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ABSTRACT In consideration of secure and convenient, face gains increasing attention in variety of fields
during the past decades. Since human face is most accessible from our daily life and preserves the richest
information, face based biometric systems are widely used in person authentication applications. However,
face recognition systems are always challenged by face spoofing attacks. Although, researchers have
proposedmany face spoofing detectionmethods, which have achieved great performances, we aim to develop
a method to counter face spoofing, which combines the face detection stage and face spoofing detection stage
together. In this paper, we design face anti-spoofing region-based convolutional neural network (FARCNN),
based on improved Faster region-based convolutional neural network (R-CNN) framework. Motivated by
face detection, we regard the face spoofing detection as a three-way classification to distinguish real face,
fake face and background. We extend the typical Faster R-CNN scheme by optimizing several important
strategies, including roi-pooling feature fusion and adding Crystal Loss function to the original multi-task
loss function. In addition, an improved Retinex based LBP is presented to handle the different illumination
conditions in face spoofing detection. Finally, these two detectors are further cascaded and achieve promising
performances on the benchmark databases: CASIA-FASD, REPLAY-ATTACK and OULU-NPU. Besides,
for the purpose of verifying the generalization capacity of the proposed cascade detector, we perform
experiments on cross-databases and the results testify the effectiveness of our proposed method.

INDEX TERMS Face spoofing detection, faster R-CNN, crystal loss, Retinex, attention fusion, guided filter.

I. INTRODUCTION
With applications in person authentication with digital
devices, biometric-based systems are widely used with differ-
ent fine-grained biometric cues (e.g., fingerprint, iris, motions
and face). With the development of the face recognition
during the past decades, face gains increasing attention in
different kinds of fields, which is most accessible from our
daily life and preserves the richest information. However,
in consideration of the information privacy and security, how
to counter face spoofing attacks have become an important
issue for face-based biometric systems. Specifically, there
are four major types of attacks to deal with: printed photo
attack, displayed photo attack, replay video attack and 3D
mask attack. With the growth of internet and increasing of
information leakage, those spoofs are quite easy to obtain,
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which can be difficult to distinguish from the users’ real
faces visually. As a result, it is inescapable to develop reli-
able face anti-spoofing methods and deploy them in the face
authorization systems.

Printed, displayed and replay attacks are the most com-
mon spoofings and have been well studied from different
researchers. In the literature, a variety of different face spoof-
ing detection algorithms have been developed, which have
achieved impressive performances on benchmark databases.

To counter the face spoofing attacks, a prejudge is needed
for the face recognition systems to find out whether the face
is real or not. Thus, the face spoofing detection is treated
as a two-category classification problem and the solutions
are to learn a classifier which can discriminate between the
genuine faces and fake faces effectively. The methods of
face anti-spoofing can be divided into three categories in
the literature: (1) texture based methods, (2) motion based
methods, (3) image quality and reflectance based methods.

170116 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-8885-5051
https://orcid.org/0000-0003-2848-8610
https://orcid.org/0000-0003-1642-6762
https://orcid.org/0000-0001-7901-3047
https://orcid.org/0000-0002-5026-5416


H. Chen et al.: Cascade Face Spoofing Detector Based on Face Anti-Spoofing R-CNN and Improved Retinex LBP

For (1), the algorithms develop discriminative texture fea-
tures to counter various attacks. Most of the methods [1]–[6]
design hand-crafted features paying close attention to the
texture differences between the real and fake face images,
such as LBP and HOG.

In pursuit of more discriminative texture features to adapt
to different attack scenarios, Convolutional Neural Network
(CNN)-based methods [7]–[11] is employed to learn deep
features for face spoofing detection, which exhibit superior
performances compared with traditional hand-crafted feature
methods. Since training a CNN network needs large quantity
of training data, CNN-based methods may confront the risk
of overfitting, which may make the performances drop.

For (2), since the still images such as the printed and
displayed photos are used for face spoofing attacks, so the
basic motions can differentiate a real face from a printed
and displayed photo attack. To counter printed and displayed
photo attacks, motion based methods (i.e. head motions, eye
blinking and lip movements [12]–[15]) are developed. How-
ever, the methods may lose efficacy when facing with video
replay attacks.

For (3), image quality and reflectance-based
methods [16]–[18] are proposed to extract the surface reflec-
tion of the different materials and image quality degradation
from the real faces and fake faces. Due to the print, displayed
and replay attacks can be treated as the photos and videos
recaptured from the genuine faces. It is obvious that the recap-
tured image losed its quality and high frequency information
compared genuine ones. Besides, the noise information in
the fake face images also can be a significant cue for face
anti-spoofing, because of limited resolution and abnormal
shading.

In general, the traditional face spoofing detection algo-
rithm includes two stages: detect facial region and then fea-
ture extraction and classification with the detected facial
region. The traditional face spoofing detection algorithms
feed the face region processed by face detection module to
the trained detector and output the classification scores of
real faces and fake faces. Face detection task is to find the
location of faces and output the confidence scores of the
regions, which can be regard as a binary classification to dif-
ferentiate face and background. Motivated by face detection,
face spoofing detection task can be regard as a three-way
classification for real face, fake face and background. So we
aim to explore an architecture to combine the face detection
stage and face spoofing detection stage. Region-based CNN
(RCNN) [19]–[22] method is one of very important and
extremely effective framework in object detection task and
face detection task, which can be the countermeasure to solve
the two stages of the traditional face spoofing detection at the
same time.

Although currently existing face anti-spoofing algorithms
have achieved achieve great success, the performance of the
detectors are often influenced by external factors such as
illumination and image quality. To improve the illumination

robustness of the detector, we aim to explore a novel feature
to cope with different illumination conditions.

In this work, we designed a face spoofing detectionmethod
based on Faster R-CNN framework, called face anti-spoofing
R-CNN (FARCNN). This proposed FARCNN combines two
stages of traditional face spoofing detection (detect and crop
facial region and extract features) into one stage. The orig-
inal images without cropped are fed into the FARCNN and
the bounding boxes and classification scores are outputted
directly, which satisfies the realistic application scenarios.
In the framework of FARCNN, we improve the existing
Faster R-CNN scheme by extending several important strate-
gies, including roi-pooling feature fusion and adding Crystal
Loss function to the original multi-task loss function.

In addition, we propose a improved Retinex based LBP
to handle the different illumination conditions in face spoof-
ing detection. The traditional Retinex image enhancement
algorithm is improved by employing iterative guided filter
and luminance components of differernt color spaces for
illumination estimation. To make the best use of the enhanced
images, we extract LBP features on each component of
the enhanced images and concatenate them together. The
extracted improved Retinex based LBP features are further
fed to Support Vector Machine (SVM) for classification.

In general, the proposed FARCNN is more accurate but
light sensitive, while the proposed improved Retinex based
LBP is less accurate but light robust. We proposed a standby
cascade based on late fusion to take full advantage of these
two detectors, which improves the performance of face spoof-
ing detection. Our major contributions are as follows:

• We propose a face anti-spoofing R-CNN (FARCNN)
which accepts original face images as the input of the
network, which combines the face detection stage and
the feature extraction stage together and treat the face
spoofing detection as a three-way classification for real
face, fake face and background.

