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ABSTRACT With the maturity of image editing software, image content has been forged frequently,
posing potential threats to many critical fields. To detect forgery images effectively, this paper proposes
an image copy-move forgery detection (CMFD) method based on speeded-up robust feature (SURF) and
polar complex exponential transform (PCET). Firstly, image is divided into non-overlapping irregular image
blocks by superpixel segmentation. Then, these image blocks are separated into two categories: smooth
regions and texture regions. Secondly, after finding the keypoints by SURF, the PCET coefficients are
extracted and utilized for searching similar features by feature matching algorithm. Thirdly, a strategy is
used to eliminate false matched points and find the regions with dense matched points. It combines the
random sample consensus (RANSAC) algorithm and a filtering scheme. Finally, mathematical morphology
and an iterative strategy are adopted to refine the tampered regions. Compared with other CMFD methods,
the proposed method can detect the forgery which occurs in high-brightness smooth regions or forgery
images involving similar but genuine regions. Experimental results also indicate the proposed method can
resist different distortions by various attacks, including rotation, scaling, blurring, joint photographic expert
group (JPEG) compression, and noise addition.

INDEX TERMS Image forensics, image copy-move forgery detection (CMFD), speeded-up robust feature
(SURF), polar complex exponential transform (PCET), superpixel segmentation.

I. INTRODUCTION
With the rapid development of the Internet, it becomes easy
to obtain abundant multimedia information [1]. It is conve-
nient for people to get high-resolution pictures and videos
with their cameras or mobile phones, enriching their lives.
However, people can alter the content of images as their
wishes using various image editing software arbitrarily, such
as Adobe PhotoShop [2] and ACDSee Photo Editor [3]. The
authenticity and integrity of images have been threatened
in many critical fields [4]–[7]. For example, forged med-
ical films may cause misdiagnosis and affect the state of
illness [5], and forged newspaper photographs may mislead
people and cause social turbulence [6]. Therefore, image
forensics technique as a significant part of information
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security, which aims at identifying the forgery, is urgent to
be developed [4]–[7].

In recent decades, scholars have proposed different meth-
ods to distinguish between original images and forgery
images, which are divided into active forensics and passive
forensics [1]. Active forensics techniques are used to verify
the integrity of the verification information such as digital
watermark [8]–[10] and digital signature [11]–[13]. Active
forensics techniques have the advantages of strong detection
ability and are not easy to be avoided. However, in active
forensics techniques, the verification information needs to
be inserted into carrier images before distribution, which
decreases the quality of images. Passive forensics techniques
are used to verify the authenticity by analyzing the informa-
tion and structure of images, which overcome the defects of
active forensics techniques.

There are mainly two forgeries to alter the content of
images: splicing and copy-move [1]. Splicing forgery is a
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FIGURE 1. Example of image copy-move forgery on image Japan
tower: (a) original image, (b) forgery image, (c) tampered region,
and (d) forgery image marked with the tampered region.

way to copy and paste a part of an image into another
image. Copy-move forgery is a way to copy and paste a
part of an image into the same image. An example of image
copy-move forgery on image Japan tower is given in Fig. 1.
Fig. 1 shows an original image, corresponding tampered
region, and forgery image marked with the tampered region
by green. In Fig. 1(b), the Japan tower is concealed using a
part of the sky region within the same image. The forgery
of the Japan tower in Fig. 1(b) is difficult to be recognized
because the pasted sky region has similar characteristics with
the whole image. Therefore, image copy-move forgery detec-
tion (CMFD) is a challenging topic.
Image CMFD methods are mainly divided into two cate-

gories: block-based methods and keypoint-based
methods [14].
In block-based CMFD methods [15]–[26], an image is

divided into many image blocks from which features are
extracted. The existence of similar features is the basis of
judging whether the image is tampered with. At present,
the block-based image forgery detection methods can locate
the tampered regions of forgery images accurately. However,
these methods have high computational complexity, and are
difficult to resist large-scale rotation and scaling.
In keypoint-based CMFD methods [27]–[40], keypoints

