
SPECIAL SECTION ON ADVANCED DATA MINING METHODS FOR SOCIAL COMPUTING

Received October 23, 2019, accepted November 12, 2019, date of publication November 22, 2019,
date of current version December 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2955161

Detecting Overlapping Community
Structure With Node Influence
QIANG ZHOU 1, SHIMIN CAI 1,2, AND YICHENG ZHANG 2,3
1School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 611731, China
3Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland

Corresponding author: Shimin Cai (shimin.cai81@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61673086, and in part by the Science
Promotion Programme of UESTC, China, under Grant Y03111023901014006.

ABSTRACT Discovering the underlying overlapping community divisions can guide us in better exploring
and predicting the structure and properties of the network. However, a large number of existing methods
assume that nodes belong only to a single community. In this paper, we designed a posterior probabilistic
prediction model under the Mixed-Membership Stochastic Blockmodel framework to accurately detect the
overlapping community structure that exists in the network. In order to capture the degree of nodes that
exhibit heterogeneous characteristics in the network, the model takes into account the influence of the nodes.
In addition, we developed a non-conjugated stochastic variational inference to deduce the link probability
prediction model with node influence. The key strategy is to use the mean-domain variational family with
variable distribution to approximate the posterior community strengthen and node influence distribution
in the prediction model. We compared the performance of this model with the previous algorithm models
on computer-generated and real-world networks and found that it gives better results, especially when
the heterogeneity of the network is very serious. In general, the combination of node influence and link
probabilistic predictive model provides a new idea for us to use a statistical model to explore large-scale
overlapping networks.

INDEX TERMS Community overlap, heterogeneous network, node influence, probability prediction model,
structure detection.

I. INTRODUCTION
The diverse entity relationships that exist in nature can be
abstracted into a complex system with special associations,
which can be described by a network or a graph. Common
examples include society, the Internet, technology and bio-
logical network [1]–[5]. Because of its attractiveness in statis-
tics and forecasting, it has become the focus of many current
research fields. From the perspective of local attributes,
similarity [6], [7], link distribution prediction [8], [9],
clustering [10] and correlation [11] play an important role.
However, the most interesting of these is the functional
unit with a specific structure, community [2], [12]. Many
networks in reality are revealed to have a community structure
that nodes within a group have more dense connections than
between them [13]–[15].

Communities have a fundamental interest in complex
networks because of its potential functional implications.
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Therefore, the deep excavation and exploration of the prop-
erties determined by its topological structure and additional
attributes is a challenging task, which can help us to under-
stand its essence through the appearance of the network.
It is a common method in community detection to solve
some special problems by establishing an algorithm model
for particular application environment, for example, in the
course of the spread of epidemic over time [16]. Modularity
maximization is one of the most widely used models in the
current algorithmic prototypes. Modularity [4] is an object
function that evaluates the fineness of network partitioning,
with higher score means that the detected community parti-
tions internally correspond to more edges than between them.
Unfortunately, the exhaustive modularity maximization over
all community partition on the network is a NP-Hard prob-
lem [17], and the algorithm itself has been proved to have a
resolution defect [18].

The discovery of node-based community structures often
manifests empirically two properties. The first is the simi-
larity of nodes, that is, the nodes with similar characteristics
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should be classified into the same community according to
the network topology or the attributes of the nodes them-
selves. The second is the influence of nodes, whose definition
is based on the preferential attachment principle [5] of nodes
in the network. The basic definition will give priority to join
the community where the nodes with higher degree distri-
bution, which is mathematically characterized by a power
law distribution feature. Therefore, when designing a prob-
abilistic prediction model of community structure, the key
attributes of nodes should be fully considered so as to achieve
a balance in accuracy and efficiency. In addition, for networks
with different structural characteristics, the attributes of nodes
should be determined according to specific situation(because
the network characteristics are different, there is no uniform
standard), especially the influence of the node.

With the evolution of the network, its properties are chang-
ing as well. In the research of one-dimension network model,
it is revealed that there are two different types of nodes in
the network, which is called bipartite network [19]. Although
edges in bipartite networks exist only between different types
of nodes, they can be converted to a one-dimension network
through the common neighbor mapping relationship between
nodes. Thus, we herein focus on the discovery of commu-
nity structure in one-dimension model of network accurately.
As the characteristic of the network is mainly determined by
its topology and the node itself, the influence of the nodes in
this paper refers to the fact that in the heterogeneous network
condition, a few nodes have a larger node degree distribu-
tion, while most nodes have only a few connections. Such
nodes have the advantage of preferential connection [5], [20]
in the network, which makes the nodes that already have
many connections become fatter, so it is inevitable that some
nodes belong to multiple communities at the same time. As a
result, the concept of overlapping nodes among communi-
ties has been proposed. For example, a person is usually
associated with many social organizations, such as family,
friends, relatives and colleagues. He plays an active member
simultaneously in the fields of physics, mathematics, biology,
computer science, et al. [14], [21]. For PPI networks(protein-
protein interaction), proteins may also belong to more than
one functional unit and play a bridging role that allows for
information transmission [22]. Therefore, the nodes influence
with overlapping characteristics illustrates a very important
practical value in the research of community detection.