• Tomake the best use of the features of multiple convolu-
tion layers, we present an attention-based fusion method
to fuse the roi-pooling features adaptively and effec-
tively. Due to the adaptive fusion method, our proposed
FARCNN can generate more discriminative features for
classification part of the network.

• To minimize the intra-class variations and maximize the
inter-class variations of the learned features, we first
employ the Crystal loss and center loss for network train-
ing for face spoofing detection. The multi-loss function
combining Crystal loss and center loss can lead to a
better performance compared with traditional softmax
loss function.

• To improve the performances of FARCNN in var-
ious lighting conditions, a improved Retinex based
LBP is proposed. We optimize the existing Retinex
algorithm by employing iterative guided filter and
luminance components of different color spaces
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for illumination estimation. The proposed improved
Retinex based LBP features are proved to be discrim-
inative clues for face spoofing detection.

• To take best advantage of the proposed detectors,
we present a standby cascade of the FARCNN and the
improved Retinex based LBP detector, which improves
the illumination robustness of the FARCNN and works
better for face spoofing detection.

• To have a fair result comparison with the state of art,
we evaluate our proposed cascade detector extensively
on benchmark databases of face spoofing detection:
CASIA-FASD database, REPLAY-ATTACK database
and OULU-NPU database, and have achieved impres-
sive performances. Besides, we also conduct exper-
iments on cross-database and have achieved very
competitive results, which verified the great generaliza-
tion capacity of our proposed cascade detector.

II. RELATED WORKS
A. FACE SPOOFING DETECTION
Since face spoofing detection gains increasing attention
recently, researchers have proposed a large quantity of meth-
ods in the literature to counter face spoofing. In this section,
we briefly review approaches in three categories: texture
based methodsïĳŇmotion based methods and image quality
and reflectance based methods.

1) TEXTURE BASED METHODS
Different texture-based features are explored to counter face
spoofing in this category. The features can simply divide into
two types: hand-crafted features and CNN-based features.

In [1], the authors discovered the difference of texture
between the 2D images and 3D images using the analysis
of Fourier spectra and found the different frequency dis-
tributions between 2D images and 3D images due to the
surface reflection of 2D and 3D surfaces. In [2], the authors
extract hidden face texture features using retinex-based and
the Difference-of-Gaussian (DoG) filters, which can distin-
guish real and fake face. In [3], the researchers fed the
texture features, which were extracted by multi-scale local
binary pattern (LBP), to SVM classifier for real and fake
face classification. Reference [4] combined both space and
time information and developed a single multiresolution fea-
ture extractor to detect face spoofing attacks. Reference [5]
proposed the co-occurrence of adjacent local binary pat-
tern (CoALBP) algorithm to extract facial texture features
for face spoofing detection. [6] considered the texture in
different color spaces and extracted LBP features from HSV
and YCbCr color spaces to distinguish fake images from real
images. With an increasing variety of face spoofings, one
single hand-crafted feature can not meet different needs of
face spoofing detection.

To learn more discriminative features from the data,
CNN-based methods are proposed to automatically learn
features for face anti-spoofing. In [8], the authors employed

pre-trained models on ImageNet and finetuned the model
on face-spoofing databases and fed the features into SVM
for classification. Reference [7] developed different feature
inputs and fed them into CNN network for face spoof-
ing detection. Reference [9] propose a novel two-stream
CNN-based approach for face anti-spoofing, which combin-
ing hand-crafted feature and CNN-based feature extracted
from the face images. These two types of features pro-
vide the face image with two liveness scores and the late
fusion lead to the final prediction for classification. Refer-
ence [23] extracted color local binary patterns (LBP) from
the fine-tuned VGG-face model and fed the feature to support
vector machine (SVM) for classification. Reference [24] pro-
posed a face PADmethod based on the fusion of two comple-
mentary attack-specific facial color texture features:RI-LBP
and SURF, which also performed well in cross-database eval-
uation. Reference [25] presented amotion blur analysis-based
method and fused 1D convolutional neural network feature
and local similar pattern (LSP) feature to detect the replayed
video attacks. Reference [10] fused the information of 3D
depth shape and rPPG signals to distinguish live and spoof
faces. Recently, a depth supervised model was designed in
both spatial and temporal domains which is proved to bemore
robust and discriminative for face spoofing detection in [11].

2) MOTION BASED METHODS
Methods in this category make use of the motions of face
such as lips movements, eye blinking and some other motions
to counter the photo attacks and display attacks. By model-
ing different stages of eye blinking, the movement of eyes
is used as the effective cue for face anti-spoofing in [12].
In [13], the combination of mouth movement and eye blink-
ing is employed to detect spoofing attacks. Besides, in the
IJCB facial spoofing competition [14], some participants
used eye blinking and head movement together to distinguish
between real faces and spoof faces. For one of the most resent
work [15], the researchers enhanced the facial expressions for
more robust detection of face anti-spoofing.

3) IMAGE QUALITY AND REFLECTANCE BASED METHODS
Motivated by the truth that the recapture image and video
may cause an image quality drop and a reflectance differ-
ences, themethods based on image quality and reflectance are
presented in the literature. Reference [16] extracted specular
reflection, blurriness, chromatic moment and color diversity
on the liquid crystal display (LCD) screen to describe the
surface reflection differences between the real and fake faces.
Reference [17] fused image-quality features and optical flow
features to distinguish live and spoof faces. Moreover, utiliz-
ing the noise information of fake face images by the Fourier
spectrum, [18] extracted the features which performed well in
face spoofing detection. Such image quality and reflectance
based methods work well for low-resolution attacks, nev-
ertheless, the performance may drop when facing the high
quality spoof artifacts.
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FIGURE 1. (A) is the overall pipeline; (B) instances the work flow of improved Retinex based LBP detector.

FIGURE 2. (A) is the pipeline of the Face Anit-spoofing R-CNN; (B) instances the work flow of proposed fusion method
based on attention model; (C) clarifies the L2-constraint for Crystal Loss.

B. REGION-BASED CNNs
With the trend of deep learning, Region-based CNNs
(R-CNN) have achieved a dramatical improvement of per-
formances for object detection. The Region-based CNNs
methods were initiated by R-CNN [19], which extracts region
proposals from the image and then each region of inter-
est (ROI) is classified by a well-trained network. To reduce
redundant CNN computations in the R-CNN for speeds-
up, the framework has been extended to share the basic
convolution features for ROI pooling in [20], [21]. Later,
Region Proposal Network (RPN) are presented in Faster
R-CNN [22], which achieves further speeds-up compared
with Fast R-CNN [21]. Faster R-CNN is extended to many
different tasks by the reason of its effectiveness in object
detection.

Recently, researchers employ Faster R-CNN to improve
the performances of face detection task. Reference [26]
proposes a Faster R-CNN based network for face detec-
tion, which have a performance rise. Similarly, [27] extends
Faster-RCNN to a face detector for multi-task training.
CMS-RCNN [28] exploits contextual information to enhance
face detect performance. Reference [29] combines two task:
face detection and facial keypoint localization together by
training a multi-task RPN to gain the performance improve-
ment of these two task.

