
Received November 4, 2019, accepted November 18, 2019, date of publication November 22, 2019,
date of current version December 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2955296

3D SAR Image Background Separation
Based on Seeded Region Growing
LIANG LI , XIAOLING ZHANG , (Member, IEEE), LING PU , LIMING PU ,
BOKUN TIAN , LIMING ZHOU , AND SHUNJUN WEI
School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding author: Xiaoling Zhang (xlzhang@uestc.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB0502700, and in
part by the National Natural Science Foundation of China under Grant 61671113, Grant 61501098, and Grant 61571099.

ABSTRACT The environmental interference and the noise in 3D synthetic aperture radar (SAR) image,
considered as the background, are inescapable and ought to be eliminated. For 3D SAR image, there is
a spatial separation of the target and the background. Therefore, it is possible to achieve the separation
of the target and the background by image segmentation. Due to the complexity of the target shape and
the large dynamic range of the SAR image, the background cannot be accurately separated through the
amplitude information alone. In this paper, a method based on region growing is proposed to achieve 3D SAR
image background separation utilizing the plural and the spatial information. The image enhancementmatrix,
constructed by the plural information of the SAR image, is implemented to improve the contrast of the image.
The seeds are extracted by the weighted Otsu, and the weight is determined by the structure and amplitude
information from the target. For the region growing, the growing process is achieved by the accumulation
of the growing rate, which can suppress the growing of the noise. During the region growing, the stopping
growing condition of each seed is independent and controlled by the seed threshold. The global threshold
constrains the almost unrestricted growing of the seed whose amplitude is close to the noise amplitude.
The results of the simulation and the experiments verify the performance of the proposed method is higher
than that of the compared methods with three image evaluation criteria. Besides, we discuss the cost of
computation and the influences of three important parameters to achieve a complete analysis.

INDEX TERMS Synthetic aperture radar (SAR), image segmentation, region growing, image denoising.

I. INTRODUCTION
Synthetic aperture radar(SAR) is an all-day and all-weather
microwave detection technology, which has a wide range
of application, such as remote sensing [1], [2], security
check [3]–[9], and radar cross section (RCS) measure-
ment [10]. Compared with the 2D SAR image, 3D SAR
image contains three-dimensional spatial information, which
provides the possibility to separate the object of interests and
the others.

SAR imaging is not only influenced by environmental
interference but also influenced by kinds of noise, such as
speckle noise and system noise. Thus, it is necessary to elim-
inate the interference and noise to improve the quality of the
SAR image. 2D SAR imaging is considered as an irreversible
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projection process that 3D space object is projected onto
a 2D plane. Meanwhile, the noise and the interference are
projected onto the same plane, which causes the target to
be disturbed by the noise and affected by the interference.
Therefore, using 2D SAR image denoising method [11]–[15]
to alleviate the impact of noise and interference will result in
loss of target information.

3D SAR imaging, the other kind of projection process,
transforms the raw data from 3D echo space to 3D image
space. In this projection process, the spatial information
contained in the raw data is preserved, which means the
target and the others can be separated spatially. Hence, it is
possible to separate the interference and the noise from
3D SAR image with little loss of the target information.
The interference and the noise are defined as the back-
ground in this paper. Thereby, the elimination of the inter-
ference and the noise is regarded as the separation of the
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background and can be solved by the image segmentation
method.

Researchers have studied the image segmentation
for a long time and brought several methods to live.
Nobuyuki Otsu presents a classical segmentation method
called Otsu based on the threshold selection in [16], which
separates the background from the image according to the
gray image feature. The Otsu segmentation method only
exploits the image amplitude information, ignoring the other
geometry and phase information provided by the 3D SAR
image. When the noise and the target have the similar ampli-
tude, this noise will be incorrectly classified as the target of
interest.

To further use the image amplitude and geometry infor-
mation, Rolf Adams provides another segmentation method,
seeded region growing (SRG) in 1994 which has good
robustness and low computational complexity [17]. SRG
has been widely used in various fields, such as computer
vision, medical science, and radar image processing. Many
researchers also improve SRG to enhance the performance
and the adaptability of the application in each field [18]–[27].
Shortly after SRG being proposed, 3D seeded region growing
has been proposed and applied in the medical field [28].
Dehmeshki [29] uses seeded region growing to achieve the
segmentation of pulmonary nodules in thoracic computed
tomography (CT) scans. Fu [30] applies the 3D seeded region
growing method to the segmentation of the spinal canal
region in CT images. However, traditional seeded region
growing is not applicable to the 3D SAR image background
separation because of the high dynamic range of SAR image.

Deep learning has been concerned widely, andmany image
segmentation methods based on deep learning have been pro-
posed [31]–[33]. Recently, some researchers combine SRG
with deep learning to achieve image segmentation [34]–[37].
Data set is crucial for deep learning, and multiple public
data sets appear in the field of computer vision and medical
image processing. However, it is still difficult to obtain the
data set of 3D SAR image. Thus, the background separation
of 3D SAR image achieving by deep learning is hard to be
performed currently.

Apart from environmental interference and kinds of noise,
SAR imaging is also influenced by platform motion errors
which result in the defocusing and the raising of side lobe
amplitude [38], [39]. Affected by platform motion errors,
the background separation is more difficult to be achieved.

In this paper, global seeded region growing (GSRG) is
proposed to achieve the background separation of 3D SAR
image, which takes advantage of the geometry information
and the plural information. Scattering center model is the the-
oretical basis of SAR imaging [40]. Because the target of 3D
SAR image consists of multiple discrete regions, the image
continuity of 3D SAR image is worse than that of optical
and medical images. Each discrete region of the target exists
the initial seeds. Therefore, multiple seeded region growing is
implemented to extract thewhole target consisting ofmultiple
discrete regions. High dynamic range is the characteristic of

SAR image. For classic seeded region growing, the strong
and weak target regions cannot be extracted at the same time,
because the stopping growing threshold is determined by the
region mean. For the proposed method, the stopping growing
threshold of each seed is determined by the amplitude of this
seed instead of the region mean. Thus, both strong and weak
target regions are able to be extracted, which decreases the
loss of the target details.

The proposed method consists of several main steps.
To suppress the amplitude of the noise and the weak interfer-
ence, image enhancement function, exploiting the real and the
imagery information of the 3D SAR image, is implemented
to increase the image contrast. The extraction of the seed
information directly determines the performance of back-
ground separation. An Otsu-based method has been used to
extract the seed information for the segmentation of medi-
cal image [37]. However, this method cannot stably extract
usable seed information from 3D SAR image due to the com-
plexity of the target shape and the high dynamic range of SAR
image. Therefore, the weighted Otsu is applied to obtain the
right seed information. The weight ensures the background
information is almost not included in the initial seed infor-
mation. The seed only contains the main information of the
target, which is the basis for recovering the target details and
separating the background. The growing rate function, being
proportional to the amplitude of the seed and the amplitude of
the current growing position, is implemented to suppress the
growing rate of the noise. The growing state matrix, whose
initial state is the initial seed matrix, stores the results of the
growing rate for each generation. The seed will stop growing
if there is no candidate position available to grow, or if the
minimal difference between the candidate growing position
amplitude and the seed amplitude is larger than the stopping
growing threshold. During the region growing, the mask
standard deviation is performed to reflect the image quality.
While the backward difference of themask standard deviation
is lower than the global threshold, the region growing will be
stopped to constrain the almost unrestricted growing of the
seed whose amplitude is close to the noise amplitude.

In the field of SAR, there are few kinds of research on
3D SAR image segmentation at present. In the field of com-
puter vision and medicine, 3D image segmentation has been
researched for a long time. Unfortunately, these methods
cannot achieve 3D SAR image background separation stably
and accurately. Because the quality of 3D SAR image, influ-
enced by the motion error and the environment interference,
is usually lower than that of the optical and medicine image.
Hence, we improve seeded region growing based on the
characteristics of 3D SAR image. Regardless of robustness or
accuracy, the performance of the proposed method is stronger
than that of the comparison methods. The above will be
demonstrated and verified in the simulation and experiment
section.

The key contribution of the work can be summarized as
follows. The image enhancement function is proposed to
suppress the amplitude of the noise and the weak interference.
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FIGURE 1. The overview of the proposed method. 1dq denotes the backward difference of the mask standard deviation. δ denotes the
global threshold.

The weight Otsu is applied to overcome the complexity of
the target shape and the large dynamic range of SAR image
in seed selection. The growing rate function is proposed to
suppress the increasing rate of the noise. The independent
seed threshold and the global threshold are applied to control
the growing process, and ensure the whole target is extracted
with the noise suppressed.