The earliest overlapping community discovery algorithm
based on node attributes is CPM algorithm proposed by
Palla et al. [23], whose goal is to find the adjacent k-clique,
which is also the overlapping community structure searched
by CPM algorithm. The disadvantage is that only overlap-
ping community structures based on k-clique can be found.
On this basis, Zhang et al. proposed MOHCC algorithm [24],
by looking for the k-clique and combining coupling strength
to guide the merger of k-clique, and finally selected the
best hierarchical division for the obtained tree graph by
using the extended segmentation density index. Lancichinetti
et al. also proposed an OSLOM algorithm with random

perturbation to express the local optimization fitness function
of the statistical importance of the community [25]. The
algorithm first looks for important communities based on
the adaptability function, then discovers the internal structure
or possible integration among them, and finally detects the
hierarchy of potential communities. Eustace et al. proposed
a neighbor scale matrix model that filters the relationships
between nodes in the network that are below the average
number of neighbor nodes, the Person clusters are used to
determine the number of communities in the network and
combine non-negative matrix decomposition algorithms for
overlapping community discovery [26]. The Poisson model
based on statistical inference is an implicit overlapping com-
munity probability statistical model that contains the correct
node degree [27]. However, its inherent maximum likelihood
may make the community parameters dependent on its nodes
very small, so it cannot work well in model prediction.
By analyzing the topological structure attributes of binary
networks, Cui et al. proposed an overlapping community dis-
covery algorithm that assigns free nodes to bi-communities
structure according to given rules in the bipartite network.
The disadvantage is that the relevant bi-communities and free
nodes need to be extracted initially [28]. According to the
rank of the node popularities within communities, Jin et al.
proposed an efficient Bayesian optimization objective func-
tion based on the stochastic generationmodel to discovery the
community structure with overlapping phenomenon [29]. Its
shortcoming is that the parameter selection in the modeling
process will directly affect the final number of communities.
As these algorithms only focus on the topological structure
of the network and some additional attributes of nodes(such
as similarity), but ignore the key attribute of node influence,
they cannot effectively simulate overlapping network com-
munities with high heterogeneity in the real world.

In this paper, in order to make better use of statistical
methods to detect the key attributes existing in the community
structure, we proposed a link probabilistic model to capture
the influence of the nodes on the division of communi-
ties with overlapping phenomena. The model is based on
the Mixed-Membership Stochastic Blockmodel(MMSB) [6],
a community detection algorithm that allows nodes to belong
tomore than one community at the same time, which provides
better fit to the real world network, but ignores the influ-
ence of nodes in the overlapping community. Considering
the nodes influence can further strengthen the detection of
communities with overlapping phenomena [30], therefore,
the advantages of the algorithm proposed in this paper are
as follows: (1) the number of potential communities in the
network can be accurately detected; (2) it can effectively
capture nodes with great influence in the network. In addition,
we developed a novel method of non-conjugate stochas-
tic variational inference to deduce the algorithm model,
that is, the mean-domain variational family with variable
distribution is used to approximate the posterior commu-
nity strengthen and node influence distribution in the link
probability prediction model, so as to predict the potential
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community structure in the network efficiently. We tested it
on the computer-generated and real-world networks, which
can achieve higher community detection accuracy than some
other advanced algorithms.

The structure of this paper is organized as follows.
In Section II, we gave the definition of node influence and
some relevant detail description. Along the clue, the for-
mal derivation of the link prediction algorithm based on
non-conjugate stochastic variational inference appears in
Section III. Performance test evaluations of algorithms for
computer-generated and real-world networks are presented in
Section IV. The summary is in Section V.

II. DESCRIPTION OF THE NODE INFLUENCE
The mixed-membership stochastic blockmodel(MMSB) [6]
indicates the effects of the interactions between nodes p and q
in a network on the probability of the edges appearing
between them. Assume that the community memberships
of node p is represented by πp, a distribution over com-
munities, then the probability that two nodes are connected
is determined by the homophily(similar properties between
nodes are more likely to be connected together [31], [32])
of their community members and the strength of the com-
munities they share. Given a network with C latent groups,
the edge indicator vectors Lpq are independent for a pair of
nodes (p, q). We draw Lpq by selecting a community allo-
cation (zp→q, zp←q) for a pair of nodes (p, q). Thus, a com-
munity can be represented by constructing a binary matrix
and the probability of an edge appearing in MMSB can be
expressed as Eq.(1),

ρ(Lpq=1|zp→q,i, zp←q,j,B)=
∑

C
i=1

∑
C
j=1zp→q,izp←q,jβij,

(1)

whereB is a matrix can parameterize any kind of distribution,
here we treat it as a blockmodel matrix to be evaluated.
In order to capture the homogeneity of the nodes, the off-
diagonal elements of the blockmodel are set close to zero in
MMSB, which means that if there is a connection between
two nodes, their potential community indicators may be the
same.

