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ABSTRACT Abnormal condition monitoring is an essential part in ensuring the reliability and safety
and guaranteeing the efficiency for industrial processes. This paper proposes a monitoring and diagnosis
framework applied to coal mills in thermal power plants. The support vector regression (SVR) method
with optimized parameters is utilized to detect the abnormal condition that the operating performances
deviate from the normal levels expected. The support vectors in the trained models are considered as
the representative operating conditions; then are used for responsible variables diagnosis, measuring how
far each performance related variable deviates from its expected value when abnormal events occur. This
approach is validated by three real cases from a thermal power plant, and the application results indicate
that the proposed approach can detect abnormal conditions in time and accurately. Furthermore, effective
diagnosis can be achieved and is validated by the case analysis conclusions from experts, which shows the
effectiveness and potential value of the proposed approach.

INDEX TERMS Abnormal condition monitoring, fault diagnosis, support vector regression, coal mill,
performance.

I. INTRODUCTION
Thermal power plant is an enormous and complicated factory
for generating electricity. It consists of five major parts: fuel
system, combustion system, steam-water system, electrical
system and control system. Coal mill is an important auxiliary
equipment in fuel system, used for pulverizing coal blocks
into powder. The well grinded coal powder is then transported
by the primary hot wind into the boiler for combustion.
Thus, improving combustion efficiency depends heavily on
the performance and productivity of the coal mills. According
to Maffezzoni [1], incorrect coal fineness or improper drying
will lead to burner line plugging, high unburnt carbon loss,
slagging, fouling, etc. Inadequate coal powder supply may
result in malfunction or shutdown of boilers. The perfor-
mance of a coal mill can be affected by blockage, shutdown,
fire or explosion, and wear of its components. In conclusion,
the operating safety, reliability and economic efficiency of
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the whole plant are highly related to coal mill performance.
Therefore, it is necessary to perform abnormal condition
detection and diagnosis on coal mills, and optimize their
operation, to improve the performance and efficiency of pro-
duction.

Modernized power plants are usually equipped with large-
scale sensors to monitor the real-time operating condi-
tions, so the data generated from sensors can be utilized
to ensure better performance or find abnormal conditions
in the industrial process. Fault detection and diagnosis
(FDD) methods based on sensor data is a major tech-
nique in ensuring safety and economy of coal mills, which
arouse intensive attention in both industrial and academic
fields. Fault detection and diagnosis for coal mills can be
divided into mathematical model-based, signal processing
based, multivariate statistical analysis based and machine
learning based methods. Model-based methods use mathe-
matical models to describe the operating behavior of coal
mills, while other approaches only rely on process data
analysis.
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A multi-segment coal mill model that covers the whole
milling process was presented in [2], which can be used
for online monitoring and fault detection. Odgaard et al. [3]
developed an optimal unknown input observer from a sim-
plified energy balance model to detect fault, and compared it
with motor power regression models that represented normal
operating conditions (NOCs) with both static and dynamic
principal component analysis and partial least squares (PLS).
An on-line model based approach for tube-ball mill con-
dition monitoring and fault detection was proposed in [4],
the model parameters were on-line updated/optimized using
Genetic Algorithms. A FDD system was developed by
Agrawal et al. [5] with a dynamic mathematical model to
generate residuals. Fuzzy logic was employed for residual
evaluation to detect fault type, isolate fault and provide the
severity information of the fault, while Bayesian network
was used to troubleshoot the root cause. Self-organizing map
was trained and used for the reliable isolation of the most
frequent mill fault, output fuel-mixture drop due to the coal-
stuck in the input bunker, in [6]. Qin et al. [7] established
an expert database with fuzzy cluster analysis, PCA and ten-
dency analysis, and fitted the multiple regression equations of
main operation loops with support vector regression (SVR)
to monitor the parameter variation tendency. Grey relation
analysis, combined with neural network, was also studied
to get accurate identification to early fault, fault degree as
well as fault tendency [8]. Besides, signal processingmethods
such as wavelet analysis [9] and acoustic emission signal
analysis [10], [11] were also applied to coal mill performance
monitoring.

The accuracy of the mathematical model-based meth-
ods [12], [13] depends on how well the models are formu-
lated. However, the coal mill is a highly non-linear system,
and some key parameters are difficult to obtain. Data-
driven methods don’t require complicated process mecha-
nism information or associated expert knowledge. However,
signal processing approaches can be sensitive to changing
of operating conditions, such as coal volumes, air flow
volumes and environmental temperatures. As for statisti-
cal analysis approaches and machine learning approaches,
Agrawal et al. [14] believed that the existing algorithms are
unable to find new faults, locate root causes of the faults and
interpret the diagnosis results.