The rest of this paper is organized as follows.
In section 2, we describe the algorithm and the main theory
of the proposed method. In section 3, the results of the sim-
ulation and the experiments verify the effectiveness and the
performance of the proposed method with four comparison
methods by three image evaluation criteria. Simultaneously,
we discuss the computational cost and the influences of
three important parameters on the stability of the algorithm.
In section 4, the main conclusions and the limitation are
summarized.

II. METHOD
A. ALGORITHM
The algorithm and various main steps of the proposedmethod
are described in this part. The overview is illustrated in Fig.1.
The algorithm includes two stages: the preparing and the
region growing. The preparing stage consists of three steps:
the image enhancement, the normalization of the enhanced
image, and the generation of the seed set by weighted Otsu.
The purpose of the preparing stage is to extract the initial
seeds. The region growing stage consists of four steps: the
cleaning and the updating of the neighbor list, the determina-
tion of the candidate growing position, the growing process,
and the calculation of the backward difference of the mask
standard deviation.

For the preparing, the input includes the original SAR
image S. Two parameters, the enhancement coefficient γ and
the weight α, are set manually. Firstly, after calculating the
Hadamard product of the image enhancement matrix P and

the matrix S, the result is the enhanced image SA (refer to (1)
and (3)). Then, the amplitude of the matrix SA is extracted and
normalized, which obtains the matrix I . The weighted Otsu
is implemented on I to generate the seed set Ẽ which stores
the amplitude and position information (refer to (4) and (5)).
So far, the preparing work has been finished.

For the region growing, the detailed description is illus-
trated in Algorithm 1. The input of the region growing
stage includes the original SAR image S, the normalization
image I , and the seed set Ẽ . The growing coefficient K ,
the seed threshold µ, and the global threshold δ are set
manually. The neighbor list 0n(l) instead of the sequentially
sorted list (SSL) is applied to store the information of the
lth candidate position of the nth seed. The neighbor list
is a set composed of the cells where the position and the
amplitude information of the candidate positions are stored
in. The growing state matrix G records the growing rate of
each seed for each generation, and the growing state gxyz is
the element in the growing state matrix G. Before the region
growing, the neighbor list 0n(l) and the growing state matrix
G need to be initialized. The initial neighbor list 0n(l) is an
empty set, and the initial growing state matrix G is equal
to the initial seed matrix E . Three seed states, the growing
unfinished (GU), the growing finished (GF), and the growing
terminated(GT), are defined to indicate the growing state of
the seed. TheGUmeans the seed is still growing in the current
position. The GF means the seed is finding the next position.
TheGTmeans the seed does not satisfy the growing condition
and will not participate in the growing.

For each generation, cleaning up the neighbor list and
updating the seed state is the first and necessary step. If the
growing of several candidate positions is finished by other
seeds, these candidate positions need to be removed from the
neighbor list. The seed state is updated according to the grow-
ing state of the position where the seed is located in. Then,
the neighbors will be selected and added to the neighbor list.

179844 VOLUME 7, 2019
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Algorithm 1 Region Growing
Require: The original SAR image S; the normalized ampli-

tude matrix I ; the seed set Ẽ ; the growing coefficient K ;
the seed threshold µ; the global threshold δ;

Ensure: The matrix Ĩ ;
1: Initialize 0n(l) and G;
2: while Odq > δ do
3: for n from 1 to N do
4: if 4(n) = GT then
5: end the loop;
6: end if
7: If gx ′y′z′ ≥ 1, remove the neighbor whose position

is (x ′, y′, z′) stored in 0n(l);
8: if no neighbors can be put to the neighbor list and

0n(l) = ∅ then
9: 4(n) = GT, and end the loop;

10: end if
11: if 4(n) = GF then
12: Put the neighbor whose growing state is lower

than 1 into the neighbor list 0n(l);
13: T̂n(l) = 0̂n(l)− En (see (6));
14: l ′ = argmin

l
{T̂n(l)}, and extract the position

(xnew, ynew, znew) in 0n(l ′);
15: if T̂n(l ′) > Tn then
16: 4(n) = GT, and end the loop;
17: end if
18: Calculate the Gr and add it to gxyz (see (8)

and (9));
19: Update the seed status 4 based on gxyz and the

seed position: (x, y, z)← (xnew, ynew, znew);
20: else if 4(n) = GU then
21: Calculate the Gr , and add it to gxyz (see (8)

and (9));
22: Update seed status 4 based on gxyz;
23: end if
24: end for
25: Calculate Ĩ and Odq (see (14) and (20));
26: end while
27: return Ĩ ;

The set T̂n(l) is the difference between the amplitude of the
neighbor list and the amplitude of the nth seed (refer to (6)).
l ′ is calculated by (7), and T̂n(l ′) is the minimum value in
T̂n(l). The position stored in0n(l ′) is selected as the candidate
growing position. Then, the growing rate Gr (x, y, z,En) is
calculated and added to the growing state gxyz (refer to (8)
and (9)). For the growing state matrix, there are two growing
states: 0 < gxyz < 1 indicates that the position (x, y, z) is
under growing and gxyz ≥ 1 indicates that the growing of the
position (x, y, z) has been finished. After that, the seed state
will convert to GU if the growing state is 0 < gxyz < 1,
and the seed state will convert to GF if the growing state is
gxyz ≥ 1. The output matrix Ĩ is the Hadamard product of the
original SAR image S and the matrix G after round down b·c

(refer to (14)). Then, the backward difference of the mask
standard deviation Odq of the output matrix is calculated
to reflect the image quality (refer to (20)). These steps are
iterated for several generations untilOdq < δ or all seed states

convert into the GT. The output matrix Ĩ of the last generation
is the processed image. So far, background separation has
been finished.

B. IMAGE ENHANCEMENT FUNCTION
To improve the effectiveness of the background separation,
an image preprocessing is needed to suppress the amplitude
of the noise and weak interference. Therefore, the image
enhancement function, constructed by the real part and imag-
inary part of 3D SAR image, is applied to achieve the
preprocessing.
U is defined as a plural matrix. The matrix Ur and the

matrix Ui are the real part and the imaginary part of the
matrix U respectively. The image enhancement function is
expressed as

f (Ur ,Ui)= exp
(
γ · (|Ur + Ui| + |Ur − Ui|)
max (|Ur + Ui| + |Ur − Ui|)

)
(1)

where γ named as the enhancement coefficient denotes the
coefficient to control the enhancement effect,max (·) denotes
the maximum of all matrix elements.

FIGURE 2. Image enhancement function (γ = 2).

The result of the image enhancement function is a gain
matrix. The relation between the gain and amplitude of an
element is shown in Fig.2. Assuming ur and ui are the real part
and the imaginary part of the element U (xp, yp, zp) respec-
tively, the gain of the element U (xp, yp, zp) is exponentially
related to the maximum of ur and ui. Therefore, the gain of
the noise and weak interference with low amplitude is lower
than the gain of the target with high amplitude.

The amplitude normalization has been achieved in the
image enhancement function. Although the amplitude range
of different SAR images has a huge difference, the gain of
one element is not influenced by the absolute amplitude and
proportional to the relative amplitude of this element in the
matrix. Moreover, when γ is fixed, the gain of the maximum
value is also constant. Hence, the image enhancement func-
tion has good robustness.
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After SAR imaging, the original SAR image is expressed
as the matrix S(x, y, z), x ∈ X , y ∈ Y , z ∈ Z . The matrix Vr
and thematrixVi are the real part and the imaginary part of the
original SAR image S respectively. The image enhancement
matrix P is calculated by the image enhancement function,
which is expressed as

P = f (Vr ,Vi). (2)

The enhanced SAR image SA is the result of the Hadamard
product of the matrix S and the image enhancement matrix P,
which is expressed as

SA = S ◦ P (3)

where ◦ denotes the Hadamard product.

C. SEED SELECTION
The initial seeds determine which areas are reserved, there-
fore, it is necessary to ensure that little background is included
in the initial seeds. The selection of the initial seeds can
be achieved by manual selection and automated methods.
Although the result of manual selection is excellent, it is hard
to be applied because manual selection has a huge time con-
sumption. The result of the automated method can meet the
requirements of target extraction [37], meanwhile, the time
consumption of the automated method is much lower than
that of the manual selection.

Generally, the amplitude of the target is higher than that of
the background. Therefore, the selection of the initial seeds
can be achieved by the image amplitude information. For 3D
SAR image, due to the complexity of the target shape and
the large dynamic range of SAR image, the selection of the
right seeds cannot be achieved by Otsu stably. Therefore,
a semi-automatic method combined with the advantage of
the manual and automated method is applied to achieve the
selection of the initial seeds, which has high accuracy and low
time consumption.