In this paper, we combined the MMSB with the node
influence to make it possible to take into account the charac-
teristics of the priority connection while capturing the homo-
geneity of the node. The aim is to make its potential edge
appeal independent of its communitymembership. Combined
with Eq.(1), we use a logit model to represent this node
influence in Eq.(2),

logit(ρ(Lpq=1|zp→q,zp←q,B, κ))≡κp+κq +
∑

C
c=1δ

c
pqβc,

(2)

where κ is used to capture the node influence and δcpq =
zp→q,c, zp←q,c. If all nodes are in the same community c, then
δcpq = 1. We note that Eq.(2) is similar to the random effect
matrix [33] in principle, that is,

∑C
c=1 δ

c
pqβc represents the

interaction of the potential communities and κp implies the

node influence. If necessary, Eq.(2) can also be extended to
include the node covariates.
In addition, Eq.(1) itself is a logarithmic-linear model,

which means that the expected prediction probability of edge
connection has a multiplicative dependence on the observed
node covariables. Based on this statistical rule, we can convert
the community strength parameter βc and node influence
parameter κ related to the prediction model into a distribution
corresponding to the real world, such as the Gaussian distri-
bution, which also helps simplify the subsequent calculation.
In summary, the stochastic variational inference algorithm
based on node influence in this paper can be summed up as
follows:
Algorithm 1 Stochastic Variational Inference Based on Node
Influence

Input: Node pairs (p, q) in a given network G, the com-
munity potential strength C , the community membership
πp and the node influence κp
Output: The potential community structure Cp
Step (1): Specify the potential community strength C as

βc ∼ N (µ0, σ
2
0 ).

Step (2): For any node p, assign the community mem-
bership πp ∼ Dirichlet(α).
Step (3): For any node p, define the node influence as

κp ∼ N (0, σ 2
0 ).

Step (4): For each pair of nodes (p, q), assign interaction
indicator zp→q ∼ πp and zp←q ∼ πq.
Step (5): Calculate the probability of an edge (Lpq |

zp→q, zp←q, κ, β) ∼ logit−1(zp→q, zp←q, κ, β).
Step (6): If there are nodes in the network that are not

visited, repeat steps (2)-(5).
Step (7): According to the edge probability between

nodes and node influence captured, the nodes are assigned
to the appropriate community and the final potential com-
munity structure Cp is obtained.

Under the computational framework given by Algorithm 1,
we can further carefully analyze the posterior empirical distri-
bution based on the potential variable ρ(π1:N , κ1:N , β1:C |L, α,
µ0, σ

2
0 , σ

2
1 )(please refer to Section III for detailed mathemat-

ical derivation of the model), where the posterior over π1:N
denotes the community memberships of nodes, κ1:N denotes
the node influence. Because these potential structural vari-
ables can be estimated in many ways, there are a number
of possibilities for describing the network. For simplicity,
we can replace the potential community strength β of C with
a single community strength β which gives an excellent result
on small network. In general, the prediction of this potential
network structure can help us to study the individual links,
the similarity between the nodes and the node influence on
the overall effect.

III. STOCHASTIC VARIATIONAL INFERENCE IN
NON-CONJUGATE MODEL
For the posterior distribution ρ(π1:N , κ1:N , β1:C |L, α, µ0,
σ 2
0 , σ

2
1 ), the exact calculation is intractable, so we use
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stochastic variational inference [21] to approximate the solu-
tion. However, there are some problems here. Traditional
variational inference [34] is a kind of coordinate ascent
algorithm, which requires all nodes in the network to satisfy
the conditional conjugate, which is different from the method
in this paper. Take the strength of community memberships
and node influence for example, they present a Gaussian
prior, so they do not meet the need of conjugate conditions.
Secondly, the coordinate ascent algorithm iterates all pairs of
nodes when performing variational inference, which makes it
an impossible task for large-scale network. Therefore, in the
experiment, we adopted a sub-sampling strategy to reduce
the number of iterations in the calculation, by establishing a
stochastic gradient model to limit the target object to a lower
boundary.

A. OPTIMIZATION OBJECT OF VARIATIONAL INFERENCE
In a complex probabilistic model, variational inference is
a very effective method to approximate the posterior infer-
ence [34]. It looks for a near-posterior fitting parameter dis-
tribution by defining a parameterized family based on the
distribution of hidden variables. And the approximate degree
is usually measured by Kullback-Leibler(KL) divergence [7].
Thus, the parametric posterior inference problem is trans-
formed into a model optimization problem.

In this paper, we defined a family of distributions based on
the hidden variable h(π, κ, β, z) and find the familymembers
that are closest to the posterior. As the mean-domain varia-
tional [14] family independently considers each hidden vari-
able with a different parameterized distribution, the obtained
variation distribution object is shown in Eq.(3).

h
(
zp→q = i, zp←q = j

)
= φijpq; h(βc) = N (βc;µc, σ 2

β );

h (πn) = Dirichlet(πn; γn); h(κn) = N (κn; λn, σ 2
κ ). (3)

Here, the per-interaction memberships φpq represents the
posterior over the joint distribution of edges assigned by the
community to per node pair (p, q), the community member-
ships γ , the community strength distributions µ and the node
influence distributions λ. Finding the optimization problem
of the family distribution of h close to the true posterior can
be transformed into minimizing KL divergence, i.e., optimiz-
ing an evidence lower bound L, an observation-based log-
likelihood. Thus, we use a little trick that constructs it through
Jensen’s inequality [14], the specific process is as follows:

L=
∑

n
Eh[log ρ(πn|α)]−

∑
n
Eh[log h(πn|γn)]