C. VISUAL ATTENTION MODEL
To focus the perception on the important part of the fea-
tures, visual attention model can be used to fuse features
which offer more information. To fuse color, orientation
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and luminance orientation features, [30] proposed a novel
fusion method based on attention model, which can simulate
the human visual system to make use of the the region of
interests of people for performance improvement. In [31],
authors proposed an end-to-end CNN network to fuse spa-
tial and temporal features. In addition, attention model has
been used in different computer vision tasks, such as image
classification [32], emotion recognition [33] and motion
recognition [34].

III. METHODOLOGY
Face anti-spoofing is actually regarded as a binary classifi-
cation problem which is aimed at differentiating real face
from fake face. The natural solution of traditional presen-
tation attack detection includes two stages: facial region
acquirement and feature extraction. Despite the impressive
performances of the traditional CNN-based face spoofing
detection algorithms, a model combining face detection and
face spoofing detection is needed in practical applications.
To put these two stages together, face spoofing detection task
can be regard as a three-way classification for real face, fake
face and background. We design our face spoofing detection
model based on improved Faster R-CNN framework, which
has been achieved great success in object detection tasks and
face detection tasks.

To adapt to the specific needs of the face spoofing detec-
tion, several effective modifications are made in multi-
ple aspects based on Faster R-CNN framework, including
roi-pooling feature fusion and adding Crystal Loss function
to the original multitask loss function.

Though, FARCNN can achieve promising performances
on three benchmark face spoofing databases, FARCNN is
sensitive to illumination variations. To handle various lighting
conditions, we proposed improved Retinex based LBP and
cascade these two detectors to improve the robustness on
different lighting conditions.

Generally, we first introduce the framework of our pro-
posed Face anti-spoofing R-CNN. After that, we present our
proposed improved Retinex based LBP. Last, we cascade
them together with late fusion.

A. FACE ANTI-SPOOFING R-CNN
Similar to Faster RCNN, our Face anti-spoofing R-CNN is
a two-stage detector including three major modules: shared
convolutional feature layers, region proposal network (RPN)
and Fast R-CNN module. The last two modules share the
same weight and bias of the convolution feature layers which
reduce redundant computations of face spoofing detection
task.

The shared basic convolutional layers extract the basic con-
volutional feature map via multiple convolutional layers and
maxpooling layers from an input image. Based on that basic
convolutional feature map, the RPN module generates a set
of rectangle region proposals which likely contain the faces,
called regions of interest (RoIs). The ROIs are processed
into fixed-length feature based on the basic convolutional

featuremap via ROI pooling layer. After that, the ROI pooling
features are feed into the Fast R-CNN module for category
label prediction (real face vs fake face).

For the RPN module, which is known as an anchor-based
method, a set of pre-defined boxes are used for box-
classification and box-regression. The typical Faster R-CNN
uses anchors which are associate with multiple scales and
aspect ratios, aiming to cover various shapes of the bounding
boxes. With the prior knowledge that there is only one big
face in a face spoofing image, we simplify the scales of the
anchors to adapt to this task.

Different with the typical Faster R-CNN, we employ atten-
tion model to fuse the multiple convolution layers to make
the best use of the ROIs. Besides, we design a multi-task loss
function based on the Crystal Loss.

1) FEATURE CONCATENATION
For the typical Faster R-CNN, the features of the region are
processed by ROI pooling layer based on the basic convo-
lutional feature map. The RoI pooling features are further
fed to the classifier for category label prediction. The RPN
module and the RoI pooling layer utilize the same basic
features extracted from the convolution layers, which saves
a lot of unnecessary calculations. To offer more information
of the ROIs, we propose a improved RoI pooling module by
combining different layers of the basic feature maps.

In many computer vision tasks, the selection of feature
fusion method is importance for improving performance.
Inadequate fusion methods may cause the performance of
the fusion feature drops compared with individual ones. The
commonly used fusion methods contain feature concatena-
tion, feature averaging, feature max pooling and feature min
pooling.

In face anti-spoofing task, these traditional methods are
proved to be inefficient to maximize the interaction between
features of multiple convolution layers. For our solution,
we present a fusion method which is based on attention
model. Specifically, we first put the features into RoI-pooling
and L2-normalize layers before feeding to the proposed atten-
tion fusion model.

The proposed attention fusion model is a general structure
which is actually regarded as an adaptive-weighted average
pooling and can be used in various computer vision tasks. The
superiority of attention model can make the fusion features
adapt to different task scenarios.

Given a set of features to be fused {fi, i = 1, ...,N},
the attention model is trained to generate the fusion weights
of the features {wi, i = 1, ...,N} for producing the fusion
feature v:

v =
N∑
i=1

wifi (1)

Via Eq. (1), learning the the weights {wi} of features
is the key of the attention fusion method. When wi =
1/N , the attention fusion becomes traditional feature average
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fusion. To adapt to the face spoofing detection, the parameter
N = 3 and the features are extracted from three convolution
layers.

To learn the fusion weights wi, we employ a kernel q of
the same dimensionality of fi which is only parameters of the
model to be trained. he feature vectors are filtered by q via
dot product:

di = qT fi (2)

wi =
edi∑
j e
dj

(3)

A vector is generated from the filter, which represent the cor-
responding feature, named di. To further generate the weights
wi subject to

∑
i wi = 1, we feed di into the softmax function

to generate the weights wi which is all positive, shown in
Eq. (3). From the presentation of attention fusion method,
the fusion result r is impertinent with the amount of input
features fi.

2) LOSS FUNCTION
The general face spoofing detection system is trained as a
binary classifier which aims to learn to differentiate between
the real faces and the fake ones. The binary classifier is
commonly trained with softmax loss function, given by
Equation (4).

Ls = −
1
M

M∑
i=1

log
eW

T
yi
f (xi)+byi∑C

j=1 e
W T
j f (xi)+bj

(4)

where xi denotes the ith input feature vector in the batch of
sizeM , f (xi) indicates the output of the model, yi is the class
label corresponding to the input face image, andW and b are
the weights and bias for the layer of classification.

However, when training with the quality imbalance data,
the softmax loss is inefficient to model hard negative samples.
For our solution, we introduce the Crystal Loss [35], which
is newly proposed loss function employed in face recognition
tasks. The primary concept of the Crystal Loss is to constrain
the feature to a hypersphere with fixed radius by adding an
additional L2-constraint to the feature descriptor, given by
Equation (5) and (6).

minimize−
1
M

M∑
i=1

log
eW

T
yi
f (xi)+byi∑C

j=1 e
W T
j f (xi)+bj

(5)

subject to ‖f (xi)‖2 = α, ∀i = 1, 2, ...M , (6)

where C is the number of the classes and α is the fixed radius
on the hypersphere. Similar to softmax loss, the Crystal loss
can be coupled with auxiliary loss such as center loss, given
by Equation (7).