The amplitude of the enhanced image SA is extracted and
normalized, and the result is the matrix I ∈ RX×Y×Z consist-
ing of the element ixyz ∈ [0, 1]. The seed generating threshold
θI is used to extract the initial seeds form the matrix I , which
is expressed as

θI = α · Totsu (4)

where α(α ≥ 1) named as the weight denotes the coefficient
to ensure the background is excluded from the initial seeds
as much as possible, Totsu denotes the threshold calculated
by Otsu [16]. The setting of the weight α is based on the
effect of the background elimination of the initial seeds. If the
background has been completely eliminated by the thresh-
old Totsu, the weight α will not work. At this time, the weight
α is equal to 1, and the seed generating threshold θI is equal
to Totsu. If the background cannot be completely eliminated
by the threshold Totsu, the weight α is used to increase the
seed generating threshold θI to ensure the initial seeds contain
little background. The number of the initial seeds is inversely
proportional to the seed generating threshold.

The initial seed matrix E ∈ RX×Y×Z consists of the
initial seed exyz which is calculated by the seed generating
threshold θI ,

exyz =

{
ixyz ixyz ≥ θI
0 ixyz < θI .

(5)

ThematrixE containsmain target information, and the details
of the target will be supplemented by the region growing. The
seed amplitude En is extracted from the initial seed matrix E
and restored in seed set Ẽ = {En|En ∈ E, n = 1, 2, . . . ,N }.
N denotes the number of the initial seeds.

D. NEIGHBORS AND GROWING PROCESS
Before the growing process, the neighbors are selected by
the template and stored in the neighbor list. The tem-
plate, N6, is used to obtain the neighbors, which is shown
in Fig.3. The current position of the seed is marked by
the red block, and the neighbors are marked by the yellow
blocks. Assuming that the current position is (xs, ys, zs),
the neighbors of the position (xs, ys, zs) are (xs ± 1, ys, zs) ,
(xs, ys ± 1, zs) , (xs, ys, zs ± 1). For nth seed, the position and
the amplitude information of the neighbors are stored in the
neighbor list 0n(l), l = 1, 2, . . . ,L. L denotes the number of
the neighbors stored in the neighbor list.

FIGURE 3. The template N6 for obtaining neighbors.

For SRG [17], the selection of the next growing position
and the condition of the stopping growing are determined by
the minimal difference between the amplitude of the candi-
date positions and the region mean. If the region mean is
influenced by the noise, the region mean will be close to the
noise mean finally, which causes the number of the noise
increases continuously. To solve this problem, the region
mean is replaced by the initial seed amplitude. Thereby,
the selection of the next growing position and the condition of
the stopping growing are not affected by the noise, and inde-
pendent for each seed. Hence, the growing process of the seed
will not be influenced by noise. For nth seed, the difference
between the amplitude of the neighbor list and the amplitude
of the nth seed is expressed as

T̂n(l) = 0̂n(l)− En (6)

where 0̂n(l) denotes the amplitude in 0n(l). Then, T̂n(l ′),
the minimum value of T̂n(l), needs to be found out. The
corresponding position l ′ is extracted,

l ′ = argmin
l
{T̂n(l)}. (7)
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The position stored in 0n(l ′) is selected as the next growing
position.

For SRG [17], the growing of each seed is completed in
each generation. Namely, the pixels with different amplitude
have the same growing rate. In this paper, the amplitude
information is utilized to differentiate the growing rate of
the pixels. Namely, the pixels with different amplitudes have
different growing rates. The growing of each seed becomes
an amplitude accumulation process described by the growing
rate function and the growing state matrix.

The growing rate is determined by the amplitude of the
seed and the image amplitude of the current growing posi-
tion. The growing rate Gr (x, y, z,En) of the nth seed in
position(x, y, z) is calculated by the growing rate function,
which is expressed as

Gr (x, y, z,En) =
exp ((η + En)/K )(

exp
((
max(I )+ max(Ẽ)

)
/K
)) (8)

where η denotes the amplitude of the matrix I in the posi-
tion (x, y, z), En denotes the amplitude of the nth seed,
K named as the growing coefficient denotes a coefficient to
control the suppression effect to low amplitude pixel, and
max (·) denotes the maximum of all elements in matrix or
set. Fig.4 illustrates the relationship between the growing
rate and the variable. The growing rate is exponentially
related to En and η. With the decreasing of the coefficient K ,
the curvature of the growing rate function is increasing, which
results in the increasing of the suppression effect for the low
amplitude pixels. The growing rate is a normalized result, and
the normalization enhances the robustness of the growing rate
function. Generally, the amplitude of the noise is lower than
that of the target. Therefore, the growing rate of the noise is
lower than that of the target.

FIGURE 4. The relationship between the growing rate with η and En.

The growing state matrix G ∈ RX×Y×Z records the accu-
mulation results of each seed for each generation, and gxyz
is the element in G. And the initial growing state matrix G
is equal to the initial seed matrix E . For the effective seed
in each generation, the growing rate Gr (x, y, z,En) in the
position (x, y, z) is calculated by (8) and added to gxyz. This
accumulation process is expressed as

gxyz = gxyz + Gr (x, y, z,En). (9)

For the matrix G, 0 < gxyz < 1 means that the posi-
tion (x, y, z) is under growing, and gxyz ≥ 1 means that

the growing of the position (x, y, z) has been finished. The
accumulation process of high amplitude pixel is faster than
that of low amplitude pixel. Generally, the target amplitude is
higher than the noise amplitude. After the same generations,
the increasing number of the target pixels is more than that
of the noise pixels. Namely, the growing process achieves the
suppression of the noise.

When multiple seeds choose the same pixel as the next
growing position, the growing rate of these seeds will be
added to the same position in the growing state matrix. For
example, there are n seeds to choose the position (x0, y0, z0)
as the growing position. The growing rate of each seed
is Gr1,Gr2, . . . ,Grn. The growing state of the position
(x0, y0, z0) is expressed as

gx0,y0,z0 = gx0,y0,z0 + Gr1 + Gr2 + . . .+ Grn. (10)

When gx0,y0,z0 ≥ 1, all n seeds will stop the growing pro-
cess and select the next growing position. Thus, the growing
processing of one seed will not be obstructed by the other
seeds. And if one of these seeds finishes the growing process,
the other seeds will be stopped. The selection of the next
growing position for each seed is independent.

E. STOPPING GROWING CONDITION OF THE SEED
The seed threshold is defined as µ ∈ [0, 1], the stopping
growing threshold of the nth seed is expressed as

Tn = µ · En. (11)

After calculating the stopping growing threshold of the N
seed by (11), the stopping growing threshold set T̃ is gen-
erated, and T̃ = {Tn, n = 1, 2, . . . ,N }. For nth seed, the dif-
ference between the amplitude of the neighbor list and the
amplitude of the seed is T̂n(l). When the minimum element
in T̂n(l) is larger than the threshold Tn, the nth seed state will
be converted into the growing terminated (GT) state from
the GF state. The seed whose state is the GT is considered
as the invalid seed, which means the seed does not satisfy
the growing condition and will not participate in the growing
process until the whole region growing is completed.

It is necessary to decrease the computation cost as much
as possible because of the high computation of 3D image
process. The application of the GT state makes invalid seeds
not participate in the growing process, which is effective to
improve computing efficiency.

In the other two cases, the seed state will also be con-
verted into the GT. After the generating of the seed set Ẽ ,
the state of the seed that no neighbors can be put into the
neighbor list is converted into the GT. At the beginning of
each generation, the seed state will be converted into the
GT if no neighbors can be put into the neighbor list and if
the neighbor list is empty. Simultaneously, the effectiveness
of all seeds will be examined, and only the effective seed
whose state is not the GT state can participate in the growing
process.
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F. GLOBAL THRESHOLD
For SAR image, it is possible that the amplitude of the target
details is close to the amplitude of the noise. When the region
growing is only controlled by the stopping growing threshold,
the segmentation result will contain lots of noise, which
causes low image quality. Therefore, the global threshold
which can control the image quality is applied to reduce the
influence of noise.

The image evaluation function is usually applied to reflect
the image quality quantitatively, such as the standard devi-
ation(SD), the peak signal-to-noise ratio(PSNR), and the
structural similarity (SSIM). While the region growing is
processing, the image evaluation is applied to reflect the
quality of the processed image timely. When the result of the
image evaluation function is lower than the global threshold,
the growing process of all seeds will be terminated immedi-
ately to control the quality of the segmentation result.