+

∑
n
Eh[log ρ(κn|σ 2

1 )]−
∑

n
Eh[log h(κn|λn, σ 2

κ )]

+

∑
c
Eh[log ρ(βc|µ0, σ

2
0 )]−

∑
c
Eh[log h(βc|µc, σ 2

β )]

+

∑
p,q

Eh[log ρ(zp→q|πp)]+
∑

p,q
Eh[log ρ(zp←q|πq)]

−

∑
p,q

Eh[log h(zp→q, zp←q|φpq)]

+

∑
p,q

Eh[log ρ(Lpq|zp→q, zp←q, κ,β)]. (4)

Noting that the first three lines in Eq.(4) are summation
operations for all communities and nodes, which can be
considered as global update operations for the network. The
remaining three lines are the sum operation for all node pairs,
which can be considered as local update operations of the
network. Distinguishing between global update operations
and local update operations is a necessary task because local
update operations rely only on a few global terms that corre-
spond to them, whereas global update operations require the
participation of all local update operations.
Since the coordinate ascent algorithm takes into account

each pair of nodes in each iteration, it is very strict to the cost
of system resources. In [7], a conditional crossover strategy
is adopted to solve this problem. However, the method in
this paper is not conjugate, so we can only turn to find other
approximate solutions.

B. REDUCE THE BOUNDARY OF VARIATIONAL OBJECT
Optimizing the Eq.(4) directly increases the computational
complexity, especially the global update operations. In order
to simplify the calculation further, the last line in Eq.(4) can
be rewritten as Eq.(5),

Eh[log ρ(Lpq|zp→q, zp←q, κ, β)]

= LpqEh[xpq]− Eh[log(1+ exp(xpq))], (5)

where we let xpq ≡ κp+κq+
∑ C

c=1βcδ
c
pq. In order to make it

easier to expand the discussion of Eq.(5), we still use Jensen’s
inequality to reduce its boundary (see Eq.(6)), where let spq ≡∑ C

c=1φ
cc
pq exp

{
µc + σ

2
β/2

}
+

(
1−

∑ C
c=1φ

cc
pq

)
. Considering

that hκn has a Gaussian distribution, which allows us to further
simplify Eq.(6). Then according to the logarithmic normal
distribution, we find Eh[exp(κn)] = exp

(
λn + σ

2
κ /2

)
. The

same alternative is also applied to βc.

−Eh[log(1+ exp(xpq))]

≥ − log
[
Eh(1+ exp(xpq))

]
= − log

[
1+ Eh

[
exp(κp + κq +

∑
C
c=1βcδ

c
pq)
]]

= − log[1+ exp(λp + σ 2
κ /2) exp(λq + σ

2
κ /2)spq], (6)

Finally, by replacing Eq.(6) with Eq.(4), we can obtain a
low boundaryL′, which can be easily processed, and this also
allows us to infer a coordinate ascent strategy by updating the
global and local operation iteratively.

C. GLOBAL UPDATE OPERATION
It can be clearly seen from Eq.(4) that the parameter related
to the global update operation are(γ, λ, µ). When Eq.(6) is
brought into Eq.(4), it becomes the update of the above global
parameters with stochastic gradient of lower boundary on L′.
Similar to the practice in [7], we use the natural gra-

dient of L′ after each iteration to update all the node
influences and community memberships, but adopt different
stochastic optimization methods to maintain the indepen-
dent learning rate of each node, which limits the nodes that
need to be updated for each iteration to a smaller range.
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Considering that the variational optimization object is the
summation of the terms, we can first sub-sampling the subset
and then extend the gradient according to the appropriate
proportions. Specifically, in each iteration, the N nodes of
the network are sampled randomly and evenly(we sampled a
“mini-batch ”S of nodes during each iteration). The purpose
of doing like this is not only to reduce the impact of noise [14],
but also to make full use of the characteristics of network
sparsity to improve efficiency. In many real networks, only
a small subset of nodes are linked. Therefore, for each sam-
pling point, it contains only all links associated with its
observations and a small number of non-links that are evenly
sampled.

Suppose ∂γ tp is the natural gradient of L′ with respect
to ∂γp, ∂λtp is the gradient with respect to λp and ∂µtc is
the gradient with respect to µc, according to [6], [14], [21],
we find Eq.(7),

∂γ tp,c = αc − γ
t−1
p,c +

∑
(p,q)∈links(p)φ

cc
pq(t)

+

∑
(p,q)∈nonlinks(p)φ

cc
pq(t), (7)

where links(p) and non-links(p) correspond to the links
and non-links sets of node p in the training set. And
we also can get an unbiased estimate of the sum over
the non-links by sub-sampling the non-links of the node.
Because this is a scale contraction of the original natu-
ral gradient, it not only maintains the characteristics of
the original set, but also reduces the noise impact in the
calculation.

Similarly, the nature gradient ofL′ with respect to the node
influence λp is given in Eq.(8),

∂λtp=−
λt−1p

σ 2
1

+

∑
(p,q)∈links(p)∪nonlinks(p)

(
Lpq−rpqspq

)
, (8)

where we designate rpq as

rpq ≡
exp

{
exp

{
λp + σ

2
κ /2

}
exp

{
λq + σ

2
κ /2

}}
1+ exp

{
λp + σ 2

κ /2
}
exp

{
λq + σ 2

κ /2
}
spq
. (9)

Further, the community strength parameter µc over L′ can
be inferred with Eq.(10).

