kg) without any self-reported injuries or musculoskeletal
disorders were recruited to collect sport motion signals for
the sport activity classification experiment. All participants

FIGURE 9. Motion signals generated from the bicycling activity. (a) Hand
accelerations. (b) Hand angular velocities. (c) Foot accelerations. (d) Foot
angular velocities.

were instructed to perform 10 types of sport activities with
each activity executed 10 times. In addition, the partici-
pants were asked to execute each sport activity lasting about
15 s, and allowed to rest if needed. For all aperiodic sports
(S1-S7), the sport movement for each sport is conducted
once only in 15s and then back to relax status. On the other
hand, the sport movement for each periodic sport (S8-S10)
is executed repeatedly and continuously lasting about 15s.
Therefore, a total number of 1000 (= 10× 10× 10) samples
were used to validate the classification performances of the
proposed wearable sport activity classification system and
its associated deep learning-based sport activity classification
algorithm. Table 1 shows the demographics of the participants
for the sport activity classification experiment. The experi-
mental protocol used in this paper was approved by Insti-
tutional Review Board (IRB) of the National Cheng Kung
University Hospital. All subjects were required to provide
written informed consent before study participation.

B. SPORT ACTIVITY CLASSIFICATION
In this experiment, each participant was invited to mount the
wearable inertial sensor modules on their wrist and ankle
and execute sport activities in a laboratory environment.
Figs. 8 and 9 show the motion signal generated from the
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TABLE 2. Classification performance comparisons of the proposed deep learning-based sport activity classification algorithm by cross-validation in sport
activity recognition task.

TABLE 3. Classification performance comparisons of CCRs for all 10 sports.

TABLE 4. Confusion matrix for sport recognition using the proposed deep learning-based sport activity classification algorithm verified by 2-fold
cross-validation.

TABLE 5. Confusion matrix for sport recognition using the proposed deep learning-based sport activity classification algorithm verified by 5-fold
cross-validation.

aperiodic (badminton) and periodic (bicycling) sport activi-
ties, respectively. The overall accuracy of the proposed deep
learning scheme was achieved 99.48%, 99.76%, 99.86%,
99.80%, and 99.64% by the 2-fold, 5-fold, 10-fold, LOO,
and LOSO cross-validation, respectively. The overall CCRs
of the proposed deep learning scheme were achieved 97.40%,
98.80%, 99.30%, 99.00%, and 98.20% by the 2-fold, 5-fold,
10-fold, LOO, and LOSO cross-validation, respectively. The
classification performance comparisons of the proposed deep
learning scheme with CNN classifier by the 2-fold, 5-fold,
10-fold, LOO, and LOSO cross-validation strategies are

summarized in Table 2. Obviously, these results demonstrate
that the proposed deep learning scheme can obtain good
performance for classifying the sport activities. In addition,
the performance comparisons of CCRs for all 10 sports are
shown in Table 3, which shows that golf (S4) and batting
baseball (S5) haveworse classification rates than other sports.
In addition, we can find that the CCRs of the periodic sports
(S8-S10) are better than that of the aperiodic sports (S1-S7).
The confusion matrices of the sport activity classification
using the proposed deep learning scheme verified by the
2-fold, 5-fold, 10-fold, LOO, and LOSO cross-validation
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TABLE 6. Confusion matrix for sport recognition using the proposed deep learning-based sport activity classification algorithm verified by 10-fold
cross-validation.

TABLE 7. Confusion matrix for sport recognition using the proposed deep learning-based sport activity classification algorithm verified by LOO
cross-validation.

TABLE 8. Confusion matrix for sport recognition using the proposed deep learning-based sport activity classification algorithm verified by LOSO
cross-validation.

TABLE 9. Classification performance comparisons of the proposed scheme with some existing methods for sport activity classification.

strategies are shown in Tables 4-8. In terms of the runtime
of the training processes, the proposed deep learning-based
sport activity classification algorithm spent 43.6 s, 255 s,
516 s, 50896.5 s, and 508 s by the 2-fold, 5-fold, 10-fold,
LOO, and LOSO cross-validation strategies, respectively.
Furthermore, the runtime of the test process was 0.0024 s.