The standard deviation is considered as the image evalua-
tion function because of low computational complexity. The
standard deviation, being proportional to the image quality,
reflects the amplitude dispersion of each pixel relative to the
image mean. The standard deviation of the processed image
for qth generation is expressed as

D̃q =

√√√√√ 1
N

X∑
x=1

Y∑
y=1

Z∑
z=1

(∣∣∣ĩq (x, y, z)∣∣∣− Īq)2 (12)

Īq =
1
N

X∑
x=1

Y∑
y=1

Z∑
z=1

∣∣∣ĩq (x, y, z)∣∣∣ (13)

whereN=X×Y×Z , |·| denotes the complexmagnitude of the
element, ĩq(x, y, z) denotes the element in the qth generation
output matrix Ĩq. And Ĩq is calculated by

Ĩq = S ◦
⌊
Gq
⌋

(14)

where b·c denotes the round down, Gq denotes the growing
state matrix G in the qth generation. The round down indi-
cates that the pixel whose value is equal to or larger than 1 is
set as 1 and the pixel whose value is lower than 1 is set as 0.

The standard deviation is not suitable for 3D SAR image
evaluation. Because 3D SAR image is a sparse matrix com-
posed of multiple scattering centers, most pixels in the output
matrix are zero, thereby, the standard deviation cannot reflect
the image quality accurately. Therefore, the mask standard
deviation (MSD) is applied to evaluate the quality of the
processed image. Non-zero pixels are marked as the active
pixels and used to calculate the MSD. The mask standard
deviation of the processed image for the qth generation is
expressed as

dq =

√√√√√ 1
NI

X∑
x=1

Y∑
y=1

Z∑
z=1

(∣∣∣ĩq (x, y, z)∣∣∣− Î)2 (15)

Î =
1
NI

X∑
x=1

Y∑
y=1

Z∑
z=1

∣∣∣ĩq (x, y, z)∣∣∣ (16)

where NI is the number of non-zero pixels in the
matrix Ĩq. The mask standard deviation of the initial seeds
is expressed as

dS =

√√√√√ 1
NS

X∑
x=1

Y∑
y=1

Z∑
z=1

(∣∣∣ĩE (x, y, z)∣∣∣− Ê)2 (17)

Ê =
1
NS

X∑
x=1

Y∑
y=1

Z∑
z=1

∣∣∣ĩE (x, y, z)∣∣∣ (18)

whereNS denotes the number of non-zero pixels in the matrix
ĨE , ĩE (x, y, z) denotes the element in the matrix ĨE .

ĨE = S ◦ dEe (19)

where d·e denotes the round up. The MSD is not influenced
by a large number of zero pixels in the output matrix, thus,
the accuracy of MSD to reflect image quality is higher than
that of the SD.
Because the amplitude range of different SAR images has

a large difference, the MSD for different SAR images has
a huge difference. That the MSD is related to the image
amplitude causes the instability of the evaluation and a tough
challenge to adjust the global threshold. Therefore, the back-
ward difference of the MSD is applied as the evaluation
criterion reflecting the changing of image quality clearly.
Assuming that the qth and the q− 1th generation of the MSD
are dq and dq−1, the backward difference of the MSD is
expressed as

Odq =

∣∣∣∣dq − dq−1dq

∣∣∣∣ . (20)

For the first generation, d0 is the MSD of the initial seeds dS .
For different images, the backward difference of the MSD
is robust, because the differential result of the MSD has
been normalized. The global threshold δ is set based on the
target details needed to be preserved in the image. With
the increase of the generation, the proportion of the target
detail pixels in the increased pixels is decreasing, and the
proportion of the background pixels in the increased pixels
is increasing. Thereby, Odq is decreasing continuously due
to the decreasing of the amplitude of the increased pixels.
When the condition Odq < δ is satisfied, the region growing
will be terminated. Thus, the target details are recovered,
simultaneously, the increasing of the noise is suppressed.

The region growing will be stopped when all seed states are
the GA or the backward difference of theMSD is smaller than
the global threshold. The result of background separation is
the output matrix in the last generation.

III. EVALUATION CRITERIA
Three image quality evaluation criteria, the relative fore-
ground area error (RAE), the misclassification error
(ME) [41], [42], and the intersection over union (IoU), are
implemented to analyze the performance of the segmentation
method quantitatively.
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FIGURE 5. The process and the results of the proposed method. (a) The original SAR image. (b) The enhanced image.
(c) The seed matrix. It is generated by the weighted Otsu. (d) The processed image by GSRG (angle 1).
(e) The processed image by GSRG (angle 2). (f) The ground truth. It is considered the standard in the
evaluation criteria.

The RAE is used to reflect the misclassification percentage
of the foreground. In this paper, the foreground denotes the
target area. According to [42], we redefine the expression of
the RAE,

RAE =
|AT | − |A0 ∩ AT |

|AT |
(21)

where A0 denotes the foreground of the ground truth,
AT denotes the foreground of the processed image, ∩ denotes
the intersection operation, |·| denotes the number of pixels in
area. The range of the RAE is [0, 1]. The RAE is inversely
proportional to the performance of the segmentation method.
And a good segmentation method has low RAE.

The RAE that only reflects the percentage of foreground
misclassification cannot evaluate the algorithm comprehen-
sively. Therefore, the ME is implemented to achieve a
comprehensive evaluation, which refers to the total misclas-
sification percentage of the foreground and the background.
The ME is expressed as

ME = 1−
|B0 ∩ BT | + |A0 ∩ AT |

|B0| + |A0|
(22)

where B0 denotes the background of the ground truth,
BT denotes the background of the processed image. The range
of the ME is [0, 1]. The ME is inversely proportional to
the performance of the segmentation method. The better the
performance of the segmentationmethod is, the closer theME
is to zero.

The IoU is generally used to reflect the correlation between
the segmentation result and the ground truth, which is

expressed as

IoU =
A0 ∩ AT
A0 ∪ AT

(23)

where∪ denotes the union operation. The IoU is proportional
to the performance of the segmentation method.

IV. SIMULATION
A. PROCESSING ON SIMULATION DATA
1) SETTINGS
For the generation of the simulation data, the echo of the
aircraft model is calculated by FEKO, a professional elec-
tromagnetic simulation software. The length of the model is
2.76 meters. The carrier frequency is 10 GHz, and the band-
width is 3 GHz. The raw echo is generated by a 3 m × 3 m
planar array with 101 × 101 elements. The back projec-
tion (BP) is used to achieve the SAR imaging, and the size
of the original SAR image is 250×250×151. The parameters
of the proposedmethod are set as follows: Theweightα is 1.6.
The seed threshold µ is 0.7. The global threshold δ is 0.0001.
The growing coefficient K is 1. The enhancement coeffi-
cient γ is 2. Four comparison methods are implemented:
Otsu [16], Kittler and Illingworth [43], GMM-HMRF [44],
and MICO [45].

2) RESULT
The processing and the results of GSRG are shown in Fig.5.
Fig.5(a) is the original SAR image which contains lots of
side lobes, and the target is covered by these side lobes.
The enhanced image is depicted in Fig.5(b), and the contrast
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FIGURE 6. The simulation results of the comparison methods. (a)Otsu (angle 1). (b)Kittler (angle 1). (c)GMM-HMRF (angle 1).
(d)MICO (angle 1). (e)Otsu (angle 2). (f)Kittler (angle 2). (g)GMM-HMRF (angle 2). (h)MICO (angle 2). The grating lobe is marked by
the red solid circle.

of the enhanced image is stronger than that of the orig-
inal image. The seed matrix generated by the weighted
Otsu is displayed in Fig.5(c). The results of GSRG are
shown in Fig.5(d) and (e). Most backgrounds are separated
by GSRG, and there are only a few side lobes around the
wing.

The results of Otsu, Kittler, GMM-HMRF, and MICO
are displayed in Fig.6. For Fig.6(b) and (f), Kittler has
no effect on background separation. Conversely, the result
of MICO loses lots of the target information, which is
shown in Fig.6(d). Compared with the result of GSRG,
the result of Otsu and GMM-HMRF contains more side
lobes, which is shown in Fig.5(d), Fig.6(a), and Fig.6(c).
For Fig.5(e), the result of GSRG does not contain strong
side lobes under the wings. Differently, the result of Otsu,
Kittler, GMM-HMRF, and MICO still contains strong side
lobes marked by the red solid circle, which is shown in
Fig.6(e), (f), (g), and (h). Therefore, the performance of the
proposed method is higher than that of the comparison
methods.