∂µtc =
µ0 − µ

t−1
c

σ 2
0

+
N

2 |S|

∑
(p,q)∈links(S)∪nonlinks(S)

φccpq

×

(
Lpq − rpq exp

{
µc + σ

2
β/2

})
. (10)

As with the gradient of community membership, the unbi-
ased estimates of Eq.(8) and Eq.(10) can also be obtained
from the sub-sampling of the non-links. In order to get
an unbiased estimate of µc, it is necessary to scale the
links and non-links according to the inverse probability
of sub-sampling the nodes in Eq.(10). Because each node
pair is shared by two nodes, for a mini-batch with S
nodes, the sum over the pairs of nodes is marked as N

2|S| .
In Eq.(8), (Lpq − rpqspq) is the residual for node pair(p, q),
while (Lpq − rpqexp{µc + σ 2

β/2}) is the residual for the

pair(p, q) under a situation that both nodes p and q are
assigned to the latent community c in Eq.(10). In addition,
we also note that the updates for global operations of nodes
p and q and even for parameter µ rely only on the diagonal
elements of the variational matrix indicator φpq.

The approximate step of a global update operation accom-
panied by a noise gradient can be expressed as

γp←γp+ρp(t)∂γ tp; λp←λp+ρp(t)∂λtp; µ←µ+ρ′(t)∂µt .

(11)

where ρp represents the separate learning rate for any node p,
and only γ and λ are updated for each node that exists in
the mini-batch S in each iteration. For the global learning
rate ρ′ with respect to the community strength µ, it needs
to be updated during each iteration.

D. LOCAL UPDATE OPERATION
Associated with the local update operation is parameter φpq
in Eq.(4), which is a interaction variational parameter of
dimension C × C for each pair of node in a sub-sampling
network. It means which pair of communities are activated to
determine the posterior approximation of links and non-links.
According to the coordinate ascent algorithm, we can deduce
Eq.(12) and Eq.(13),

φccpq ∝ exp
{
Eh[logπp,c]+ Eh[logπq,c]

}
+Lpqµc − rpq

(
exp

{
µc + σ

2
β/2

}
− 1

)
, (12)

φijpq ∝ exp
{
Eh[logπp,i]+ Eh[logπq,j]

}
, (i 6= j). (13)

where rpq is defined in Eq.(9).
Based on the above derivation process, a complete link

probability prediction algorithm with non-conjugated varia-
tional inference based on node influence can be described in
Algorithm 2.

The parameter derivation process is actually the detection
step of the community discovery algorithm based on node
influence used in this paper. It can not only capture the node
influence in the network, but also capture the characteristics
of network homogeneity(combined with MMSB algorithm
model). The scalable sub-sampling of the network not only
ensures the detection accuracy, but also greatly improves
the execution efficiency of the algorithm. The computational
complexity of traditional coordinate ascent algorithm isO(n2)
when it faces a network with n nodes, which makes it impos-
sible to extend to large scale networks. Then the algorithm
proposed in this paper makes the overall algorithm complex is
much lower than O(n2)(the mini-batch S � n) by optimizing
a low-bound variational inference object and combining the
mini-batch sampling method.

IV. RESULTS AND ANALYSIS
In this section, we present examples of applications to test
the performance of the proposed algorithm model, includ-
ing computer-generated networks and real-world networks,
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Algorithm 2 Non-Conjugate Variational Inference Based on
Node Influence

Input: The influence of node degree λ, the γ obtained by
posterior community membership of stochastic variational
inference and the community strength µ
Output: Final community structure Cf obtained by the

posterior link probability predictionmodel with node influ-
ence
Step (1): Initialize the community memberships γ =

(γn)Nn=1. For the node influence, initialize the λ as the log-
arithm of the normalized node degree, and then initialize
the community strength µ to zero.
Step (2): Sub-sampling a mini-batch S of nodes pairs.

Step (3): Local update operation. For each node pair (p, q),
compute the parameter φpq using Eq.(12) and Eq.(13).
Step (4): Global update operation. For each node

p ∈ S, updating the community memberships γp and node
influence λp using stochastic nature gradient and stochas-
tic gradient in Eq.(7) and Eq.(8), respectively. The same
stochastic gradient is used to update the community
strength µ in Eq.(10).
Step (5): For each node p ∈ S, let

ρp (t) =
(
τ0 + tp

)−ζ (tp← tp + 1
)

and ρ′ (t) =

(τ0 + t)−ζ (t ← t + 1), where τ0 ≥ 0 is the step length
and ζ ∈ (0.5, 1] is the learning rate. For ρ, in order
to guarantee fast convergence to a local optimum,
so
∑

t ρ(t) = ∞ and
∑

t ρ(t)
2
≤ ∞.

Step (6): If there are nodes in the network that are not
visited, repeat steps (2)-(5).
Step (7): According to the edge probability between

nodes and node influence captured, the nodes are assigned
to the appropriate community and the final community
structure Cf is obtained.

and the related results and phenomena are analyzed and
discussed.