are extracted from an image, and then the descriptors of these
keypoints are used in feature matching. To determine whether
the image is tampered with, the number of matched key-
points should be compared with the pre-set threshold. Most
of current keypoint-based CMFD methods have difficulty
in judging whether smooth regions of image are tampered
with correctly. Compared with block-based CMFD methods,
keypoint-based CMFD methods have lower computational
complexity.
This paper proposes an image CMFD method to solve the

problem that most of keypoint-based CMFD methods are

difficult to detect forgery which occurs in smooth regions
or in forgery images involving similar but genuine regions.
Firstly, to narrow down the search range of feature match-
ing, the image block classification technique is investigated.
Hence, the image blocks are divided into smooth regions and
texture regions, and the tampered regions belong to the same
type of image regions. Secondly, a filtering scheme, based
on the number of matched points in the statistical image
block, is used to eliminate falsematched points. The proposed
CMFD method combines the advantages of block-based and
keypoint-based image CMFD methods. Finally, mathemati-
cal morphology and an iterative strategy are adopted to refine
tampered regions.
The rest of this paper is organized as follows. Section II

reviews related work of CMFD. Section III introduces
speed-up robust feature (SURF) and polar complex expo-
nential transform (PCET) used in the proposed method.
Section IV presents the proposed image CMFD method in
detail. A series of experiments are conducted and discussed
to demonstrate the effectiveness of the proposed method in
Section V. Section VI gives conclusions and remarks on
possible future work.

II. RELATED WORK
In the field of block-based CMFD, Fridrich et al. [15] first
proposed the CMFD algorithm, which used the discrete
cosine transform (DCT) coefficients as the feature to verify
the authenticity of an image. It is a landmark work in the field.
However, this method has extremely high computational
complexity. To reduce its complexity, Huang et al. [16] trun-
cated the quantified DCT vector using a constant to reduce
the feature dimensionality. In addition, the lexicographical
order was used to make the feature matrix orderly, which
narrowed the scope of feature searching. To resist various
image processing operations, singular value decomposition
(SVD) [17], [18], is applied to CMFD methods to get stable
features. After extensive research, Luo et al. [19] found that
a single natural image was unlikely to have two extremely
similar regions, whose sizes were larger than 0.85% of the
image size. The image is considered as a forgery image if
the frequency of shift-vector outperforms pre-set threshold in
the methods [15]–[19].
However, there is still a problem that themethods [15]–[19]

cannot locate the tampered regions if the tampered regions
are rotated or scaled. To solve the problem in [15]–[19], many
local invariant features are applied to the image CMFDmeth-
ods, such as scale-invariant features: Hu moment [20], and
rotation-invariant features: Zernike moment (ZM) [21], local
binary pattern (LBP) [22], and discrete analytical Fourier-
Mellin transform (DAFMT) [23]. polar harmonic transform
(PHT) [24], which is a rotation-invariant feature and has
low computational complexity, is also used to solve the
problem [25], [26].
Sincemost of block-based CMFDmethods have high com-

putational complexity, some keypoint-based CMFD methods
are emerging. Amerini et al. [27] used the scale invariant
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feature transform (SIFT) and its descriptors as features to find
similar features by the generalized 2 neighbor nearest (g2NN)
algorithm. And then, random sample consensus (RANSAC)
algorithm was used to estimate affine transformation matrix
and remove false matched points. Two years later, on the basis
of the work in [27], Amerini et al. [28] used the J-linkage
clustering algorithm to detect possible tampered regions. The
disadvantage of this method is that the SIFT descriptor has
a high dimensionality. Therefore, other keypoint detectors
and descriptors are applied to the image CMFD methods,
such as scale- and rotation- invariant features: SURF [29],
and rotation-invariant features: Harris corner [30], [31],
accelerated-KAZE (A-KAZE) [32], oriented FAST and
rotated BRIEF (ORB) [33], and multi-support region order-
based gradient histogram (MROGH) [34]. Binary robust
invariant scalable keypoints (BRISK) [35] is also used due
to its scaling and rotation invariance.