The performance analysis of these five methods is imple-
mented by three image evaluation criteria, the RAE, the ME,
and the IoU. The ground truth, as the reference image for
the evaluation, is derived from the original SAR image
based on the optical image, which is shown in Fig.5(f).
For Fig.7, 200 independent experiments are performed on
GMM-HMRF and MICO respectively. Obviously, the stabil-
ity of GMM-HMRF and MICO is poor. Table 1 reports the
performance analysis results of five methods. Due to the poor
stability of GMM-HMRF and MICO, the RAE, ME, and IoU
of GMM-HMRF and MICO shown in Table 1 refer to the
mean of 200 independent experiments. The RAE of GSRG
is 15.67% lower than that of Otsu, 76.27% lower than that of
Kittler, 18.92% lower than that of GMM-HMRF, and 12.19%
lower than that of MICO. The ME of GSRG is 0.31% lower
than that of Otsu, 71.07% lower than that of Kittler, 19.60%
lower than that of GMM-HMRF, and 0.75% lower than that

FIGURE 7. The results of 200 independent experiments of GMM-HMRF
and MICO. (a)The RAE of GMM-HMRF. (b)The RAE of MICO. (c)The ME of
GMM-HMRF. (d)The ME of MICO. (e)The IoU of GMM-HMRF. (f)The IoU of
MICO.

of MICO. The IoU of GSRG is 4.39% higher than that of
Otsu, 52.97% higher than that of Kittler, 8% higher than
that of GMM-HMRF, and 40.31% higher than that of MICO.
Hence, the performance of GSRG is always better than that
of the comparison methods. In addition, the performance of
Otsu is close to that of GSRG, and the performance of the
other three comparison methods is unacceptable.
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FIGURE 8. The analysis results of the seed threshold. (a)The RAE. The intersection of GSRG and MICO is at (0.788,0.335). The intersection of
GSRG and Otsu is at (0.805,0.369). The intersection of GSRG and GMM-HMRF is at (0.817,0.402). (b)The ME. The intersection of GSRG and
GMM-HMRF is at (0.967,0.206) (c)The partially enlarged image of the ME curve. The intersections of GSRG and Otsu are at (0.3,0.013) and
(0.81,0.013). The intersection of GSRG and MICO is at (0.84,0.017). The minimal ME of GSRG is at (0.7,0.010). (d)The IoU. The intersections of
GSRG and GMM-HMRF are at (0.57,0.474) and (0.84,0.474). The intersections of GSRG and Otsu are at (0.62,0.511) and (0.825,0.511). The
intersection of GSRG and MICO is at (0.94,0.151). The maximal IoU of GSRG is at (0.76,0.567).

FIGURE 9. The analysis results of the global threshold. (a)The RAE. (b)The ME. (c)The partially enlarged image of the ME curve. The minimal ME
of GSRG is at (0.0013,0.009). (d)The IoU. The intersection of GSRG and Otsu is at (0.0062,0.511).

TABLE 1. The analysis results of the simulation.

B. THE SINGLE PARAMETER ANALYSIS
There are 5 variable parameters in the proposed method. The
enhancement coefficient γ controls the enhancement effect
on the image contrast. The weight α is inversely proportional
to the number of the initial seeds generated by the weighted
Otsu. The growing coefficient K controls the suppression
effect on low amplitude pixel of the growing rate function.
The seed threshold µ controls the difference in amplitude
between the current growing pixel and the initial seed when
the growing of the seed is stopped. The global threshold
δ controls the image quality when the region growing is
stopped, which is proportional to the image quality of the
segmentation result.

Three parameters, the seed threshold µ, the global thresh-
old δ, and the weight α, are selected and analyzed, which have
a direct influence on the results. The other two parameters,
the growing coefficientK and the enhancement coefficient γ ,
are controlled with K = 1 and γ = 2.

TABLE 2. The setting of the single parameter analyses.

In each analysis, two parameters are fixed, one parameter
varies within the settings. The fixed parameters are the same
as the parameters set in the part A. The setting of the parame-
ter analysis is specified in Table 2. The analyses are illustrated
in Fig.8, Fig.9, and Fig.10. GSRG is marked by the black
solid line. Otsu is marked by the blue dashed line. Kittler
is marked by the red chain line. GMM-HMRF is marked by
the black dotted line. MICO is marked by the green chain
line.

The analyses of the seed threshold are shown in Fig.8.
For Fig.8(a), the RAE of GSRG is lower than that of three
comparison methods with the seed threshold from 0.02 to
0.788. The partially enlarged image of the ME curve is
shown in Fig.8(c). The minimal ME of GSRG is 0.010 at the
seed threshold of 0.7. When the seed threshold varies from
0.81 to 1, the ME of GSRG is higher than that of Otsu and
increases exponentially. The IoU is shown in Fig.8(d). The
IoU of GSRG is higher than the compared methods with the
seed threshold between 0.62 and 0.825. The maximal IoU of
GSRG is 0.567 at the seed threshold of 0.76. Hence, GSRG
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FIGURE 10. The analysis results of the weight. (a)The RAE. The intersection of GSRG and MICO is at (1.12,0.335). The intersection of GSRG and
Otsu is at (1.04,0.369). (b)The ME. (c)The partially enlarged image of the ME curve. The intersection of GSRG and Otsu is at (1.02,0.013). The
minimal ME of GSRG is at (1.6,0.010). (d)The IoU. The intersection of GSRG and Otsu is at (1.98,0.511). The maximal IoU of GSRG is at
(1.38,0.567).

FIGURE 11. The joint analysis results of the seed threshold and the global threshold. The results of GSRG and Otsu
are marked by the blue dots and the red dots respectively. (a)The RAE. (b)The ME. (c)The IoU.

has a good performance when the seed threshold is between
0.62 and 0.81.

The analyses of the global threshold are shown in Fig.9. For
Fig.9(a), the RAE of GSRG is always lower than that of the
comparisonmethods and decreasingwith the global threshold
from 0.0001 to 0.01. Fig.9(c) shows the partially enlarged
image of the ME curve. The ME of GSRG is also consis-
tently lower than that of the comparison methods. Differently,
the ME of GSRG has a decreasing with the global threshold
from 0.0001 to 0.0013 and an increasing with the global
threshold from 0.0013 to 0.01. The minimal ME of GSRG
is about 0.009 at the global threshold of 0.0013. For Fig.9(d),
the IoU of GSRG is decreasing continuously and higher than
that of Otsu with the global threshold from 0.0001 to 0.0062.
Considering, GSRG has a good performance when the global
threshold is around 0.0013.

The analyses of the weight are shown in Fig.10. For
Fig.10(a), the RAE of GSRG is decreasing continuously and
lower than that of the comparison methods with the weight
from 1.12 to 2. For Fig.10(c), when the weight is between
1.6 and 1.8, the ME of GSRG fluctuates at a low level.
The minimal ME of GSRG is 0.010 at the weight of 1.6.
For Fig.10(d), the IoU of GSRG is higher than that of Otsu
with the weight from 1 to 1.98. The maximal IoU of GSRG
is 0.567 at the weight of 1.38. Hence, GSRG has a good
performance when the weight is between 1.38 and 1.6.

Briefly, the proposed algorithm has a good performance
when the seed threshold is around 0.7, the global threshold
is around 0.0013, and the weight is between 1.38 and 1.6.

TABLE 3. The setting of the two-parameter joint analyses.

According to the influences of three parameters on the evalu-
ation criteria, the influence of the seed thresholdµ is stronger
than that of the weight α and that of the global threshold δ.

C. THE TWO-PARAMETER ANALYSIS
The independent influences of each parameter have been ana-
lyzed. Then, two-parameter joint analyses are implemented
to reflect the algorithm characteristics comprehensively. The
growing coefficient K and the enhancement coefficient γ
are still controlled with K = 1 and γ = 2. The
other three parameters are analyzed. For two-parameter joint
analyses, one parameter is fixed, and two parameters vary
within the settings. The setting of the parameters is specified
in Table 3. We only use Otsu as the compared method.

The joint analyses are illustrated in Fig.11, Fig.12, Fig.13.
In these figures, GSRG surface consists of blue dots, andOtsu
surface consists of the red dots. Because Otsu surface is flat,
only the red dots near the intersection of the two methods are
shown to avoid the two surfaces occlude each other.

The influence of the seed threshold and the global thresh-
old on GSRG is displayed in Fig.11. As shown in Fig.11(a),
the RAE of GSRG is lower than that of Otsu with the
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FIGURE 12. The joint analysis results of the seed threshold and the weight. The results of GSRG and
Otsu are marked by the blue dots and the red dots respectively. (a)The RAE. (b)The ME. (c)The IoU.