A. COMPUTER-GENERATED NETWORKS
The computer-generated benchmark model generally con-
tains a predetermined community structure, and our goal is to
restore the underlying structure of the network in a more pre-
cise way. In the tests, we used the LFRmodel [35], [36] as the
basis for the experiment compared to the more widely used
stochastic block model [3], [37], because the node degree
distribution of this model is closer to the real world network.
They organize the network based on the different probabilities
that appear between the edges of the nodes. The tests include
using the LFR model to generate a number of benchmark
networks, using our algorithms to analyze them, and then
finding the predefined planted community structure.

In the stochastic variational inference of MMSB with node
influence parameter κ̂ , we use a point estimate of the posterior
community memberships π̂ and the posterior community

FIGURE 1. The perplexity computed by Eq.(15) on LFR network with
10,000 nodes and 30 overlapping communities. It can be seen that it
gradually converges with time. We used the mini-batch sampling method
in the test and set 15% nodes who have memberships in three
communities at the same time manually to increase the difficulty of
overlapping community detection. The lower the score of the perplexity,
the closer the detected model is to the ground-truth. In addition,
the graph shows a power-law distribution characteristic, which indicates
that the community divisions calculated by our algorithm based on node
influence are consistent with the planted community structure with
real-world network distribution in LFR.

strength β̂ to predict the distribution of the link, which are
calculated as the average of the variational posterior param-
eters γ and µ, respectively. Thus, the prediction of the edge
distribution for a pair of nodes in a sub-sampling test set can
be approximated as Eq.(14).

ρ
(
Lpq|Lobserved

)
≈

∑
zp→q

∑
zp←q

ρ
(
Lpq|zp→q, zp←q, κ̂, β̂

)
ρ

×
(
zp→q|π̂p

)
ρ
(
zp→q|π̂p

)
. (14)

It is clear that Eq.(14) is a legal approximation. Based on
Eq.(14), the perplexity [7] is introduced according to the
average predictive log likelihood of a test set of node pairs Y .

perplexity (Y )=exp

{
−

∑
p,q∈Y log ρ

(
Lpq|Lobserved

)
Y

}
. (15)

Perplexity is a measure of the adaptability of the model.
The lower its value, the more consistent it is with the standard
model. Fig.1 shows the change of the perplexity over time
after applying the algorithm of this paper to LFR benchmark.
This LFR test network contains 10, 000 nodes and 30 covered
communities, and 15% of the nodes are shared by three
communities at the same time. From Fig.1, we can see that the
value of the perplexity decreases with time, which indicates
that the number of communities detected with coverage nodes
is basically the same as the number of communities in the
standard model, which is approximate the posterior commu-
nity model distribution. In addition, the graph illustrates a
distribution trend of power-law [5], which can also prove
that the results detected by our algorithm are consistent with
the real world networks(LFR itself is a simulation of the
real world network). Since the sub-sampling non-links are
obtained by the way of characteristic scaling contraction,
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FIGURE 2. The comparison results of MMSB [6] and the algorithm in this paper on LFR network with
10,000 nodes and 20% community coverage. Each plot represents an experiment under five different
networks with a right-skewness distribution. From the comparison of the precision, it can be seen that with
the increase of the mixing factor(the increase of the factor indicates that the connections between
dissimilar nodes are increasing, the community will become more and more obscure), the algorithm in this
paper is better than the MMSB in correctly estimating the classification nodes. The abscissa describes the
ratio of the maximum node degree to the average node degree. As it increases, the heterogeneity in the
network becomes more and more serious, that is, a few nodes will have more connections. In this case, our
algorithm not only ensures the accuracy of the community test results, but also captures this heterogeneity
in node degrees when the community strength is correctly learned. Here, we set the average node degree to
15, the community size range of [50,200] and the network power-law exponent is 2.

it is an unbiased estimation method (see Section III-C), so the
model in this paper can predict most of the non-links with
high accuracy.

The precision-recall [38] is also a strategy for evaluating
the accuracy of algorithms, which has been proved to be
better than ROC ACC [39]. In a binary decision problem,
a classifier labels samples as either positive or negative.
According to different scoring standards, it mainly contains
four categories: True positives(TP) indicate that the sample
was correctly marked as positive. False positives(FP) corre-
spond to negative sample was incorrectly marked as positive.
True negatives(TN) refer to negative sample was correctly
marked as negative. And the false negatives(FN) represent
that the positive sample was incorrectly marked as negative.
Thus, the precision and the recall can be computed by TP

TP+FP
and TP

TP+FN , respectively. Fig.2 shows how the accuracy of
the two algorithms varies with the node degree. The hor-
izontal axis indicates the ratio of the maximum degree to
the average degree of the node, and as the ratio increases,
the heterogeneity of the network becomes more and more
serious, that is, the proportion of the node influence in this
paper is increasing, and the community shows a serious
overlapping phenomenon. Under this right-skewness degree
distribution, our algorithm predicts better than MMSB. The
main reason is that the right-skewness of the degree distri-
bution may cause the community strength of MMSB to be
overestimated or underestimate the linkmodewithin the com-
munity. The algorithm in this paper, however, considering
the weight of node influence within community, so it can
capture the characteristics of the heterogeneity distribution
of the node degrees, and thus learn the correct community
strength.