As major methods used in industries’, data-driven moni-
toring and fault diagnosis approaches have been applied to
other equipment, though there is not much work oriented
at coal mills. For example, Hilbert–Huang transform-based
method [15], multivariate empirical mode decomposition
(MEMD) [16], support vector machine (SVM) [17] and deep
neural network (DNN) [18] were used for bearing fault detec-
tion or diagnosis. Bayesian network for pump fault diag-
nosis [19] and remaining useful life estimation [20]. Tree
model based methods such as XGBoost [21] was applied to
wind turbines, and also other neural network based methods,
such as convolutional neural network (CNN) [22], echo state
networks (ESN) [23] and deep belief network (DBN) [24].

These methods mainly extracted features that distinguish
faulty conditions from normal conditions to detect faults, or
used fault samples to classify faults.

The above-mentioned studies mainly focus on fault detec-
tion and diagnosis. In practice, however, there are some
abnormal conditions, which are not necessarily caused by
faults and may affect the equipment performances, to be
identified and corrected. As for anomaly detection, data-
based methods use the process data collected under the
normal operating conditions to build an empirical model
which is then used to estimate true values of new mea-
surements and to detect and diagnose anomalies in future
data by evaluating the residuals [25].There are statistical-
based [26], [27], similarity-based [28] and machine learning
based methods [29] aiming at addressing different anomaly
detection problems in the industrial field.

As for the coal mill, in practice, the general monitoring
scheme is to calculate the indicators under some specific
operating conditions named standard conditions. However,
there may be a case that the value of an indicator falls
in the normal range under the standard conditions but an
actual abnormal condition occurs because of the difference
between the actual and standard operating conditions. Thus,
this study aims to monitor coal mills so as to detect and ana-
lyze the conditions with the unexpected performances below
the normal levels that may result from incipient faults or dif-
ferent operation settings. As for performance monitoring,
Nikula et al. [30] provided a data-driven framework to mon-
itor boiler efficiency together with its expected level. The
boiler efficiency was represented by the variables that had the
strongest correlations with the boiler efficiency according to
information-theoretic variable ranking, and calculated using
multiple linear regression or by selecting the highest histor-
ical efficiency. This information is essential to the operators
in the plants, given the fact that a boiler can have hundreds
of variables to be monitored and the efficiency is a key factor
of the profits. When an abnormal condition occurs, which is
indicated by more than one variable may go out of the normal
regions, it requires much time to analyze the root causes, even
for experienced experts. Therefore, with an automatic detec-
tion and diagnosis tool, the working stress of operators can be
reduced, thus the operation costs can be cut down. However,
multiple linear regression can be insufficient in describing
nonlinear relations between the operating variables and the
equipment performances such as boiler efficiency. Further-
more, to diagnose the root causes of the abnormal conditions,
the detailed information which operating variables give most
contributions to the abnormal conditions is also crucial.

This paper proposes an approach based on SVR to realize
coal mill performance monitoring and abnormal condition
diagnosis. The major tasks to be completed in this paper
include: 1) estimate the value for each performance-related
variable using the SVR model; 2) the estimated results are
compared with the real values, and the residuals are used
for anomaly detection; 3) when abnormal conditions occur,
the support vectors, which are extracted from the SVRmodel,
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are used to diagnose the root causes of performance deviation
by assigning ranks to the concerned variables. Three case
studies are provided to evaluate and explain the results of the
proposed approach and validate its effectiveness.

One of the difficulties to be dealt with in this paper is
how to recognize abnormal conditions under different oper-
ating conditions. Another is how to accurately locate the root
variables resulting in performance degradation. Therefore,
the three major contributions of this paper are:

1) An integrated performance monitoring and diagnosis
framework for coal mills is proposed. In this framework,
SVR is used to build different models for estimation of
different performance-related variables, and the monitored
performances are compared with their historical recordings
in real time to detect performance degeneration of coal mills
under multiple operating conditions.

2) The support vectors in the trained SVR models are
considered as the representative operating conditions, which
indicates the marginal conditions of normal operating. A dis-
tance measure is used to find whether there is a similar
operating pattern between a real-time observation and the
representative support vectors, so as to monitor the deviation
of the monitored variables under similar operating conditions
and find the responsible variables for performance deviation.