FIGURE 13. The joint analysis results of the global threshold and the weight. The results of GSRG and Otsu are
marked by the blue dots and the red dots respectively. (a)The RAE. (b)The ME. (c)The IoU.

seed threshold from 0.02 to 0.8. For Fig.11(b), the ME
of GSRG reaches the bottom with the seed threshold
between 0.7 and 0.8. Simultaneously, the IoU of GSRG
reaches the top, which is shown in Fig.11(c). Comprehen-
sively, the influence of the seed threshold is much stronger
than that of the global threshold. The global threshold has
little effect with the seed threshold smaller than 0.4. The
influence of the global threshold is increasing with the seed
threshold from 0.4 to 0.9. Especially when the seed threshold
is larger than 0.8, the performance of GSRG is still better
than Otsu with the global threshold higher than 0.006. Hence,
GSRG has good performance when the seed threshold is
around 0.7, and the global threshold is higher than 0.006.

The influence of the seed threshold and the weight on
GSRG is shown in Fig.12. For Fig.12(a), the RAE of GSRG
is lower than that of Otsu with the seed threshold between
0.02 and 0.7. The trend of Fig.12(b) and Fig.12(c) is sim-
ilar to the trend of Fig.11(b) and Fig.11(c). The ME of
GSRG reaches the bottom with the seed threshold between
0.6 and 0.7, simultaneously, the IoU of GSRG reaches the
top. Similar to the relation between the seed threshold and
the global threshold, the influence of the seed threshold is
larger than that of the weight. Differently, the influence of the
weight is lower than that of the global threshold. When the
seed threshold is larger than 0.8, the performance of GSRG
is worse than that of Otsu no matter how the weight changes.
Hence, GSRG has good performance when the seed threshold
is around 0.6 and the weight is close to 1.

The influence of the global threshold and the weight is
displayed in Fig.13. As shown in Fig.13(a) and (b), the RAE

and the ME of GSRG are almost always smaller than those
of Otsu. For Fig.13(c), when the weight is smaller than about
1.5, the IoU of GSRG is better than that of Otsu. For Fig.13,
the influence of the weight is stronger than that of the global
threshold with the seed threshold 0.7. Both the RAE and
the IoU are inversely proportional to the weight and the
global threshold. Hence, GSRG has good performance when
the weight is around 1.5 and the global threshold is close
to 0.01.

Consequently, compared with the results of three
two-parameter joint analyses, the influence of the weight and
the global threshold is lower than that of the seed threshold.
The influence of the weight and the global threshold is
increasing with the increasing of the seed threshold. GSRG
has good performance when the seed threshold is between
0.6 and 0.7, the weight is around 1.5, and the global threshold
is close to 0.01. The results of the two-parameter analysis
are almost consistent with the results of the single parameter
analysis.

V. EXPERIMENT
A. PROCESSING ON SIMPLE TARGET
1) SETTINGS
For the experiment of the simple target, the planar array
system is implemented to obtain the echo of the scissors,
the pistol, and the rifle. The carrier frequency is 30 GHz, and
the bandwidth is 12.8 GHz. The size of the planar array is
0.8 m × 2 m, and the element number of the planar array is
160 × 400. Back projection is applied to achieve 3D SAR
imaging, and the image size is 160×400×20.
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FIGURE 14. The process and the result of the scissors. The grating lobe is marked by the red solid circle. The interference is
marked by the red dotted circle. (a)The original SAR image. (b)The seed matrix. (c)The result of GSRG. (d)The enlarged image.

FIGURE 15. The process and the result of the pistol. The grating lobe is marked by the red solid circle. (a)The original SAR
image. (b)The seed matrix. (c)The result of GSRG. (d)The enlarged image.

FIGURE 16. The process and the result of the rifle. The grating lobe is marked by the red solid circle. (a)The original SAR image.
(b)The seed matrix. (c)The result of GSRG. (d)The enlarged image.

TABLE 4. The parameter setting of the proposed method.

The parameters of the proposed method are set as follows:
The growing coefficient K is 1. The enhancement coefficient
γ is 2. The other parameters are specified in Table 4. Otsu,
Kittler, GMM-HMRF, andMICO are applied as the compared
methods. The RAE, the ME, and the IoU are applied as the
evaluation criteria.

2) RESULTS
The background separation results of three targets are respec-
tively illustrated in Fig.14, Fig.15, and Fig.16. The original

3D SAR image of three targets is shown in the sub-figure (a)
of Fig.14, Fig.15, and Fig.16. Obviously, the backgrounds
of the experiment images are much more complicated than
the background of the simulation image. Space is not only
full of noise but also has strong environmental interference
distributed around the target.

The seed matrix is extracted by the weighted Otsu and
shown in the sub-figure (b) of Fig.14, Fig.15, and Fig.16. For
the pistol and the rifle displayed in Fig.15(b) and Fig.16(b)
respectively, there is almost no interference contained in the
seeds. The grating lobes marked by the red solid circle are on
the side of the target. For the scissors displayed in Fig.14(b),
there is some interference marked by the red dotted circle and
a few grating lobes marked by the red solid circle. A little
interference still exists in the seeds because the amplitude of
the strong interference is close to that of the scissors’ details.
For the sub-figure (b) of Fig.14, Fig.15, and Fig.16, there
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FIGURE 17. The background separation results processed by the comparison methods. (a)Scissors (Kittler). (b)Pistol (Kittler). (c)Rifle (Kittler).
(d)Scissors(Otsu). (e)Pistol (Otsu). (f)Rifle (Otsu). (g)Scissors (GMM-HMRF). (h)Pistol (GMM-HMRF). (i)Rifle (GMM-HMRF). (j)Scissors (MICO).
(k)Pistol (MICO). (l)Rifle (MICO).

are a few grating lobes in all three seed matrices due to the
amplitude of the grating lobes is close to that of the target.
Generally, the distance between the target and the grating
lobes is far enough. Therefore, the grating lobes will not
influence the background separation.

For the seed extraction, the weight is applied to ensure the
seeds do not contain the background as much as possible. The
amplitude of the scissors is lower than that of the pistol and
the rifle. Therefore, the seed extraction of the scissors is more
difficult than that of the pistol and the rifle. No matter how
difficult it is to extract the seeds, the weight ensures the seeds
contain little background. Thus, the seeds of the scissors only
contain a little background.

The seeds only include the main target information. The
details will be restored by region growing. The growing
results are shown in the sub-figure(c) of Fig.14, Fig.15, and
Fig.16. For the pistol and the rifle, the interference almost
cannot be observed in the growing result. For the scissors,
the growing result only contains a little interference. Com-
pared with sub-figure(b) and sub-figure(c) of Fig.14, Fig.15,
and Fig.16, if there are backgrounds in the seed matrix,
the backgrounds also have a growing while the target grow-
ing. Therefore, it is important to eliminate the background
when the seed matrix is extracted. The weighted Otsu has a
good performance on the seed extraction, thereby, the back-
ground separation results of three targets only contain a few
backgrounds. To show the details of the processed result,
the enlarged images of three targets are shown in the sub-
figure (d) of Fig.14, Fig.15, and Fig.16. Not only is the
background separated, but the target details are preserved.
Hence, GSRG achieves background separation effectively.

The background separation results of the comparison
methods are shown in Fig.17. Otsu, GMM-HMRF, andMICO
can hardly eliminate the background. Especially, MICO
eliminates a lot of target information while eliminating the
background. Kittler can eliminate part of the background,

however, the results are still unsatisfactory. Thus, the results
of the comparison methods are worse than the results of
GSRG.

FIGURE 18. The ground truth of the rifle. It is used as the standard for
the evaluation.

So far, intuitive evaluations have been finished. Then,
the performance will be analyzed by three evaluation criteria,
the RAE, the ME, and the IoU. The result of the rifle is
selected and analyzed because it has a clear and complicated
outline. The ground truth of the rifle is extracted from the
original SAR image based on optical image, and shown
in Fig.18. The performance of the five methods is calcu-
lated and reported in Table 5. Because of the poor stability
of GMM-HMRF and MICO, 500 independent experiments
are performed on MICO, and 200 independent experiments
are performed on GMM-HMRF. The RAE, ME, and IoU
of GMM-HMRF and MICO shown in Table 5 refer to the
mean of the independent experiments. The RAE of GSRG
is 75.59% lower than that of Otsu, 64.19% lower than that of
Kittler, 75.96% lower than that of GMM-HMRF, and 75.55%
lower than that of MICO. The ME of GSRG is 27.61% lower
than that of Otsu, 2.09% lower than that of Kittler, 40.92%
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FIGURE 19. The process and the result of the human body. The grating lobe is marked by the red
solid circle. The interference is marked by the red dotted circle. (a)Original SAR image. (b)Seed
matrix. (c)Processed image by GSRG.