We further tested the performance of the algorithm on
a computer generated network with overlapping communi-
ties. In quantifying the similarities between communities,
we employed a standardized means of normalized mutual
information(NMI) [40], [41]. As a comparison of algorithm

performance, several algorithm models with relatively novel
concepts and high detection accuracy in community detection
are selected in this paper, including Poisson model [27],
information map model [42] and label belief propagation
model [39]. Fig.3 is a comparison of algorithm performance
on LFR network with overlapping communities. From a
global point of view, the NMI of this paper is higher than
the other three algorithms. However, as the mixing factor
increases, the overall performance decreases. The perfor-
mance of the Poisson model is very close the algorithm in
this paper except for the other two models, which benefits
from the nature of its principle derivation. From left to right
in Fig.3, the panel can be seen as the process of increasing
the heterogeneity of the network. In this process, since the
degree of a few nodes grows very fast, a serious community
overlapping phenomenon is formed, which further leads to
a drastic reduction in the performance of most algorithms.
When the mixing factor exceeds 0.5, the concept of the
community is blurred.

B. REAL-WORLD NETWORKS
Consistent with the aforementioned computer-generated net-
work, we use similar evaluation criteria to test the perfor-
mance of the algorithm. Table 1 compares the application
of the MMSB and the algorithms of this paper to many
real-world networks(the parameters are the same for all
datasets). It can be clearly observed from the perplexity that
the MMSB performs worse in predicting performance. Since
the first four networks are small, they are fitted with a sin-
gle community strength parameter. And for the remaining
networks, the C standard community strength parameter are
used. The networks in Table 1 cover many areas that can
be used for performance testing to make the results more
representative. The score of the HEP-TH looks a bit different
and much higher than other networks. The possible reason is
that the degree distribution in the network has a very serious
heterogeneity, and the number of connections between nodes
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FIGURE 3. The comparative analysis of the NMI obtained by different algorithms, including the Poisson
model(PSN) [27], information map algorithm(MAP) [42] and label belief propagation model(CPA) [39]. Each
graph represents a repeat test under fifteen different LFR networks with 10,000 nodes and 10% of the
nodes are assigned to three overlapping communities. Obviously, as the mixing factor increases, the overall
performance of the algorithm is degraded, however, the algorithm in this paper maintains a relatively high
community detection accuracy. From a single graph, the other two algorithms perform poorly except for the
Poisson model. When the mixing factor is beyond 0.5, the performance of all algorithms is drastically
reduced, and more serious is the result of the failure of the algorithm [37]. From left to right, it can be seen
as a process of increasing noise in the network, which can affect the performance of community detection
algorithms. In other words, under the network conditions with severe heterogeneity, whether the
underlying community structure can be correctly captured can be used as an objective criterion for judging
the merits of the algorithm.

TABLE 1. Test results of perplexity on real-world datasets.

is significantly different, resulting in extreme overlapping
phenomenon. We also calculated precision and recall for
some networks in Table 1, and the results are shown in Fig.4.
During the experiment, we generated the top n node pairs for
each node and sorted them according to the probability that
a link between them. Then, we picked out the number of the
topm suggested node pairs of each node from the n node pairs
to calculate precision and recall, where m takes a range from
10 to 100. As can be seen from Fig.4, with the increase in
the number of nodes(the panel is arranged from left to right
according to the increase in the number of nodes), the gap
between precision and recall corresponding to these two algo-
rithms is also increasing. In particular, the MMSB does not

consider the node influence in the calculation, so it can only
rely on the node memberships and the community strengths
to predict the link, and its performance is inevitably lower
than the algorithm of this paper. In addition, as C is fixed,
with the increase in the number of nodes N , the communities
are likely to contain more nodes, which further increases the
link prediction difficulty of MMSB, which can also be found
in Table 1.

Finally, let us introduce a more interesting example. The
arXiv network consists of the scientific literature and ref-
erences between them [47]. Until August 2011, the total
number of articles uploaded on this website reached 694, 000.
After filtering, we retained 570, 000 physics-related articles
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FIGURE 4. The results of applying the algorithm in this paper to real-world networks. The panel
corresponds to several datasets in Table 1 from left to right. Overall, the model in this paper outperforms
the MMSB algorithm in predicting precision and recall. Although both models use variational inference to
fit, because the model in this paper considers node influence in the community division, it avoids
overestimation or underestimation when predicting links. By sampling the number of the top m suggested
node pairs of each node, We can make quantitative judgments about the correctness of the node
classification. In this case, the precision evaluates the m suggestion that appears in the test set, while recall
captures the node pairs in the top m suggestion that appear in the test set.