Lc =
1
2

M∑
i=1

∥∥xi − cyi∥∥22 (7)

For face spoofing detection task, there are only three cen-
ters representing real faces, fake faces, and non-faces, respec-
tively. The center loss is very effective in minimizing the

intra-class variations, and the Crystal loss as well as the
softmax loss have some exploits in maximizing the inter-class
variations of the learned features. So, to pursue the discrim-
inative features, we couple Crystal loss with the center loss
for the face spoofing detction task. The entire loss function is
formulated as:

Lmulti = Lreg + µLcenter + λLcrystal (8)

The regression loss adopted in our method is SmoothL1,
which is used for bounding box regression task. The
hyper-parameter λ,µ adjust the balancing weights among the
three terms of the loss.

Summary In this section, we introduce our proposed face
spoofing detection model based on improved Faster R-CNN
framework, called FARCNN. The proposed FARCNN is used
for two reasons. (1) Different from traditional face spoofing
detection, we regard this task as a three-way classification
to distinguish real face, fake face and background, which
combines the face detection stage and face spoofing detection
stage. The performances of face spoofing detection will not
be impacted by the effect of face detection module and can
take best advantage of the information on full images of
the databases. (2) For the application scenarios in reality,
the input of the face spoofing detection systems is the orig-
inal images which is captured by cameras. A face spoofing
detection system Combining the face detection task and face
spoofing detection task together is satisfied the need of appli-
cation scenarios in reality.

The feature concatenation with attention model is aim to
make the best use of the convolution features from different
layers. For traditional Fast RCNN networks, the RoI pooling
and the RPN network share the same feature map for generat-
ing ROIs and classification, which saving a lot of unnecessary
calculations. In order to capture more fine-grained details
of the RoIs, we employ attention fusion to obtain the use-
ful information from multiple convolution layers. Specially,
we explore which layers should be utilized with some exper-
iments in Section IV-D.

In order to explore a face spoofing detection system
for applications, the generalization ability of the method is
somehow more important than the performances in intra-
database. The center loss is very effective in minimizing
the intra-class variations, and the Crystal loss as well as the
softmax loss have some exploits in maximizing the inter-class
variations of the learned features. Thus, employing Crystal
loss and center loss can improve the intra-databse as well
as inter-database performances.The specific experiments are
shown in Section IV-G.

B. IMPROVED Retinex BASED LBP FEATURE
1) Retinex THEORY
Despite the strong nonlinear feature learning capacity of deep
learning, the performance of anti-spoofing degrades when
the input images are captured by different devices, under
different lighting, etc. In this work, we aim to propose a
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well-designed feature to generalizes better to various envi-
ronments, mainly various lightings.

Retinex theory was first raised by Land and McCann
in 1971 [36]. The Retinex theory is proposed to simulate the
human retina system and assumes that the color of the object
is determined by its reflection ability of light of different
wavelengths, which is independent of the illumination on the
object. The source image S(x, y) can be separated into the
reflectance image R(x, y) and the illumination image L(x, y),
given by Eq.9:

(9):

S(x, y) = R(x, y) · L(x, y) (9)

where x and y are image pixel coordinates.
According to the theory, illumination image contains the

low frequency information, while reflectance image pre-
serves the high frequency information, such as texture and
edge. The Retinex Theory is to remove the illumination
impact from the source image and gets the reflectance image
which can reflect the surface characteristics of the object.
To compute the reflectance image, logarithmic transforma-
tion deployed on both sides of the Eq.9. So the estimation of
R(x, y) can be implemented as follow:

log[S(x, y)] = log[R(x, y)]+ log[L(x, y)] (10)

where log[S(x, y)], log[R(x, y)], and log[L(x, y)] are repre-
sented by s(x, y), r(x, y), and l(x, y) for convenience.
From Eq.10 we can see, the most vital step of retinex algo-

rithm is to estimate the illumination image. The traditional
Retinex based algorithms, such as Single-scale Retinex (SSR)
and multi-scale Retinex (MSR), utilize the Gaussian filter for
illumination estimation, shown in Eq.11.

r(x, y) = s(x, y)− log[S(x, y) ∗ G(x, y)] (11)

Symbol ’*’ is the convolution operation, G(x, y) is Gaussian
filter, given as follow:

G(x, y) = Ke−(x
2
+y2)/c (12)

where c is the scale parameter of Gaussian surround function.
The value of c is empirically determined. K is selected to
satisfy: ∫∫

F(x, y)dxdy = 1 (13)

Summary Traditional Gaussian filter based retinex algo-
rithms have achieve promising performances in image
enhancement. However, due to the property of the Gaussian
function, there are still some drawbacks for these algorithms.

The retinex theory is based on the assumption that the
illumination changes of an image is very slowly, while it
may not be tenable in reality. The sharply contrasting area
may lead to halo artifacts in enhanced images. In addition,
the image filtered by Gaussian filter appears some degree of
image blur, which causes the loss of details. To solve these
problems, we employ iterative guided filter to estimate the
illumination image.

FIGURE 3. Comparison of the SSR algorithm, MSR algorithm and
proposed iterative guided filter based retinex algorithm. From top to
bottom: print attack, video attack and real face. From left to right: (a) is
RGB image, (b) is SSR algorithm result, (c) is MSR algorithm result, (d) is
the proposed result.

2) ILLUMINATION IMAGE ESTIMATION
In view of the shortcomings of the traditional Retinex algo-
rithm, iterative guided filter is adopted in this paper instead
of gaussian filter to better estimate the illumination image.

Guided filter [37] is an edge-preserving smoothing filter
which is fast and non-approximate linear-time algorithm. The
guided filter conducts the original image referred to the edges
of a guidance image and the guidance image can be the
original image or a different image. The filter is a linear
model between the guidance image I and the output image q,
in addition, the input image p. The definition is as follow:

qi = ak Ii + bk , ∀i ∈ ωk (14)

whereωk is the square filter windowwith the size of (2r+1)2,
r is the radius of ωk , k is the center pixel of the filter window,
i is the index of the output and guided image. To compute the
linear coefficients ak and bk , we minimize the cost function
as follow:

E(ak, bk ) =
∑
i∈ωk

[(ak Ii + bk − pi)2 + εa2k ] (15)

where ε is a regularization parameter controlling the value
of ak . ak and bk are given by linear regression:

ak =
1
|ω|

∑
i∈ωk Iipi − µkpk

σ 2
k + ε

(16)

bk = pk − akµk (17)

where µk and σk are the mean value and the standard devi-
ation of I in ωk respectively, |ω| is the number of the pixels
in ωk , pk is the mean of p in ωk . The output of the filter can
be formulated with ak and bk .

qi =
1
|ω|

∑
i∈ωk

(ak Ii + bk ) = aiIi + bi (18)

where aiandbi is the mean values of ak and bk respectively.
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FIGURE 4. Scheme one iterative guided filter results on REPLAY-ATTACK databate, given in Eq.20. Average gradient (number in the
boxes) showing the smooth degree of each iteration step of guided filter. From left to right, the image are filtered with different ε

and fixed r , r = 4, ε(n) = 0.052 × 2n. Samples cover three kind of face image in adverse illumination, from top to bottom: print
attack, video attack and real face.