3) The direction and degree of the performance deviation
are also given based on distance measures, which is instruc-
tive and meaningful for operators in the plant. Based on the
monitoring strategy, even without the prior fault informa-
tion or fault samples, which are usually required in most diag-
nosis methods, the proposed approach is capable of locating
the root causes of the abnormal conditions.

The remaining of the paper is organized as follows.
Section II describes the coal mill system and how the per-
formances are defined in this paper. Section III introduces
the algorithms used in this paper. Section IV illustrates the
case studies which present the implementation and applica-
tion results of the approach. Finally, the paper ends with a
conclusion and some perspectives in Section V.

II. COAL MILL
A. OPERATION OF COAL MILLS
Large-scale thermal power plants usually use medium
speed mills which run at a setting speed in the range
of 50∼300r/min, because of their economic efficiency. First
the coal briquettes fall in the center of the grinder through
an inlet pipe, then they are crushed on the rotating grinding
table by the grinding roller which is driven by the motor
through the reducer. The pulverized coals on the edge of the
mill are brought up and dried by the mixed primary air, thus
the requirement for different humidity of the product can be
satisfied by adjusting hot air temperature. Large and heavy
coal particles cannot be carried by the mixed primary air,
so they will fall directly onto the grinding table, which is so
called the first separation. While passing the rotary separator,
the coal particles comes to the second separation. The lower

the rotating speed is, the easier the coal particles can pass
through, which means larger particles tend to fall back under
faster rotating speed. Therefore, the thickness of coal powder
can be determined by different separator speeds.

B. MONITORED PERFORMANCES
Coal mill is a complicated nonlinear system, the variables
in which are strongly correlated and coupled. Conventional
control strategies use several single-loop PID controllers to
separate the pulverization process into different phases. The
values of some key operating variables, such as rotating speed
of the rotary separator, are set by experiments.

Owing to its characteristics of nonlinearity and highly
coupling, it is difficult to adjust the variables to ensure the
coal mill to run under the optimal conditions. Furthermore,
the variation of one single variable may affect other variables
and leads to poor performance of the whole system, even
resulting in faults like coal leakage, mill choking, wear of mill
components and etc. For example, if the outlet temperature of
the coal mill declines, there will be a significant deterioration
appearing in the quality of coal powder. On the contrary, if the
temperature exceeds the normal level, the pulverizer may fire.

The coal powder quality is related to three major factors,
i.e., the grinding capability, coal drying capability, and venti-
lation capability of the coal mills. The grinding capability is
determined by the rotary separator. The faster the separator
rotates, the better coal powder is. The drying degree of the
coal powder is determined by the outlet temperature. The ven-
tilation capability is corresponding to the ventilation pressure
that is denoted by the grinding bowl’s differential pressure.

While the quality-related variables are all in the normal
range, the energy consumption is taken into consideration.
One of the major indicators, which evaluates whether the coal
mill is running at a satisfactory state, is its power consump-
tion that is calculated by dividing the consumed power per
hour by the coal flow during the same period. In general,
the lower the power consumption is, the higher the efficiency
is. However, there are some special circumstances where this
principle may be invalid. For example, when different types
of coals are mixed for combustion, the power consumption
may increase or remain in the normal range. If only this index
is chosen as the sole indicator, a conclusion that pulverizing
the coals with high water content will increase the efficiency
will be drawn, which is unacceptable. Therefore, energy con-
sumption should be analyzed on the basis of the three quality-
related variables.

In conclusion, to estimate these four performances, differ-
ent operating data sets are chosen for building four specific
models according to the combustion mechanism and expert
knowledge.

III. PROPOSED APPROACH
A. MONITORING FRAMEWORK
Considering three coal powder quality-related variables and
mill power consumption, an integrated coal mill performance
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FIGURE 1. The flowchart of the monitoring and diagnosis framework.

monitoring framework based on SVR models is proposed.
For each SVR model, the procedure of abnormal condition
monitoring and diagnosis is displayed in Fig. 1. The SVR
model is used to detect whether the corresponding perfor-
mance indicator is out of the normal range. The normal range
is set between the lower and upper control limits given by
well-functioned historical operation data.

When the residuals between the model generated and real
values fall out of the normal ranges, indicating the abnormal
conditions in practice, a series of abnormal data are used for
diagnosis. Then the accuracy of the detection approach is
to be validated. Based on the differences between the nor-
mal and abnormal data, the top three variables with highest
contributions to the deviations are located using the distance
measures.