From Table 4 to Table 8, we can find that the most misclassi-
fication occurred at golf (S4) and batting baseball (S5). The
reason is that these two sport activities have identical char-
acteristic features which are aperiodic hand swing and foot-
based motions. Obviously, from Figs. 10 and 11, the hand
accelerations of these two sport activities are similar and
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FIGURE 10. Motion signals generated from the golf activity. (a) Hand
accelerations. (b) Hand angular velocities. (c) Foot accelerations. (d) Foot
angular velocities.

aperiodic, while the hand angular velocities of these two sport
activities are also similar to each other.

C. DISCUSSION
In this section, we compared the classification performance
of the proposed deep learning scheme for sport activity
classification with those of other methods simultaneously
utilizing different classification methods presented in the
literature. We selected 3 existing sport activity classification
methods for comparison with our proposed algorithm. The
performance comparisons of our proposed algorithm and
3 existing methods for the sport activity classification task
are summarized in Table 9. The classification results com-
pare with the results reported in [24], [25], and [40] whose
average sport activity classification accuracy are 85.00%,
89.00%, and 95.06%. The overall accuracy of the proposed
CNN classifier was better than that of the logistic regression
(LR) or ANN [24], the hybrid classifier combining the cus-
tom decision tree and ANN [25], and CNN [40] by more
than 14.86%, 10.86%, and 4.8%, respectively. Therefore,
the experimental results indicate that the proposed wearable
sport activity classification system with the deep learning-
based sport activity classification algorithm is effective to
provide an accurate classification rate in the sport activ-
ity recognition task. Note that, the abovementioned studies

FIGURE 11. Motion signals generated from the batting baseball activity.
(a) Hand accelerations. (b) Hand angular velocities. (c) Foot accelerations.
(d) Foot angular velocities.

utilized various classification methods to classify numerous
sport activities with high accuracy; however, the performance
of them would be affected by their individual datasets and
number of sport activities. In addition, the limitations of this
paper include: 1) the proposed method has been evaluated on
exemplar samples of sport activities that were conducted in
a laboratory environment, and 2) the proposed CNN-based
sport activity classification algorithm is performed in offline.
In addition, the size of the wearable inertial sensing mod-
ules will be minimized for improving wear comfortability.
Furthermore, related to segmentation errors is the impor-
tance for recognizing sports involving multiple movements.
In future research, we will develop a more accurate sport
movement segmentation algorithm from sport movement sig-
nals in order to distinguish and recognize multiple movement
patterns of sports.

V. CONCLUSION
In this paper, a wearable sport activity classification sys-
tem and its associated deep learning-based sport activity
classification algorithm are presented to accurately clas-
sify ten sport activities consisting of table tennis, tennis,
badminton, golf, batting baseball, volleyball, shooting bas-
ketball, dribbling basketball, running, and bicycling. The
proposed deep learning-based sport activity classification
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algorithm composed of sport motion signal collection, signal
preprocessing, sport motion segmentation, signal normaliza-
tion, spectrogram generation, image mergence/resizing, and
CNN-based classification is developed to classify ten types
of sport activities. The inherent features are extracted from
the spectrograms of the STFT of the sport motion signals
using the CNN classifier which comprises two convolu-
tional layers, two pooling layers, a fully-connected layer,
and a softmax layer. The overall CCRs of 97.40%, 98.80%,
99.30%, 99.00%, and 98.20% by the 2-fold, 5-fold, 10-fold,
LOO, and LOSO cross-validation strategies for ten sport
activity classes, respectively, can be achieved by using the
proposed deep learning scheme. Based on the abovemen-
tioned experimental results, the effectiveness of the proposed
deep learning-based sport activity classification algorithm
has been successfully validated. We believe that the pro-
posed wearable sport activity classification system and its
associated deep learning-based sport activity classification
algorithm can be regarded as an effective method for inertial-
sensing-based sport activity classification tasks.
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