However, the above methods [27]–[33] just mark the tam-
pered regions by matched keypoints and their connections.
Such identification methods can only identify the approxi-
mate regions, and there is a problem that the positioning is
inaccurate. To solve the problem, other methods were used
in [36]–[40]. Pan and Lyu [36] calculated the correlation
coefficients to obtain a correlation coefficient map, using
the affine transformation matrix estimated by the RANSAC
algorithm. The map and morphological operations were used
to locate the tampered regions. Yang et al. [37], using the
estimated affine transformation matrix, calculated the zero
mean normalized cross-correlation (ZNCC) coefficients to
locate the tampered regions. However, it is difficult to detect
enough keypoints in smooth regions. To obtain enough key-
points, Jin andWan [38] set the contrast threshold of the SIFT
detector to 0. Zandi [39] improved the keypoint extraction
method and used multiple iterations to locate the tampered
region in smooth regions. The methods [38] and [39] can
make accurate detection in smooth regions, but cannot detect
the forgery which occurs in forgery images involving similar
but genuine regions.

Compared with the block-based CMFD methods, the
keypoint-based CMFD methods reduce computational com-
plexity. However, most of the keypoint-based CMFD meth-
ods cannot detect the forgery which occurs in high-brightness
smooth regions or forgery images involving similar but gen-
uine regions correctly, which is resolved mainly in this paper.

In addition, Pun et al. [40] combined the block-based
methods and keypoint-based methods. They used the simple
linear iterative clustering (SLIC) superpixel segmentation
algorithm to divide images into non- overlapping irregular
image blocks. The features of each image block were the
extracted SIFT features from keypoints in the block, and were
used in features matching. However, the positioning effect of
this method primarily depends on the selection of the initial
value of the SLIC superpixel segmentation algorithm.

With the development of high-performance computing,
deep learning has begun to be used in the field of image foren-
sics [41]. However, such method has many shortcomings,

such as a large number of training samples and long training
time. At present, the forensic method based on deep learning
has a poor positioning effect on the tampered regions of
single copy-move forgery image, and the application of deep
learning in the field still needs to be explored.

III. TWO FEATURES: SURF AND PCET
This section introduces two features, SURF and PCET, used
in the proposed method.

A. SURF
SURF [42] is usually adopted in computer vision, such as
image registration and object recognition. SURF, developing
on classical SIFT, can not only maintain the scaling and rota-
tion invariance of SIFT, but also be robust to noise, detection
displacements, and geometric and illuminated deformations.

SURF determines keypoints by calculating the relevant
Hessian matrix and finding the extreme points of scale space.
Given a point x = (x, y) in an image I , the Hessian matrix
H(x, σ ) in x at scale σ is represented as follows [42]:

H(x, σ ) =
[
Cxx(x, σ ) Cxy(x, σ )
Cxy(x, σ ) Cyy(x, σ )

]
, (1)

where Cxx(x, σ ) is the convolution of the Gaussian second-
order partial derivative ∂2G(x, y, σ )/∂x2 with the image
at pixel x. Cxy(x, σ ) and Cyy(x, σ ) are similar to the
Cxx(x, σ ), which means that Cxy(x, σ ) is the convolution of
∂2G(x, y, σ )/∂x∂y with the image and Cyy(x, σ ) is the con-
volution of ∂2G(x, y, σ )/∂y2 with the image. Fig. 2(a) shows
the Gaussian second-order partial derivative in horizontal,
vertical, and diagonal directions, respectively.

FIGURE 2. The box filters used in SURF, taking 9 × 9 box filters as an
example: (a) the Gaussian second-order partial derivative in x-, y-, and
xy- directions, respectively, and (b) the approximation of (a) in x-, y-, and
xy- directions, respectively. The grey regions are equal to 0.

Due to the high time complexity of calculating the second-
order derivative of the image, SURF uses rectangular box
filters to approximate the Gaussian second-order derivative.
Fig. 2(b) shows the box filters in horizontal, vertical, and
diagonal directions, respectively. The utilization of box fil-
ters accelerates the speed of convolution calculation and
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reduces complexity. Therefore, the determinant of Hessian
matrix H is approximated as follows [42]:

det(H) ≈ BxxByy − (0.9Bxy)2, (2)

where the Bxx , Byy, and Bxy are the convolution of box filters
with the image at pixel x in horizontal, vertical, and diagonal
directions, respectively.