FIGURE 5. The community structure detected on the arXiv network [47] with 570,000 articles using the
method of this paper. The nodes in the network represent the articles, and the edges imply the citation
relationships between them, which are colored according to the posterior estimates of the detected
communities. This figure demonstrates the four top-level community structures and is marked with their
specific domain. We use the posterior node influence to mark the size of the nodes and color them
according to its community assignment. The node showing “An alternative to compactification” [48] is a
node with highly overlapping features and can be viewed as a bridging node between many communities.

as the main research object. Fig.5 is a community partitioning
result detected by the posterior link estimation method in this
paper. Since the number of detected communities is close

to 200, and many communities contain few nodes, which
does not affect the accuracy and overlapping of community
partitioning, only the top four communities are shown here.
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According to our model, each node i has a community
membership πi, and each link associated with the node pair
(i, j) is assigned to one of the C communities. In addition,
the links are colored according to the approximate posterior
probability ρ(zi→j, zi←j|L), which also implies the relation-
ship between references and references between articles.
The highly cited article in the middle of the figure is “An
alternative to compactification” [48], as the author said it
was originally a purely theoretical article published in 1999.
However, with the development of society, it has been labeled
with a technical label, so that it is referenced by more other
research fields, which also makes it have the characteristic of
heterogeneous node degree distribution to some extent.

For convenience, we examined the additional label
attributes(the category to which the article belongs) of the
nodes to name the communities that were detected, which
are “High energy physics: Phenomenology”, “High energy
physics: Theory”, “Quantum cosmology” and “General rel-
ativity”. The link color corresponds to the relative commu-
nity associated with the links, and the size of the node is
used to distinguish heterogeneous nodes in the network(the
degree of such nodes is very large and has varying degrees of
overlapping). It should be pointed out here that the citation
itself does not reflect the role of the article in the citation.
Other operations on the network, such as calculating the
overlapping of nodes, the centrality of the edges or nodes that
act as mediators are all based on the results of community
detection by the algorithm of this paper.

In the analysis of the network, articles belonging to mul-
tiple sub-domains can be found by our method. These nodes
build their own membership between different communities
and get a high a posterior bridge score, which is a strategy
for judging the strength of bridging nodes [12]. Take the arti-
cle “Cosmological constant-the weight of the vacuum”as an
example [49], it contains 1117 references, mainly introduces
cosmology related knowledge. By calculating, we found that
the community members associated with it were concentrated
in two communities, which meant a very low posterior bridge
score. Nevertheless, the two communities it is associated with
are labeled “General relativity and Quantum cosmology ”and
“Astrophysics”at the same time, which shows that it really
provide a bridge between the two larger communities, and this
is a very meaningful activity. By exploring potential commu-
nity structures, articles with interdisciplinary influences can
be separated from their respective specific areas, making the
hierarchy more clear.

V. CONCLUSION
Revealing underlying overlapping communities in large-scale
networks can help us better explore, interpret and predict
the structure and properties of the network. However, a large
number of existing methods assume that nodes belong to only
one single community, without considering the “multiple
identities”that a node might have. In this paper, we inter-
pret this “multiple identity”as the influence of a node,

which is similar to the characteristics of preferential
connection [5], [20], so that a few nodes have a large
degree distribution, and most nodes have only a few links.
In order to simulate the behavior of this kind of node effec-
tively, we derived a probabilistic prediction model to capture
the nodes influence that exist in the community detection
process.

Our approach is based on a Bayesian network model called
Mixed-Membership Stochastic Blockmodel(MMSB) [6],
which allows nodes to belong to multiple different com-
munities at the same time. Compared to models that only
consider a single community, MMSB can better simulate
most networks in the real world, but does not explain the node
influence. In view of this, the influence model parameters of
nodes are added to improve the algorithm, and summarized
the stochastic variational inference algorithm based on the
node influence. The advantage of doing this is not only
can make full use of the probability prediction model of
MMSB, but also deeply excavate the community overlapping
phenomenon in the detection process, uncovering the nodes
with the bridge function among the communities, and max-
imizing the information income. In addition, we developed
a non-conjugated stochastic variational inference to derive a
link probability prediction model with node influence. The
key strategy is to use themean-domain variational familywith
variable distribution to approximate the posterior community
strengthen and node influence distribution in the link prob-
ability prediction model. By sub-sampling the test network,
it is convenient to make a posterior inference to the param-
eters of community strength and node influence, and then
re-estimate the potential community structure.

We applied the posterior link prediction model with node
influence to the computer-generated and real-world networks,
and made performance evaluation and analysis. Experimental
results show that the algorithm in this paper is better than the
MMSB in overall performance, especially when the hetero-
geneity of network is very serious. Through the performance
comparison test of several algorithms on the LFR network,
when the network contains a clear community structure,
the algorithm of this paper can achieve higher community
identification accuracy than other algorithms. However, when
the network structure mixed factor reaches a certain critical
value, all the detection performance of the algorithm will be
affected, and even lead to failure. For real-world networks
that conform to power-law distribution, as the algorithm in
this paper considers the influence of nodes, the accuracy of
community detection is better than that of MMSB(the node
degree that exhibits a right-skewness distribution may lead
MMSB to underestimate or overestimate the link behavior
within the community). In addition, the method of this paper
is applied to the arXiv network [47] with 570, 000 articles.
It can be clearly seen from the experimental results that it can
not only detect the hidden community structure with overlap-
ping features correctly, but also captures nodes with greater
influence in the network. The test also further demonstrates
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the importance of node influence in predicting the accuracy
of the degree of node that exhibits a power-law distribution.
In general, this paper combines the node influence with prob-
ability model of link prediction, providing a new idea for
using statistical models to explore real-world networks.
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