FIGURE 5. Scheme two iterative guided filter results on REPLAY-ATTACK databate, given in Eq.21. Average gradient (number in the
boxes) showing the smooth degree of each iteration step of guided filter. From left to right, the image are filtered with different ε

and fixed r , r = 4, ε(n) = 0.052 × 2n. Samples cover three kind of face image in adverse illumination, from top to bottom: print
attack, video attack and real face.

From the Eq.16 17, when σ 2
k � ε, the region is of high

variance. So ak ≈ 1, bk ≈ 0 and according to Eq.14,
qi ≈ Ii, which means the filter preserves the edge. On the
contrary, when σ 2

k < ε, the pixels in ωk is similar. So ak ≈
0, bk ≈ µk and qi ≈ µk , which means the filter smooths
the region. In particularïĳŇthe two parameters: radius r of
the square filter window and regularization parameter ε need
to be set properly, which may effect the output of the guided
filter.

Gr=
1

(M − 1)(N − 1)

M−1∑
h=1

N−1∑
j=1

√
(1I2x +1I2y )/2 (19)

where M and N is the size of the image, 1Ix and 1Iy
is the first-order derivative of the horizontal and vertical
directions. The smaller of the gradient, the better smoothing
effect.

The selection of these two parameters determines the effect
of the illumination estimation. Single scale guided filter can
not reach the satisfactory smoothing effect for illumination
image estimation, hence, three kinds of schemes for iterative

guided filter is proposed in this paper, given by Eq.20, Eq.21
and Eq.22.

L(n) = GF (L(n−1),L(n−1)) (20)

L(n) = GF (L(n−1), p) (21)

L(n) = GF (p,L(n−1)) (22)

where L(n) and L(n−1) are illumination images in nth and (n−
1)th filter step, p is the input image, GF () is the guided filter
with the parameters: ε = ε(n) and r = r (n). Scheme one uses
the filtered image as the input image and the guidance image.
Scheme two uses the input image as the guidance image to
iterate filter, while scheme two employs iterative guided filter
to obtain the guidance image and filter the input image with
the well-processed guidance image. To decide which scheme
is suitable for this task, we conduct experiments employing
iterative guided filter with fixed parameter r and multiple
sets of ε, shown in Fig.4, 5 and 6. From the average gradient
values in the figures, the scheme one outperformed the other
schemes, which achieved the best iteration efficiency and
effectiveness.
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FIGURE 6. Scheme three iterative guided filter results on REPLAY-ATTACK databate, given in Eq.22. Average gradient (number in the
boxes) showing the smooth degree of each iteration step of guided filter. From left to right, the image are filtered with different ε

and fixed r , r = 4, ε(n) = 0.052 × 2n. Samples cover three kind of face image in adverse illumination, from top to bottom: print
attack, video attack and real face.

FIGURE 7. The flow chart of the iterative guided filter.

The Eq.20 shows the core mechanism of the iterative
guided filter. Guide filtering with scale factor r (n) and regular-
ization parameter ε(n) is carried out to obtain the illumination
image L(n) at step n with illumination image L(n−1) at the
previous step, shown in Fig.7. When the adjacent gradient
difference of the illumination images (Eq.23) is less than the
pre-set threshold (1Gr < τ ) or the number of iterations is
larger than the pre-set max number (n < Nmax), the iteration
process terminates and output the final illumination images.

1Gr =
∣∣∣G(n)

r − G
n−1
r

∣∣∣ (23)

To speed up iteration, we update the parameters in expo-
nent. Specifically, r (n) = r (0) × 2n and ε(n) = ε(0) × 2n. For
initialization, r (0) = 2 and ε(0) = 0.052.
The edge preserving and smoothing performance of itera-

tive filtering is reflected in the fact that with the increase of
scale parameters and smoothing parameters, various contrast
details are gradually smoothed out, which can have a satis-
factory estimation of the illumination. The Retinex algorithm
results with each iteration step of guided filtered image is
shown in Fig.8.

3) IMPROVED Retinex BASED LBP
IN DIFFERENT COLOR SPACES
For the traditional Retinex based image enhancement meth-
ods, the input RGB image are enhanced separately in three
channels, which may lead to severe color distortion. Since
RGB color space preserve abundant texture information,
the three components of the RGB color space are all closely
related to the brightness, that is, as long as the brightness
changes, the three components will change accordingly. This
motivated us to find appropriate color spaces for illumination
estimation.
In this paper, we considered three color spaces: YCbCr,

HSL and LAB, to explore the effectiveness for illumination
estimation. All of these color spaces have an independent
illumination component which can reflect the characteristics
of light of a image.
LAB is proposed to describe people’s visual perception in a

digital way. The ’L’ component in the Lab color space is used
to represent the brightness of pixels, and its value range is
[0,100], representing the range from pure black to pure white.
’A’ represents the range from red to green, and the value range
is [127,-128]. ’B’ represents the range from yellow to blue,
and the value range is [127,-128].
YCbCr is commonly used in digital TV and image com-

pression. ’Y’ represents the brightness component, ’Cb’ is the
blue component, and ’Cr’ is the red component.
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FIGURE 8. Retinex algorithm results based on iterative guided filter on REPLAY-ATTACK database. From top to bottom: print attack,
video attack and real face. From left to right: original image, Retinex algorithm results with each iteration step of guided filtered
image.

FIGURE 9. Retinex algorithm results based on iterative guided filter with luminance component in different color spaces. From top
to bottom: print attack, video attack and real face. From left to right: (a) RGB image, (b) ’L’ component in HSL, (c) ’L’ component in
LAB, (d) ’Y’ component in YCbCr, and (e)-(g) is the corresponding iterative guided filter base retinex algorithm results.

HSL is a representation that maps points in the RGB color
model into a cylindrical coordinates.’H’ is used to represent
the fundamental property of color. ’S’ refers to the purity of
color. The higher the value is, the purer the color is. The lower
the value is, the gray gradually becomes. The range ovalue
is 0-100%. ’L’ represents the brightness component with the
range of 0-100%.

To verify the effectiveness of different color spaces for face
spoofing detection, firstly, RGB image is converted into LAB,
YCbCr and HSL, respectively. And then, ’L’ component in
LAB, ’Y’ component in YCbCr and ’L’ component in HSL
are employed to estimate illumination images (LLAB, LYCbCr
and LHSL). According to the Eq.10, reflectance images can
be achieved (RLAB, RYCbCr and RHSL), and the results are
presented in Fig.9.

After the acquisition of the reflectance images, we syn-
thetize the reflectance images with the other two color com-
ponents of these three color spaces. The combinations of
the three proposed color spaces are named Retinex-AB,

Retinex-CbCr and HS-Retinex. To evaluate the effective-
ness of these three proposed color spaces for face spoof-
ing detection, we extract the LBP features in Retinex-AB,
Retinex-CbCr and HS-Retinex separately in three channels
and concatenate them into three novel LBP: Retinex-ABLBP,
Retinex-CbCr LBP and HS-Retinex LBP. The experimental
results in three benchmark face spoofing database are pre-
sented in Section IV.