The model is built using SVR, and the kernel method is
applied to map the samples into the feature space. The param-
eters of the models are automatically determined according
to the complexity of the data distribution and the grid search
strategy, to choose proper number of support vectors and
guarantee the models’ accuracies and generalization capabil-
ities. The control limits are selected according to the Pauta
criterion and the kernel density estimation (KDE). After esti-
mating the performance related indicators, the support vec-
tors obtained from the trainedmodels are utilized to recognize
the key variables that lead to performance degradation.

B. PERFORMANCE MONITORING MODELS
Different from the traditional regression methods that cal-
culate the differences between the model outputs and the
measured values to obtain the losses, SVR allows ε deviations
between them.

Given the training samples D = {(x1, y1) , . . . , (xm, ym)},
yi is a one-dimensional output while xi can be a multi-
dimensional vector. The SVR estimates the output f (x) of an
unknown input feature vector x. The optimization objective
of the model can be written as:

f (x) = wT x + b (1)

min
w,b

1
2
‖w‖2 + C

m∑
i=1

lε(f (xi)− yi) (2)

where w and b are undetermined parameters of the model,
C is the regularization term/penalty coefficient, and m is

the number of training samples. l∈ is the ε-insensitive loss
function:

lε(z) =

{
0, if |z| ≤ ε
|z| − ε, otherwise

(3)

The objective function can be solved by introducing the
slack variables ζi and ζ̂i and Lagrange multipliers, then the
coefficients ai, âi are determined, the solution to which is:

f (x) =
m∑
i=1

(âi − ai)k(x, xi)+ b (4)

Taking the form of feature mapping into consideration,
the samples are mapped into the feature space, where
k
(
xi, xj

)
= 8(xi)T8(xj) is a kernel function and 8(x) is

the mapping function. The Gaussian kernel is chosen in this
paper:

k(xi, xj) = exp(−

∥∥xi − xj∥∥2
2σ 2 ) (5)

The performance of the SVR model with Gaussian kernel
largely depends on the selection of its parameters. The
penalty coefficient C determines the tolerance of the errors
of the samples that fall out of the ε interval zone. Larger
C will give less tolerance to the error. The support vectors
are the training samples that fall out of the ε interval zone,
making

(
âi − ai

)
unequal to zero. Thus the parameter ε,

which determines the width of the interval zone, controls
the number of support vectors, which determines the gen-
eralization capability of the model. Larger ε stands for bet-
ter generalization capability. Additionally, the parameter σ
in the kernel function also affects the model performance.
The model with larger σ has weaker nonlinearity and less
accuracy. In this paper, therefore, we generalize the method
proposed by Yi et al. [31] to multi-dimensional inputs to
select the appropriate interval zone ε, and adopt the grid
parameter optimization method to find the best C and σ
simultaneously with a given width of the interval zone ε. The
main idea of the generalized method is based on the fact that
the number of the support vectors, which is needed to fully
describe the model, is determined by the complexity of the
distribution of the training data. Thus, an evaluation index,
which is denoted by CP, has been put forward to measure the
complexity of the data distribution. The original work [31]
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considered a univariate case and split the data into several
regions to evaluate the split data separately. In this paper,
the data are considered as a whole and the evaluation index is
generalized to the multivariate case.

Given the training sample set (xi,1, xi,2, . . . , xi,n, yi)mi=1,
where n is the dimension of each training sample, the com-
plexity index CP is defined as:

CP =

m−1∑
i=1
|Ai|/(m− 1)

m−2∑
i=1
|cosθi|/(m− 2)

(6)

Ai = (xi+1,1, xi+1,2, . . . , xi+1,n, yi+1)

− (xi,1, xi,2, . . . , xi,n, yi) (7)

cos θi =
|Ai • Ai+1|
|Ai| • |Ai+1|

(8)

where |Ai| is the Euclidean distance between the (i+1)-th
sample and the i-th sample, θi is the angle between the
vectors Ai and Ai+1. Thus,

∑
|Ai| indicates the density of

samples, and
∑
|cosθ i| indicates the samples’ variation ten-

dency. Smaller CP implies a less stringent interval zone could
be chosen, and fewer support vectors are need for fitting the
model. Then ε can be modified by the empirical formula as

ε =
max(std2(xj)j∈1,2,...,n)

CP
(9)

where std(x) calculates the standard deviation of x.

C. CONTROL LIMITS
Due to the variation of operating conditions, the fluctuation
of sensor noises and the capabilities of the performance mon-
itoring models, there must be deviations between the real
measures and themodel-generated values. Thus, the detection
is based on the statistical analysis of the residuals.