TABLE 5. The analysis results of the rifle.

lower than that of GMM-HMRF, and 12.51% lower than that
of MICO. The IoU of GSRG is 48.33% higher than that of
Otsu, 37.59% higher than that of Kittler, 48.69% higher than
that of GMM-HMRF, and 48.62% higher than that of MICO.
Thus, the performance of GSRG is higher than that of the
comparison methods. And the performance of GMM-HMRF
is the worst.

Although the experiment images are more complicated
than the simulation images, GSRG achieves the background
separation of 3D SAR image effectively. Conversely, Otsu,
GMM-HMRF, and MICO almost have no effect on back-
ground separation of 3D SAR image. Kittler has an effect on
background separation, but the results of Kittler are still not
satisfactory. After the intuitive and quantitative analyses, it is
proved that the performance of GSRG is superior to that of
the comparison methods.

B. PROCESSING ON COMPLICATED TARGET
1) SETTINGS
The complicated target is a human body with some foreign
matters. The system parameters of the complicated target are
the same as those of the simple target. The size of the SAR
image is 160×400×20. The parameters of GSRG are set as
follows: The seed threshold is 0.7. The global threshold is
0.0001. Theweight is 1.3. The growing coefficientK is 1. The
enhancement coefficient γ is 2. Otsu, Kittler, GMM-HMRF,

and MICO are applied as the compared methods. The RAE,
the ME, and the IoU are applied as the evaluation criteria.

2) RESULTS
The original SAR image is depicted in Fig.19(a). The seed
matrix shown in Fig.19(b) contains a little interference
marked by the red dotted circle and some grating lobes
marked by the red solid circle. The result of GSRG is illus-
trated in Fig.19(c). GSRG not only achieves background sep-
aration effectively but also preserves the details of the human
body and foreign matters. The results of four comparison
methods are shown in Fig.20. For Fig.20(a), the result of
Kittler is the best of the four comparison methods, how-
ever, it still contains lots of backgrounds. Otsu has some
effect on the background separation, and the result is shown
in Fig.20(b). The result of GMM-HMRF is similar to the
result of Kittler, which is shown in Fig.20(c). MICO has
little effect on the background separation, which is shown
in Fig.20(d). The residual backgrounds in the results of the
comparison methods are much more than that of GSRG.
Thus, the performance of GSRG is much better than that of
the four comparison methods.

In order to verify the effect of the global threshold on
noise suppression, the proposed method without the global
threshold is implemented on human body. And the result is
shown in Fig.21. Compared with the result of GSRG shown
in Fig.19(c), the result of GSRG without the global threshold
contains additional noise marked by the red solid circle.
Therefore, it is necessary to implement the global threshold
to suppress the noise.

Finally, we will discuss the stability of these five methods.
For Otsu and Kittler, the performance of Otsu and Kittler
is different in the experiment and simulation. The result of
Otsu in the simulation is acceptable, conversely, Otsu has
little effect on background separation in the experiment.
Similarly, Kittler has no effect on background separation
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FIGURE 20. The results of the four compared methods. (a) The image processed by Kittler. (b) The image processed by Otsu. (c) The
image processed by GMM-HMRF. (d) The image processed by MICO.

FIGURE 21. The process result of human body by GSRG without the
global threshold.

in the simulation and has little effect on the experiment.
Therefore, it is unstable for Otsu and Kittler to separate the
background. For GMM-HMRF and MICO, the simulation
image background can be separated by these two methods.
However, these two methods cannot achieve the separation
of the experiment image background which is much more
complicated than the simulation image background. There-
fore, these two methods are unsuitable for the separation of
the complicated background. Moreover, the performance of
GMM-HMRF and MICO is extremely unstable, which has
shown in Fig.7.

Whether it is simulation or experiment, the proposed
method is not affected by the changing of the target and
the environment, and achieves the background separation
stably and accurately. Consequently, both the performance
and robustness of the proposedmethod are stronger than those
of the comparison methods.

TABLE 6. The settings of the single parameter analyses.

C. THE SINGLE PARAMETER ANALYSIS
The single parameter analysis is implemented to analyze
the influence of each parameter. The result of the rifle is
selected and discussed. Same as the analyses in the simula-
tion, the image evaluation criteria are still the RAE, the ME,
and the IoU. The ground truth is shown in Fig.18. Otsu, Kit-
tler, GMM-HMRF, and MICO are applied as the comparison
methods. The growing coefficient K and the enhancement
coefficient γ are controlled with K = 1 and γ = 2.
The parameter settings are specified in Table 6. In each
analysis, two parameters are fixed, one parameter varies
within the setting. The analyses of GSRG are illustrated in
Fig.22, 23, and 24. GSRG is marked by the black solid line.
Otsu is marked by the blue dashed line. Kittler is marked
by the red chain line. GMM-HMRF is marked by the black
dotted line. MICO is marked by the green chain line.

The analyses of the seed threshold are displayed in Fig.22.
For the ME shown in Fig.22(a), the RAE of GSRG is lower
than that of the comparison methods with the seed threshold
lower than 0.863. For the ME shown in Fig.22(b), the ME of
GSRG is higher than that of Kittler with the seed threshold
larger than 0.852 and begins to increase exponentially. The
ME of GSRG is higher than that of MICO, OTSU, and
GMM-HMRF when the seed threshold is higher than 0.919,
0.951, and 0.966 respectively. For Fig.22(c), the minimal
ME of GSRG is 0.003 at the seed threshold of 0.56. For
the IoU shown in Fig.22(d), the IoU of GSRG is superior
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FIGURE 22. The analysis results of the seed threshold. (a)The RAE. The intersection of GSRG and Kittler is at (0.863,0.871). The intersection of GSRG
and Otsu is at (0.955,0.985). The intersection of GSRG and MICO is at (0.955,0.985). The intersection of GSRG and GMM-HMRF is at (0.967,0.989).
(b)The ME. The intersection of GSRG and Kittler is at (0.852,0.024). The intersection of GSRG and MICO is at (0.919,0.128). The intersection of GSRG
and Otsu is at (0.951,0.279). The intersection of GSRG and GMM-HMRF is at (0.966,0.412). (c)The partially enlarged image of the ME curve. The
intersection of GSRG and Kittler is at (0.852,0.024). The minimal ME of GSRG is at (0.56,0.003). (d)The IoU. The intersection of GSRG and GMM-HMRF
is at (0.967,0.011). The intersection of GSRG and MICO is at (0.963,0.012). The intersection of GSRG and Otsu is at (0.956,0.015). The intersection of
GSRG and Kittler is at (0.865,0.122). The maximal IoU of GSRG is at (0.68,0.489).

FIGURE 23. The analysis results of the global threshold. (a)The RAE. (b)The ME. (c)The partially enlarged image of the ME curve. (d)The IoU. The
maximal IoU of GSRG is at (0.0032,0.491).

FIGURE 24. The analysis results of the weight. (a)The RAE. (b)The ME. (c)The partially enlarged image of the ME curve. The minimal ME of GSRG is at
(1.16,0.003). (d)The IoU. The maximal IoU of GSRG is at (1.04,0.479).

to that of Kittler with the seed threshold lower than 0.865,
and superior to that of OTSU, MICO, and GMM-HMRF
with the seed threshold lower than about 0.96. The maximal
IoU of GSRG is 0.489 at the seed threshold of 0.68. Hence,
GSRG has high performance when the seed threshold is
around 0.68.

The analyses of the global threshold are shown in Fig.23.
The RAE andME ofGSRG are always lower than those of the
compared methods. The IoU of GSRG is always higher than
that of the compared methods. The maximal IoU of GSRG
is 0.491 at the global threshold of 0.0032. Hence, GSRG
has high performance when the global threshold is around
0.0032. The global threshold has little influence on GSRG
with the seed threshold of 0.6 and the weight of 1.

The analyses of the weight are displayed in Fig.24. For the
RAE shown in Fig.24(a), the RAE of GSRG has a continuous
decreasing with the weight from 1 to 2. For the ME shown
in Fig.24(c), the minimal ME of GSRG is 0.003 at the weight
of 1.16. For the IoU shown in Fig.24(d), the maximal IoU of
GSRG is 0.479 at the weight of 1.16. Hence, GSRG has high
performance when the weight is around 1.16.