C. DETECTOR CASCADE WITH LATE FUSION
The output of the proposed FARCNN is the bounding box
of faces and corresponding scores. Despite FARCNN can
solve the most cases of face spoofing, when facing the face
images in reverse light, the judgment of the classifier becomes
uncertain. To face this situation, we develop detector employ-
ing improved Retinex based LBP feature as the standby
detector.

When the scores outputed by FARCNN are lower than
the pre-set threshold (threshold = 0.9), these images and the
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corresponding bounding boxes will be fed into the proposed
improved Retinex based LBP detector. The detector first
crops the face images with the bounding boxes and then
extracts improved Retinex based LBP features according to
the illustration in Section III-B. Finally, we average the scores
obtained from improved Retinex based LBP detector and the
scores obtained from FARCNN, and make the final decision,
shown in Fig.1.

When the scores outputed by FARCNN are higher than
the the pre-set threshold, face spoofing judgments from
FARCNN is reliable and can be used as the final output.
This kind of standby cascade can not only improve the per-
formance of face spoofing detection, but also reduce the
calculation.

IV. EXPERIMENTS
In this section, comprehensive experiments have been
conducted on three benchmark databases to verify the
effectiveness of our method. Firstly, we briefly intro-
duce these three databases of face spoofing detection in
Subsection IV-A. Secondly, we provide our experimental
settings in Subsection IV-B. Lastly, we present the evalua-
tion results of the two benchmark databases, including inter
database results and intra database results.

A. BENCHMARK DATABASE
In this subsection, we give the brief description of CASIA
Face Anti-Spoofing Database [38], REPLAY-ATTACK
database [39] and OULU-NPU database [40]. These three
face spoofing databases contain different kinds of real
face images and face spoofing attack images. The brief
introductions of CASIA-FASD database, REPLAY-ATTACK
database and OULU-NPU database are presented below.

1) THE CASIA FACE ANTI-SPOOFING
DATABASE (CASIA FASD)
The CASIA FaceAnti-SpoofingDatabase consists of training
set and test set, shown in Fig.10. The face spoofing attacks
were generated by recapturing the real face photos and videos
with three different cameras. Due to the different capture
devices, the attacks contain three imaging qualities: low,
normal, and high. In addition, the subjects were required
to have some motions in the videos such as eye blink and
body sway. The types of the face spoofing attacks are divided
into three parts: (1) Warped Photo Attack: The printed face
images are warpped to simulates the facial motion of the real
people with the resolution of (1920 × 1080). (2) Cut Photo
Attack: The eye regions of a printed face image is cut off and
then an attacker exhibits his eyes through the holes of the
eye regions to simulate the eye blinking of the real people.
Besides, the attacker also exhibits the eyes of a integrated
photo through the holes of the eye regions and moving the
integrated photo up and down slightly to simulate the eye
blinking of the real people. (3) Video Attack: The attacker
displays the videos of real people on an iPad and recapture
videos via a camera.

FIGURE 10. Sample selected from the CASIA-FASD database. From top to
bottom: low, normal and high quality images. From the left to the right:
real faces and warped photo, cut photo and video replay attacks.

FIGURE 11. Samples selected from the REPLAY-ATTACK database. The first
row presents images taken from the controlled scenario, while the second
row corresponds to the images from the adverse scenario. From the left
to the right: real faces and high definition, mobile and print attacks.

2) REPLAY-ATTACK DATABASE
The REPLAY-ATTACK Database is divided into three sub-
sets: train set, development set and test set, shown in Fig.11.
The videos are captured from 50 clients via the webcam on a
MacBook with the the resolution of 320 × 240 and a Canon
PowerShot camera and an iPhone 3GS camera with high
resolution. The number of video recordings is 1200 in total
under two light conditions: controlled condition (captured
with a uniform background and light supplied by a fluores-
cent lamp) and adverse condition (captured with non-uniform
background and the day-light). The face spoofing attacks
are divided into three parts: (1) Print Attacks: The printed
face image are recaptured by different cameras. (2) Mobile
Attacks: The real face images and videos are displayed on
the screen of an iPhone 3GS and recaptured by cameras.
(3) High Definition Attacks: The real face images and videos
are displayed on the screen of an iPad and recaptured by
cameras.

3) OULU-NPU DATABASE
OULU-NPU face presentation attack database consists
of 4950 real access and attack videos that were recorded
using front facing cameras of six different mobile phones
(see, Fig.12). These sam were recorded using the front cam-
eras of six mobile devices in three sessions with different
illumination conditions and background scenes [40]. The
database contains print and video-replay attacks. Two differ-
ent prints and display devices (Printer 1, Printer 2, Display 1
and Display 2) are employed. The real accesses and attacks
are captured by 55 subjects are divided into three subsets
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TABLE 1. Comparison between different loss functions on CASIA-FASD database in seven scenarios in terms of EER (%).

FIGURE 12. Samples from the OULU-NPU database. From top to bottom
is the three sessions with different acquisition conditions. From the left
to the right: real faces, print attack 1, print attack 2, video attack 1 and
video attack 2.

(20 users) for training, development (15 users) and testing
(20 users).

B. EXPERIMENTAL SETTINGS
To compare the results with other algorithms in the state
of art, we evaluate our method on benchmark databases
following the protocols of these databases. For CASIA-
FASD, REPLAY-ATTACK and OULU-NPU, FARCNN is
pre-trained with ImageNet and finetuned with the train set of
the databases, while improved Retinex based LBP detector is
only trained with the train set of the databases.

The results on CASIA-FASD database is reported in
terms of Equal Error Rate (EER) and the results on
REPLAY-ATTACK database is presented in terms of Equal
Error Rate (EER) and Half Total Error Rate (HTER) fol-
lowing commonly used metrics in the literature. Follow-
ing [41], we evaluate our method on OULU-NPU database
with two metrics: Attack Presentation Classification Error
Rate (APCER) and Bona Fide Presentation Classification
Error Rate (BPCER).

EER is the point where the false rejection rate (FRR) is
equal to false acceptance rate (FAR) in receiver operating
characteristic (ROC) curve. To achieve HTER, we first find
the point of EER and get the threshold corresponding to the

TABLE 2. Comparison between different loss functions on
REPLAY-ATTACK database in terms of EER (%) and HTER (%).

EER point on the development set. After that, HTER is given
at the point where the threshold computed on the test set is
equal to the threshold given by the development set.

For implementation, we employ VGG-16 as the backbone
of our FARCNN, which has been pre-trained on ImageNet.
The pre-trained VGG16 model is finetuned on face spoofing
detection datasets with the learning rate 0.001 and training
epoch 100. Since the sizes of face images in face spoofing
databases is quite simple, we use 6 anchors in the RPN
module: the size of 256 × 256, 512 × 512 and the aspect
ratios of 1:1, 1:2, and 2:1. If the IOU of a ROIwith any ground
truth is greater than 0.5, this ROI is treated as foreground and
background otherwise.