In this paper, we consider the Pauta criterion and the kernel
density estimation as the candidate schemes for determining
control limits, and give a comparison between these two
schemes. The Pauta criterion assumes that the data to be
analyzed only contain random errors. It uses the mean value
µ and the standard deviation σ to construct a zone, out of
which the data are regarded as abnormal. The probability that
the residuals distribute in the range of (µ − 3σ,µ + 3σ )
is 0.9973, which means that the normal data are out of the
range just with the probability less than 0.3%. This criterion
requires that the residuals should follow or approximately
follow the normal distribution; otherwise the criterion may be
invalid.

For the data without prior distribution information,
the KDE is a well-established approach to estimate the prob-
ability density function (PDF) for univariate processes [32].
Assume that {e1, e2, . . . ., em} are the independent and iden-
tically distributed variables that follow a distribution with
the PDF p(e). Then p(e)’s kernel estimation function is

defined by:

p̂(e) =
1
mh

m∑
i=1

K (
e− ei
h

) (10)

where K (·) is the kernel function, h is the bandwidth.
The optimal estimation of the bandwidth was given by
Silverman [33] with an empirical formula:

hopt = 1.06σm−0.2 (11)

If the Gaussian kernel is used, the PDF can be rewritten as:

p̂(e) =
1
√
2mh

m∑
i=1

exp(−
(e− ei)2

2h
) (12)

Then the corresponding upper and lower control limits,
UCL(α) and LCL(α), can be obtained from p̂ (e) by solving
the following equations [32]∫ UCL(α)

−∞

p̂(e)de = α (13)∫
+∞

LCL(α)
p̂(e)de = α (14)

where α is the confidential bound.
Similarly, these two methods both use the control limits

to detect when residuals exceed the upper or lower bound.
In the industrial processes, the anomaly detection algorithms
should not only recognize faults accurately, but also avoid
reporting faults while under normal circumstances. Thus,
the false alarms rate and hit alarms rate are calculated to
evaluate the performance of the monitoring scheme.

FPR =
number of false alarms
number of normal data

=
FP

FP+ TN
(15)

TPR =
number of hit alarms

number of abnormal data
=

TP
TP+ FN

(16)

where FP is the number of the cases that the model claims
abnormal when there is no fault occurs, FN is the number
of the cases that the model claims normal when faults occur.
TP and TN represent the number of the cases that the model
can provide right estimation under the abnormal and normal
conditions, respectively.

Lower false alarm rate and higher hit alarm rate, which are
generally known as recall ratio, show better performance of
the monitoring scheme.

D. ROOT CAUSE DIAGNOSE METHOD
After the abnormal condition is detected, the root cause
diagnosis method is utilized to find the key variables that
contribute most to the performance degradation and clarify
the deviations of the variables. The support vectors obtained
from the trained model are considered as the representative
operating conditions. For each input sample, the Euclidean
distance is used to evaluate the similarity between the sam-
ple and the support vectors. Thus, by traversing all support
vectors, k nearest neighbors in the support vector set of the
sample can be found for comparison.
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TABLE 1. Common and specialized variables for different models.

Given the distance between the sample x and the support
vector v:

d(x, v) =
√
(x − v)(x − v)T (17)

The contribution of theq-th operating variable to the abnormal
condition can be defined as:

contq =
1
u

u∑
i=1

(xi,q −

∑k
t=1 vt,q
k

) (18)

where u is the number of the samples that are estimated to be
abnormal by the SVR model, vt,q is the q-th variable in the
t-th nearest support vector.

The contribution magnitude is assessed by the absolute
value, and the sign is given for judging the deviating direction
in a statistical perspective because all input samples that are
detected to be abnormal are taken into consideration. The
diagnosis process can also be conducted online, which means
when the continuous alarms of anomaly accumulate to a
certain amount, the abnormal observations of the previous
time from the moment will be used for analysis.

IV. CASE STUDY
The proposed approach is applied to the real cases obtained
from the coal mills in a large power plant. There are 17 oper-
ating variables in total for building the performance monitor-
ing models, and different variables are chosen for different
models. All the used variables are listed in Table 1.

We consider first 12 operating variables listed in the
Table 1 as common variables since they affect all indi-
cators. Because all the variables have impacts on energy
consumption, the power consumption model takes all the
variables as inputs. However, this cannot be applied for other
three models. As for ‘outlet temperature’ and ‘pressure dif-
ference of grinding bowl’, their influences are limited to
their corresponding quality indicators, so they are removed
from other quality-related models. They are the predictors
of the temperature model and the ventilation pressure model,

respectively. According to the operating principle of the coal
mill, the speed of the separator not only reflects coal powder
fineness, but also influences the ventilation pressure, so it will
be considered as the target of the coal powder fineness model
and the input of the ventilation pressure model as well.