Consequently, GSRG has high performance when the seed
threshold is around 0.68, the global threshold is around
0.0032, and the weight is around 1.16. The influence of the
seed threshold is stronger than that of the global threshold and
the weight. The results of the single parameter analysis in the
experiment are similar to the results of the single parameter
analysis in the simulation.
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FIGURE 25. The joint analysis results of the seed threshold and the global threshold. The results of GSRG
and Kittler are marked by the blue dots and the red dots respectively. (a) The RAE. (b) The ME. (c) The IoU.

FIGURE 26. The joint analysis results of the seed threshold and the weight. The results of GSRG
and Kittler are marked by the blue dots and the red dots respectively. (a) The RAE. (b) The ME.
(c) The IoU.

FIGURE 27. The joint analysis results of the global threshold and the weight with µ = 0.6. The
results of GSRG and Kittler are marked by the blue dots and the red dots respectively. (a) The RAE.
(b) The ME. (c) The IoU.

D. THE TWO-PARAMETER ANALYSIS
The two-parameter joint analysis is implemented to reflect
the algorithm characteristics comprehensively. Except
for the parameters and the comparison method, the settings of
the two-parameter joint analysis are the same as the settings
of the single parameter analysis. The proposed method is
compared with Kittler. The growing coefficient K and the
enhancement coefficient γ are controlled with K = 1 and
γ = 2. The settings of the other three parameters are
specified in Table 7. For the two-parameter joint analysis, one
parameter is fixed, two parameters vary within the settings.
The analysis results are shown in Fig.25, Fig.26, and Fig.27.

The joint analyses of the seed threshold and the global
threshold are displayed in Fig.25. For the RAE shown
in Fig.25(a), the RAE of GSRG is increasing and higher
than that of Kittler with the seed threshold higher than
around 0.9. For the ME shown in Fig.25(b), the ME of

TABLE 7. The settings of the two-parameter joint analyses.

GSRG has no significant change with the seed threshold from
0.02 to 0.8 and increases sharply with the seed threshold
from 0.8 to 0.96. For the IoU shown in Fig.25(c), when the
seed threshold is around 0.72, the IoU of GSRG reaches a
maximum. Hence, GSRG has high performance when the
seed threshold is around 0.72 and the global threshold is close
to 0.01.

The joint analyses of the seed threshold and the weight
are displayed in Fig.26. For the RAE shown in Fig.26(a),
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FIGURE 28. The joint analysis results of the global threshold and the weight with µ = 0.9. The results of
GSRG and Kittler are marked by the blue dots and the red dots respectively. (a) The RAE. (b) The ME.
(c) The IoU.

TABLE 8. The computational cost of the simulation and the experiment.

the RAE of GSRG is increasing and higher than that of Kittler
with the seed threshold higher than around 0.8. For the ME
shown in Fig.26(b), neither the seed threshold nor the weight
has an effect on theMEofGSRGwith the seed threshold from
0.02 to 0.8 and the weight from 1 to 2. However, the ME of
GSRG increases exponentially with the seed threshold from
0.8 to 0.96. For the IoU shown in Fig.26(c), the maximal IoU
of GSRG is at around the seed threshold 0.8. Hence, GSRG
has high performance when the seed threshold is around 0.8,
and the weight is close to 2.

The joint analyses of the global threshold and the weight
are displayed in Fig.27. The performance of GSRG is always
better than that of Kittler with the seed threshold of 0.6. For
the ME shown in Fig.27(b), both two parameters have little
effect on the ME of GSRG. For the RAE and the IoU shown
in Fig.27(a) and (c) respectively, both the RAE and the IoU
are increasing with the decreasing of the weight, and the
RAE is increasing with the decreasing of the global threshold.
Compared with the global threshold, the weight has more
influence on the RAE and the IoU. Hence, GSRG has high
performance when the weight is around 1.5 and the global
threshold is close to 0.01.

Same as the results of the two-parameter joint analysis in
the simulation, the influence of the seed threshold is higher
than the influence of the global threshold and the weight.
The global threshold and the weight have different impact
capabilities with different seed threshold. To discuss the
influence of the global threshold and the weight with a high
seed threshold, another analysis is implemented with the seed
threshold of 0.9, the global threshold from 0.0002 to 0.05, and
the weight from 1 to 2. The results are shown in Fig.28.

For the RAE shown in Fig.28(a), with the decreasing of the
global threshold and theweight, the RAE ofGSRGhas a huge
linearly increasing. For the ME shown in Fig.28(b), the ME
of GSRG has an exponentially increasing with the global
threshold from 0.01 to 0.0002 and the weight from 1.8 to 1.
For the IoU shown in Fig.28(b), when the global threshold
is between 0.02 to 0.05, the IoU of GSRG is increasing with
the decreasing of the weight. When the global threshold is
between 0.0002 to 0.02, the IoU of GSRG is decreasing with
the decreasing of the weight. Therefore, the influence of the
global threshold and the weight is related to the seed thresh-
old.When the seed threshold is close to 1, the global threshold
and the weight have a huge influence on the performance of
GSRG, and ensure that the performance of GSRG does not
decrease significantly.

In summary, the simulation and the experiment have the
same analysis result. The seed threshold is more influen-
tial than the global threshold and weight. The effect of the
global threshold and weight continuously increases with the
increasing of the seed threshold. In the case where the weight
ensures that the seeds contain little background, GSRG has
good performance when the seed is around 0.7 and the global
threshold is close to 0.01.

E. THE COMPUTATIONAL COST ANALYSIS
The proposed method and the comparison methods are tested
on a computer with AMD Ryzen 1950X @3.4GHz, 64G
memory, and GeForce GTX1080. The computational costs
are recorded and shown in Table 8. This table also encom-
passes the image size, the number of initial seeds, and
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the number of increased pixels. Otsu and Kittler achieve
image segmentation by the histogram threshold. This kind of
method has a simple calculation process. Therefore, Otsu and
Kittler have huge advantages in computational cost. Although
the computational cost of the proposed method is higher than
that of Otsu and Kittler, it is significantly lower than that of
MICO and GMM-HMRF.

Then, we will analyze the factors that affect the compu-
tational cost of the proposed method. The image size of the
aircraft model is about 7.4 times that of the other four images,
correspondingly, the time consuming of the aircraft model is
the highest. Therefore, the computational cost is related to the
image size. The scissors, the pistol, the rifle, and the human
body have the same image size, however, the computational
cost of the human body is much higher than that of the other
three images. As shown in Table 8, the increased pixel number
of the human body is much more than that of the other three
images. Therefore, the computational cost is related to the
number of increased pixels. For the scissors, the pistol, and
the rifle, the ratio of the increased pixel number to the initial
seed number is 4.548, 2.963, and 2.109 respectively. Corre-
spondingly, the computational cost of the scissors, the pistol,
and the rifle is 4.26s, 2.70s, and 2.49s respectively. Therefore,
the computational cost is not only related to the image size
and the number of increased pixels but also influenced by
the ratio of the increased pixel number to the initial seed
number.

VI. CONCLUSION
This paper presents a background separation method to
achieve the eliminating of the noise and the interference in 3D
SAR image. The image enhancement function, constructed
with the real and the imagery information of SAR image,
is implemented to suppress the noise and the weak inter-
ference. Due to the complexity of the target shape and the
large dynamic range of the SAR image, the initial seeds are
extracted by the weighted Otsu, and the weight ensures the
initial seeds contain little background as much as possible.
To suppress the increasing of the background during the
region growing, the growing rate function is constructed by
the amplitude of the initial seed and the current growing
position. The seed threshold is used to restrict the growing of
each seed independently. However, it is possible that the seed
whose amplitude is close to the noise amplitude has an almost
unrestricted growing, which will result in the process result
with the noise-filled and low-quality. Therefore, the global
threshold is applied to control the region growing via restrict-
ing the backward difference of the mask standard deviation.

The simulation and experiments not only verify the effec-
tiveness of the proposed algorithm but also prove that the
results of the proposed algorithm are far superior to the results
of the four comparison methods. Besides, the performance of
the proposed algorithm is analyzed by three image evaluation
criteria with four comparison methods. For the analyzing
results, the performance of the proposed algorithm is 0.31%
to 76.27% better than that of the comparison methods.

The influence of three important parameters is investigated
by fixing one or two parameters and changing the other
parameters. The analysis results present that the seed thresh-
old determines the background separation result directly. The
effect of the weight and the global threshold on the perfor-
mance of GSRG is proportional to the seed threshold.

Compared with other image segmentation methods,
the proposed method also needs to adjust the parameters
to obtain the best performance, which may be a limitation.
We will find solutions to achieve the automatic 3D SAR
image background separation in our future work. In other
fields, there are already some automatic image segmentation
methods, which can be the reference for the realization of
automatic 3D SAR image background separation. We will
present an automatic 3D SAR image background separation
method in the next paper.
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