A point is compared with 26 points around the point in
a 3 × 3 × 3 neighborhood which is between the 3 × 3 rect-
angle windows of the neighbor scales and the current scale.
A detected point is considered to be a keypoint, if the point
is the extreme point and its determinant of Hessian matrix
is higher than the pre-set threshold TH. Inspired by [38],
the experiments are conducted by setting the contrast thresh-
old to 0 with different detectors, such as Harris corner, SURF,
SIFT, ORB, and BRISK in OpenCV library. Fig. 3 shows
the detection results on image Japan tower, and the digit in
subtitles (b), (c), (d), (e), and (f), is the number of detected
keypoints by the corresponding detector. In Fig. 3, the red
points are the extracted keypoints from the image usingHarris
corner, SURF, SIFT, ORB, and BRISK, respectively. On the
one hand, if the number of detected points is large, the com-
putation time will be long. On the other hand, if the number
of detected points is small, some forgeries will be omitted.
Fig. 3 shows that Harris corner, SURF, and SIFT detectors can
obtain sufficient points uniformly covering the whole image.
SURF is appropriate to be chosen as the keypoints detector,
due to the moderate number of detected points.

FIGURE 3. Detection results with different detectors on image Japan
tower: (a) original image, (b) Harris corner (35040), (c) SURF (31128),
(d) SIFT (24356), (e) ORB (20000), and (f) BRISK (9802).

B. PCET
PCET is one form of PHT. PHT including PCET, polar
cosine transform (PCT), and polar sine transform (PST), was
proposed by Yap et al. [24]. PHT has the advantages of
Zernike moment’s orthogonality and invariance. Moreover,
the computation of its kernel function F is much simpler than
that of Zernike moment. Therefore, it can be used in where
maximal discriminant information is needed.

Since PHT is defined on unit circle, an image I (x, y) in
Cartesian coordinates needs to be converted into polar coor-
dinates to obtain Ip(r, θ), where r and θ are expressed as
follows:

r =
√
x2 + y2, θ = arctan(y/x). (3)

The PHT coefficient Mnl of n order with l repetition,
where |n| = |l| = 0, 1, · · · ,∞, is defined in continuous form
as follows [24]:

Mnl = �n

∫ 2π

0

∫ 1

0
[Fp

nl(r, θ)]
∗Ip(r, θ)rdrdθ, (4)

where [·]∗ is the complex conjugate operation. For PCET,
�n = 1/π . For PST or PCT, �n is defined as (5). Fp

nl(r, θ)
is the PHT kernel which is given in (6). �n and F

p
nl(r, θ) are

expressed as follows [24]:

�n =

{
1/π, n = 0,
2/π, n 6= 0,

(5)

Fp
nl(r, θ) =


ei2πnr

2
eilθ , PCET,

cos(πnr2)eilθ , PCT,
sin(πnr2)eilθ , PST.

(6)

In the reconstruction of PHT, to limit the number of its
coefficients, the constraint condition |n| + |l| < L is usually
adopted, where L is a pre-set value [24]. For discrete imple-
mentation, (4) can be rewritten in Cartesian coordinates as
follows [24]:

Mnl = �n

∫ ∫
x2+y2≤1

[Fnl(x, y)]∗I (x, y)dxdy, (7)

where Fnl(x, y) = Fnl(r cos θ, r sin θ ) ≡ Fp
nl(r, θ) and

I (x, y) = I (r cos θ, r sin θ ) ≡ Ip(r, θ). An image with the
size ofW ×H , is defined on a discrete domain g[a, b], where
a = 0, 1, · · · ,W − 1 and b = 0, 1, · · · ,H − 1. The image is
mapped to a domain of (xa, yb) ∈ [−1, 1]×[−1, 1] with [24]:

xa =
a−W/2
W/2

, yb =
b− H/2
H/2

, (8)

where xa and yb indicate the mapped domain, subject
to x2a + y

2
b ≤ 1. The PHT coefficientMnl on discrete domain
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TABLE 1. Moments of PCET coefficients of original image Lena and its distorted versions.