A. CASE I: SEPARATOR ANOMALY
The first case is the separator anomaly of a coal mill. At the
date of this case, the operator observed a sudden drop of the
separator current at 2:15 a.m. From 3:30 a.m. to 6:00 a.m.,
the separator was stopped twice; and the speed was adjusted
slowly in accordance with the current. After the temporal
maintenance, the coal mill ran well until 8:27 a.m. Then the
senior engineers came to check the causes of the anomaly,
concluded that there was something wrong in the reducer
of the separator. Therefore, the coal flow and the separator
speed were lowered down temporarily. Thus, we choose the
data from 2:00 a.m. to 8:30 a.m., except for those in the
period from 3:30 a.m. to 6:00 a.m., duringwhich the separator
was shut down, as inputs samples. Well-functioned data in
five months just before this anomaly case are selected as the
modeling data, split into the training and validating sets with
the proportion of 7:3.

Taking the power consumption model for example,
the parameter ε is selected as 0.047 concerning the complex-
ity of data distribution. The parameters C and σ are set as 2.0
and 0.5 given by the grid searching strategy. Here both the
Pauta criterion and the KDE are used to determine the control
limits, with the confidential bound α set as 99%.

From the Fig. 2, the following facts can be observed.
During the monitoring period, the residuals between the
model-estimated and real values of the separator speed, pres-
sure difference of grinding bowl and power consumption go
beyond the control limits for some time, which indicates the
occurrence of abnormal conditions. The temperature values
of all samples are almost in the normal range.

The abnormal condition is defined by the event that the
residuals exceed the control limits. If there are three consec-
utive estimated indicators falling out of the control limits,
we consider the instant corresponding to the first of the
three abnormal indicators as the anomaly occurring time. The
monitoring results visualized in Fig. 2 show that the abnormal
condition happened from the 15th sample to the 91st sample,
corresponding to the period from 2:15 a.m. to 3:30 a.m.
The abnormal condition occurred again at 8:27 a.m., which
is consistent with the operational log time recorded by the
operator.

As three models report anomalies based on the input sam-
ples, the effect is then compared by calculating the rates
of FPR and TPR for each corresponding indicator, shown
in Table 2. In general, the TPRs of KDE are higher than those
of Pauta criterion but it also misidentifies more normal con-
ditions as abnormal. For the best case, the monitoring scheme
can achieve the TPR of 98.8% with a low FPR of 0.6%.

After detecting the abnormal condition, the key variables
contribute to the change of operating condition are diagnosed.
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FIGURE 2. Plots of three coal powder quality-related models and the power consumption model. Upper: the real and estimated
values of performance-related variables; Lower: the relative error of these two values.

TABLE 2. Comparison between Pauta criterion and KDE estimation for three models.

Because the values used in SVR are normalized, the distances
between different variables can be compared directly. Here
we choose the power consumption model for example. Four
data sets are defined, i.e., the validating set extracted from
the original modeling data, the support vectors obtained from
the trained model, the input samples estimated to be normal,
and the input samples estimated to be abnormal. For all
the dataset, aiming to the selected variable, the distributions
of the distances between the samples and their ten nearest
support vectors are displayed together in Fig. 3, from which
a statistical conclusion can be drawn that when the abnor-
mal condition occurred, the cause-related variables could be
diagnosed through the change of the distances away from
their nearest support vectors. In Fig. 4, there are not great
differences between the cold air damper driver positions and

these four datasets. However, the distribution of the distances
between the pressure difference of grinding bowl and the data
that are estimated to be abnormal appears to be different from
those in the other three cases.

Thus, by comparing the change of the distances between
the samples and their ten nearest support vectors, for the ven-
tilation pressure model, we plot Fig. 4 in which all variables’
deviations are displayed. The rank of top three key variables
and their deviating directions are given in Table 3. The sepa-
rator speed contributes much more to the ventilation pressure
anomaly than other variables.

Similarly, for the coal powder fineness model and the
power consumption model which detect anomaly in the mon-
itoring period in this case, we also conduct diagnosis to find
the cause-related variables. According to the results of the
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FIGURE 3. Distributions of the variable distances of input samples in four
different datasets from their ten nearest support vectors.