For the protocols of CASIA-FASD, the results are pre-
sented in seven attacking scenarios. The evaluation of
each scenarios of CASIA-FASD is conducted on the data
selected from specific protocols separately. As for the
REPLAY-ATTACK database, we finetune our FARCNNwith
the train set and evaluate the model with the development set
and test set. Since the database size of the REPLAY-ATACK
is larger than CASIA-FASD, we set the different values of
α in this experiment. For the evaluation of OULU-NPU
database, the results are presented in four protocols.

C. EVALUATION OF DIFFERENT LOSS FUNCTIONS
Loss functions is vital for network training which might
lead to the performance improvement of face anti-spoofing.
To explore the effect of the different loss functions, we train
the network with softmax loss and Crystal loss for vari-
ous α on CASIA-FASD database and REPLAY-ATTACK
database.

For the CASIA-FASD, the softmax loss attains an EER
of 3.576%, while Crystal loss achieves the best EER
of 3.309% when α is 30, shown in Table 1. From Table 2,
we can see Crystal loss (α = 40) works better than
the results trained with softmax loss in terms of EER
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TABLE 3. Comparison between different fusion methods on CASIA-FASD database in seven scenarios in terms of EER (%).

(0.149% VS 0.219%) and HTER (0.312% VS 0.752%) on
REPLAY-ATTACK database.

To further improve the performance, we couple the Crystal
loss as well as softmax loss with center loss and conduct
experiments with same experimental conditions. Table 1 lists
the results obtained on the CASIA-FASD dataset by dif-
ferent multi-loss functions. From the table, The center loss
improves the performance significantly when trained with
softmax loss and Crystal loss (Overall:3.410% VS 3.259%),
while the results with Crystal loss is better. Besides, with the
participation of center loss, the performances are improved
on REPLAY-ATTACK database. The network trained with
Crystal loss and center loss generally outperform that trained
with softmax and center loss in terms of EER (0.121%
VS 0.195%) and HTER (0.230% VS 0.544%), shown in
Table 2.
From the results above, Crystal loss is efficiently with other

auxiliary loss functions and can replace the function of soft-
max loss in training process. In general, as shown in Table 2
and 1, FARCNN achieve impressive performances both on
CAISA-FASD database and REPLAY-ATTACK database.

D. EVALUATION OF DIFFERENT FUSION METHODS
Table 1, Table 2 have verified the effectiveness of the Crystal
loss. We further explore the effectiveness of feature fusion
strategy in this subsection.

To gain more details of ROIs, we propose to fuse the
features of multiple convolution layers to improve the RoI
pooling features. Specifically, we fusion the features pooled
from conv33, conv43, and conv53 layers. To explore the best
fusion method for this task, we conduct the experiments fus-
ing with different fusion methods including attention-based
fusion, feature concatenation, feature averaging, feature max
pooling and feature min pooling. We compare the results of
these fusion methods on different databases separately.

In Table 3, the results of CASIA-FASD are presented in
seven scenarios. The attention-based fusion method outper-
form the other fusion methods with the lowest EER 3.049%
in overall scenario, which expresses the effectiveness of our
proposed method. Besides, Feature Concatenate and Feature
Average achieve the 2nd and 3rd best performances in terms
of EER (3.241% and 3.402%).

In Table 4, the results deploying our proposed fusion
method achieve better performances compared with the other
fusion methods on REPLAY-ATTACK database in terms of
EER and HTER (0.093% and 0.026%). The competitive and

TABLE 4. Comparison between different fusion methods on
REPLAY-ATTACK in terms of EER (%) and HTER (%).

TABLE 5. Comparison between the attention fusion with different layers
on REPLAY-ATTACK in terms of EER (%) and HTER (%).

consistent performances result from the fact that the proposed
fusion method can adaptively fuse the different feature layers
to adapt to different task scenarios.

To explore the proposed FARCNN should pool from
which layers, we conduct more experiments for attention
fusion with different layers on REPLAY-ATTACK database,
shown in Table 5. Experiments are divided into three parts:
(1) pooling from conv-5-3, which is the original scheme
of Faster R-CNN; (2) attention fusion with two layers in
conv-5; (3) attention fusion with three layers containing
lower-level and high-level features. Specifically, features
from lower-level convolution layers are scaled to match the
scale of high-level features, respectively. From the results of
part one and part two, the fusion results are better than the
results without fusion. Besides, the fusion involving conv-5-3
layer is more effective than others. As for the results of part
three, the performances of multiple level fusion are not sat-
isfactory. Different from object detection and face detection,
the sample in face spoofing databases is only contained one
single face, which don’t need multiple level fusion. In gen-
eral, the high-level convolution features are vital for this task,
which earn largest weights in attention fusion based on the
mechanism of attention model. In addition, the amplitudes
of features at different layers vary from each other, so it is
necessary to normalize the amplitudes with L2-normalization
before attention fusion.
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TABLE 6. Comparison between different Retinex LBP in three color spaces on CASIA-FASD database in seven scenarios in terms of EER (%).

E. EVALUATION OF IMPROVED Retinex BASED LBP
The evaluation results above have verified the effectiveness
of the FARCNN. We further explore the effectiveness of
improved retinex LBP in three color spaces in this subsection.

The extraction of the improved Retinex LBP features
is carried out in three steps. Firstly, we first convert the
RGB image into HSL, YCbCr and LAB and enhance the
luminance component with improved Retinex, presented
in Section III-B. Secondly, the enhanced luminance com-
ponent and the other two color component are processed
with LBP descriptor separately. Thirdly, we concatenate
the LBP features extracted from these three color compo-
nent, which are called HS-Retinex LBP, Retinex-CbCr LBP
and Retinex-AB LBP for convenience. To further improve
the performances of these LBP features, we concatenate
the LBP features between different color space and create
another three improved Retinex based LBP: HS-Retinex-
AB LBP (using luminance component on HSL for Retinex
based enhancement), HS-Retinex-CbCr LBP (using lumi-
nance component on HSL for Retinex based enhancement)
and Retinex-AB-CbCr LBP (using luminance component
on YCbCr for Retinex based enhancement). The improved
Retinex based LBP features are further fed to SVM for
classification.

We conduct an extra experiment to explore the illu-
mination sensitivity of the detectors. the face images in
REPLAY-ATTACK database are under two different illu-
mination conditions: (1) controlled condition with a uni-
form background and light supplied by a fluorescent lamp,
(2) adverse condition with non-uniform background and the
day-light. We evaluate the effectiveness of the detectors on
the images on these two illumination conditions separately.
From the results in Table 9, FARCNN appears more sensitive
for illumination than HS-Retinex-CbCr LBP, in terms of EER
and HTER. HS-Retinex-CbCr LBP performs stable, which
shows the robustness on strong lightings. After cascade,
FARCNN’s robustness of illumination is improved and the
performances gap between these two illumination conditions
shrinks. This indicates that the cascade of FARCNN and
HS-Retinex-CbCr LBP can effectively handle various illumi-
nations and achieves better performances.

Table 6 shows the results on CASIA-FASD. From the
results, HS-Retinex LBP outperform the other two features
(Retinex-CbCr LBP and Retinex-AB LBP), in terms of EER
(4.154% vs 4.290% and 4.588%). Besides, HS-Retinex-CbCr

TABLE 7. Comparison between different Retinex LBP in three color
spaces on REPLAY-ATTACK in terms of EER (%) and HTER (%).

LBP attains an EER of 3.739% which is the best among these
six improved Retinex based LBP. Though, the performances
of the improved Retinex based LBPs are less effective than
the performances of FARCNN, the cascade of these two
detectors achieves an EER of 2.359%, which improves the
performances of FARCNN.

For the results on REPLAY-ATTACK, shown in Table 7,
Retinex-CbCr LBP achieves the best results among sin-
gle improved Retinex based LBP (HS-Retinex LBP,
Retinex-CbCr LBP and Retinex-AB LBP), in terms of EER
(2.311%) and HTER (2.359%). HS-Retinex-CbCr LBP out-
performs the other two multi-improved Retinex based LBP
(Retinex-AB-CbCr LBP and HS-Retinex-AB LBP), in terms
of EER (2.145%) and HTER (2.201%). Besides, the cascade
of FARCNN andHS-Retinex-CbCr LBP improved the results
of FARCNN with EER (0.062%) and HTER (0.183%).

We also conduct evaluations on OULU-NPU database, fol-
lowing [41] and employing fourmetrics: EER in development
set and APCER, BPCER and ACER in test set. Table 8 shows
the results of HS-Retinex-CbCr LBP, FARCNN and the cas-
cade of them. For most results in four protocols, the cascade
of these two detectors significantly outperforms individual
detector.

F. COMPARISONS WITH STATE-OF-THE-ART
To verify the effectiveness of our proposed cascade detector,
we compare our results with the state of the art methods for
face spoofing detection in Table 10. In general, the proposed
method has promising performances compared with other
competitors, proving the effectiveness of our proposed cas-
cade detector.

As shown in Table 10, our proposed method achieves the
competitive performances in terms of EER (FARCNN+HS-
Retinex-YCbCr) on CASIA-FASD database. Besides,
our proposed method (FARCNN+HS-Retinex-YCbCr)
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TABLE 8. Results achieveing by Retinex LBP, FARCNN and cascade these
two detectors on OULU-NPU database in terms of EER (%), APCER (%),
BPCER (%) and ACER (%).

TABLE 9. EER (%) and HTER (%) of FARCNN and HS-Retinex-CbCr LBP
detector on adverse illumination and controlled illumination in
REPLAY-ATTACK database.

TABLE 10. Comparison between our proposed FARCNN and
State-of-the-art methods on REPLAY-ATTACK and CASIA-FASD database in
terms of EER(%) and HTER(%).

outperforms the other methods in state of the art in terms
of EER. In terms of HTER, we achieve the 2nd best perfor-
mance, slightly lower than [42], while our method performs
better than [42] in terms of EER.

For OULU-NPU database, as shown in Table 11, we can
achieve a competitive performance for most results under the
four protocols. Reference [43] proposed a method using more

TABLE 11. Comparison between the proposed countermeasure and
state-of-the-art methods on OULU-NPU database in terms of EER (%),
APCER (%), BPCER (%) and ACER (%).

auxiliary information (3D depth shape and rPPG) and works
best.

In general, our method has a competitive and stable per-
formance on both CASIA-FASD, REPLAY-ATTACK and
OULU-NPU, which shows the superiority of our proposed
method.

G. CROSS-DATABASE COMPARISONS
Since CASIA-FASD and REPLAY-ATTACK databases are
captured under the different illumination conditions with
different cameras, the generalization capacity of face
spoofing detection method is important and meritori-
ous. Thus, we evaluate our proposed cascade detector in
cross-database protocols between CASIA-FASD database
and REPLAY-ATTACK database. To be specific, we train the
network on CASIA-FASD database or REPLAY-ATTACK
database and evaluate on another database. To quantitatively
measure the generalization ability of the proposed method,
we employ the metrics HTER which is computed on the
development and test sets of the face spoofing databases.
Table 12 reports the cross database results and further com-
pares the results with the other methods in the literature.

In Table 12, the performance of our proposed cascade
detector drops compared with that train and test on the
same database, due to the different imaging conditions of
these two databases. Compared with the methods proposed
in state of the art, our proposed method (FARCNN +
HS-Retinex-YCbCr) performs the 2nd best in terms of HTER
(29.4%), when training on REPLAY-ATTACK database and
testing on CASIA-FASD database, while [43] is slightly
lower than our proposed method (28.4%). When training on
CASIA-FASD database and testing on REPLAY-ATTACK
database, our proposed method outperformed the other meth-
ods in terms of HTER (26.0%).
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TABLE 12. Inter-database evaluation results in terms of HTER (%) on the
CASIA-FASD and REPLAY-ATTACK database.

TABLE 13. Inter-database evaluation results for proposed method in
terms of maximum mean discrepancy (MMD) on the CASIA-FASD and
REPLAY-ATTACK database.

In order to find out why the results on cross-database are
worse than that on intra database, we introduce maximum
mean discrepancy (MMD) [52] to quantitatively indicate the
distance between the distributions of training set and testing
set.

MMD(FT ,FV )

=

∥∥∥∥∥∥ 1
|FT |

∑
ft∈FT

φ(ft )−
1
|FV |

∑
fv∈FV

φ(fv)

∥∥∥∥∥∥ (24)

As shown in the equation above, φ() is used to represent
the train data features, ft ∈ FT and the validate data features,
fv ∈ FV . The value of MMD quantifies the domain shift.
If the value of MMD is large, the domain shift of the feature
distributions is big.

From the result of Table 13, we can see that:
(1) The MMD of intra database is smaller than the value of

inter database for proposed methods.
(2) Due to the complex attack types of CASIA-FASD,

when we train the model on REPLAY-ATTACK database
and test on the CASIA-FASD, the value of MMD is bigger

than that we train on CASIA-FASD database and test on
REPLAY-ATTACK database.

(3)When training with Crystal loss andMulti-loss, the val-
ues of MMD are reduced compared with training with
softmax loss.

(4) The fusion of the features extract from different layers
with attention model improves generalization capacity com-
pared with the baseline results.

(5) Improved Retinex based LBP detector appears bet-
ter generalization capacity than FARCNN. The cascade of
these two detectors improves generalization capacity of the
FARCNN.

V. CONCLUSION
In our wrok, we proposed a cascade face spoofing detec-
tor based on face anti-spoofing R-CNN (FARCNN) and
improved Retinex based LBP. Our proposed FARCNN
employs the effective loss function called Crystal Loss and
the fusion method based on attention mechanism to fuse
the different feature layer for ROI pooling. Our proposed
improved Retinex based LBP uses iterative guided filter for
illumination estimation and extracts improved Retinex based
LBP feature on different color spaces.

To verify the effectiveness of our method, we evaluated
the approach on two challenging databases: CASIA-FASD,
REPLAY-ATTACK and OULU-NPU. We achieve the com-
petitive performances in both intra-database and inter-
database. Besides, the experiments of loss function show that
Crystal Loss can improve the training effect of this task. The
proposed attention based fusion method achieves promising
performance compared with other traditional fusion methods.
The improved Retinex based LBP feature can improve the
Illumination robustness.
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