FIGURE 4. The mean distance of each operating variable in the
ventilation pressure model between the abnormal input samples and
their support vector neighbors.

coal powder fineness model in Table 4, the separator current
ranks first, followed by the motor current and the motor
power.

Table 5 demonstrates the results from the power consump-
tion model. Among the top three variables, there are two coal
powder quality-related variables, which is consistent with
detection results in Fig. 2.

Therefore, combining three diagnosis results from three
different models, it can be noted that the fluctuation of the

TABLE 3. Top 3 high related variables of the ventilation pressure model
in Case I and their deviating directions.

TABLE 4. Top 3 high related variables of the coal powder fineness model
in Case I and their deviating directions.

TABLE 5. Top 3 high related variables of the power consumption model
in Case I and their deviating directions.

FIGURE 5. The diagnosis results given by PCA.

pressure difference of grinding bowl was triggered by the
variation of the separator speed, and the pressure difference’s
deviation is less than that of the separator speed. The decrease
of the separator speed mainly came from the declined sep-
arator current, which is diagnosed as the root cause of the
abnormal condition. It is in line with the experts’ judgment
that the fault was in the separator reducer. Furthermore, this
approach is capable of pointing out the variables related to the
anomaly explicitly. Besides, although the energy consump-
tion goes down, the quality of the coal powder deteriorates
due to the decrease of other two coal powder quality-related
variables.

To validate the detection performance of our method, some
different data-driven approaches are used for comparison
in Table 6. Both PCA with 95% confidence’s statistics and
XGBoost with EWMA can achieve quite good results, but
they are still inferior to the best monitoring scheme given by
our approach (TPR of 98.8% with a low FPR of 0.6%).

As for the diagnosis, since only PCA [34], [35] in the
above-mentioned methods can give the contribution of each
variable when an anomaly occurs, we calculate the average
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FIGURE 6. Plots of three coal powder quality-related models and the power consumption model. Upper: the real and estimated
values of performance-related variables; Lower: the relative error of these two values.

TABLE 6. The comparison of different detection approaches.

contribution assigned to each variable of the input sample
whose statistic exceeds the upper limit. The top 3 variables
with the highest contributions turn out to be the separator
speed, pressure difference of grinding bowl and the separator
current.

The two methods based on PCA and SVR both identify
the variables with large deviation, but the PCA based method
lacks the deviation information about these variables, which
demonstrates the superior of our proposed approach.

According to the results from the proposed performance
monitoring approach, it can be concluded that the anomaly in
the separator caused its current to be lower than the expected
level, which in turn influenced the separator speed, the pres-
sure difference of grinding bowl and the power consumption.

In this case, the anomaly of the separator reducer led to a
decline of the separator speed, thus more coal blocks without
sufficient grinding could pass through the separator, decreas-
ing the quality of reflux. Therefore, the pressure difference of
grinding bowl also decreased. The deviation directions of the
responsible variables given by our approach agree with the
real anomaly causes.

B. CASE II: CO-FIRING
The second case is a co-firing case that the coal with superior
quality was mixed with the coal with high moisture and high
volatile matter, from April 11th, 2017 to April 18th, 2017.
In this case, it is to be checkedwhether the proposed approach
can detect and diagnose the abnormal performances.

The detection and diagnosis procedures are the same as
those in the first case. Well-functioned data are used for
building the four performance models for the monitoring
purpose. Taking the power consumption model for example,
the parameter ε is set as 0.037. The parameters C and σ are
set as 4.0 and 0.25 respectively.

According to the monitoring results given in Fig. 6, all four
models report anomaly. It can be seen that the residuals of the
temperature model exceed the both of the upper control limits
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TABLE 7. Top 3 high related variables of temperature model in
Case 2 and their deviating directions.

TABLE 8. Top 3 high related variables of ventilation pressure model in
Case 2 and their deviating directions.

FIGURE 7. The mean distance of each operating variable in the power
consumption model between abnormal input samples and their support
vector neighbors.

TABLE 9. Top 3 high related variables of power consumption in
Case 2 and their deviating directions.

of the Pauta and KDE methods from the first time, while the
variation of the separator speed and the power consumption
begins at the 229th and the 230th samples, corresponding
to the real time at 0:10 a.m. and 0:20 a.m. on April 11th,
respectively. For the ventilation pressure, it fluctuates and
goes beyond the control limits for some time.

As for the separator speed, there is a sharp decrease as it
wasmanually adjusted for proper coal powder fineness, so we
mainly focus on the other three models in this case study.

The diagnosis results of the abnormal conditions about the
outlet temperature and the pressure difference of grinding
bowl are shown in Table 7 and Table 8, where the primary
air flow both ranks first and the values are higher than those
in the normal conditions.

For the power consumption model, the deviation plot and
the top 3 high related variables are given in Fig.7 and Table 9.

From the mechanism point of view, the increase of the
primary air flow will result in the decrease of power con-
sumption. Furthermore, both the outlet temperature and the
separator speed will also affect the power consumption.
During the period in this case, although the coal mill

TABLE 10. The comparison of different detection approaches.

consumed less energy, the decline of the outlet temperature
and the fluctuation of the ventilation pressure deteriorated the
quality of the coal powder.

The operator in the plant can locate the root causes of the
case with the help of the diagnosis results. As the primary air
flow represents the drying capability of the pulverizer, while
it is diagnosed as the root cause of the abnormal condition,
the reason for the anomaly lies in the increase of the moisture
content in the raw coal. The operation logs also proved that
the low-grade coal was mixed in during this period.

C. CASE III: FLUCTUATION OF THE OUTLET TEMPERATURE
The third case is the fluctuation of outlet temperature hap-
pened during a certain period. The data came from a coal
mill with the structure different from those in the other two
cases. Because the coal powder fineness is simply adjusted
using deflector baffle, we use the monitoring variables to
build other three models here. As can be seen from the
Figure 8 and Figure 9, the ventilation pressure and the powder
consumption remained normal while the outlet temperature
went beyond the upper control limit at the 235th sample of
Pauta criterion and at the 242th sample of KDE, indicating a
successful detection of the anomaly in the outlet temperature.

The proposed approach is compared with the other
approaches listed in Table 10 which can obtain a high TPR
but are with relatively more false alarms mostly. The best
one, KNN, is with the TPR of 98.3% and the FPR of 2.9%.
However, the modified SVR approach with Pauta criterion as
control limits has the TPR of 98.3% and the FPR of 1.7%,
and with KDE as control limits has the TPR of 96.7% and no
false alarm.

As for the diagnosis results in Table 11, it has been shown
that the cold air damper driver position was higher but the
primary air temperature was lower. The primary air was
mixed from the hot and the cold air, and the seal air also
came from the cold air, so the deviations indicated that there
might be malfunction in the control loop. The conclusions
from the experts also proved that the other parts of the coal
mill worked well. Although this case appears to be similar to
the Case II since they are both related to outlet temperature
anomaly, the diagnosis results provide different explanations,
which also validates the effectiveness of our approach.

D. CASE STUDY SUMMARY
Three practical cases from actual thermal power plants are
demonstrated in this section. The separator anomaly case
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FIGURE 8. Plots of ventilation pressure model and the power consumption model. Upper: the real and estimated values of
performance-related variables; Lower: the relative error of these two values.

FIGURE 9. Detection and diagnosis results of the temperature model.

TABLE 11. Top 3 high related variables of temperature model in
Case 3 and their deviating directions.

and the fluctuation of the outlet temperature case that were
well recorded are used to conduct the detection accuracy
evaluation. The results validate that the modified SVR detec-
tion approach achieve better performance than some other
detection approaches. As for the diagnosis, in all cases, the
diagnosis algorithm by locating the key variables through
calculating their deviations is also verified and consistent
with the experts’ analysis conclusions, which can provide
useful anomaly analysis results to operators.

V. CONCLUSION
This paper proposes an abnormal condition detection and
diagnosis framework for coal mills in thermal power
plants based on support vector regression. The variables

of the coal mills are categorized as the operating variables
and performance-related variables. The detection scheme
includes the SVRmodel with the parameter selectionmethod,
the grid searching strategy, and the control limits computing
algorithms based on the Pauta criterion and KDE. Distance
based measures are utilized to rank the variables responsible
for the abnormal conditions, and both the direction and the
magnitude of the deviation are evaluated.

The proposed framework can detect the deterioration of
coal powder qualities and the anomaly in the coal mill power
consumption in time. Furthermore, the abnormal data are
collected for the root causes related variables identification.
The diagnosis scheme can also give the deviation directions
and magnitudes of the responsible variables, which is useful
for the operators in the power plants. Furthermore, both the
detection and diagnosis methods are data-driven, and no prior
information of the abnormal conditions is required before
executing the analysis procedure.

Considering the need of optimizing the operating con-
ditions, the future work may include operating variables
optimization by dynamically determining the expected
performances under different operating conditions, thus
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providing adjustment suggestions for the controllable
variables.
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