TABLE 2. The difference between the features of the original image Lena and those of the distorted versions.

can be described as follows [24]:

Mnl = �n

W−1∑
a=0

H−1∑
b=0

[Fnl(xa, yb)]∗ I (xa, yb)1x1y

=
4�n

WH

W−1∑
a=0

H−1∑
b=0

[Fnl(xa, yb)]∗ I (xa, yb), (9)

where I (xa, yb) = g[a, b], 1x = 2/W , and 1y = 2/H .
More detailed information can also be found in [24].

To demonstrate the invariance of PCET coefficients in
geometric transformation and image processing techniques,
the PCET coefficients are extracted from the original image
and distorted images. Table 1 lists the PCET coefficients
of image Lena with the size of 512 × 512 and those of
distorted versions by various attacks. The attacks include
rotation with an angle of 35, scaling with a factor of 0.9,
blurring with a filter size of 2, joint photographic expert
group (JPEG) compression with a quality factor (QF) of 80,
and Gaussian noise addition with 0 mean and 0.0001 vari-
ance. In Table 1, the inner circle region of image Lena is used
to represent the whole image for reducing the effects of other

distortion operations. Table 1 shows the moments /
coefficients of PCET have little change under different dis-
tortion operations, which demonstrates that the PCET coef-
ficients are suitable for the feature to find similar features in
the method of image CMFD.

To evaluate the performance of PCET feature, PCET is
compared with other features, including Hu moment [20],
ZM [21], and LBP [22]. Table 2 shows the differences
between the features of the original image Lena and those
of the distorted versions. For example, the difference Dr

PCET
between the PCET coefficients of the original image and
those of the image rotated by 35◦, which is 0.0033 in Table 2,
is obtained by:

Dr
PCET =

1
N

∑
n

∑
l

∣∣Mnl −M r
nl

∣∣, (10)

where Mnl , obtained by (9), is the PCET coefficient of n
order with l repetition for the original image and shown
in Table 1, and M r

nl represents the PCET coefficient for
the image rotated by 35◦. N is the total number of PCET
coefficients Mnl . For PCET, there are N = 10 features,
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FIGURE 4. Flow chart of the proposed method.

FIGURE 5. Segmentation result on image Japan tower: (a) original image, (b) non-overlapping image blocks
with different colors, and (c) edge of the blocks in (b).

includingM00,M01,M02,M03,M10,M11,M12,M20,M21, and
M30. In addition, the information of Hu moment, ZM, and
LBP can be found in [20]–[22], respectively. Their difference
in Table 2 can be obtained by (10), just like PCET. In Table 2,
the computation time of feature extraction in the original
image Lena is also listed, which shows that PCET is the
fastest. Table 2 demonstrates that PCET is the best one to find
similar features in the method of image CMFD.

IV. PROPOSED CMFD METHOD
This section presents the proposed image CMFD method in
detail. Its flow chart is given in Fig. 4. Firstly, an image
is divided into non-overlapping irregular image blocks, and
then the blocks are divided into smooth regions and texture
regions. Secondly, the SURF detectors with different con-
trast thresholds are performed on smooth regions and texture
regions to obtain sufficient points. The PCET coefficients of
the points are extracted and used as descriptors. An improved
g2NN algorithm is proposed and used to search similar
features, and the matched points are obtained. Thirdly, the

RANSAC iteration algorithm and a filtering strategy that
combines the label matrix are used to eliminate false matched
points. The rough rectangle regions are found by dense points.
Then, these rectangle regions are divided into overlapping
circle blocks and the PCET coefficients are extracted from the
circle blocks. The similar features are found by the improved
g2NN algorithm. Finally, mathematical morphology and an
iterative strategy are used to locate the tampered regions.

A. PRE-PROCESSING
In this method, inspired by block-based CMFD methods, the
image is divided into non-overlapping irregular image blocks
using minimum barrier superpixel (MBS) segmentation [43].
MBS segmentation is a superpixel segmentation algorithm
based on the minimum barrier. Compared with other seg-
mentation methods, MBS segmentation can be configured
to make a simple trade-off between performance and effi-
ciency, and is easy to be controlled by one parameter [43].
An example of MBS segmentation result on image Japan
tower is given in Fig. 5: Fig. 5(a) is original image, Fig. 5(b) is
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FIGURE 6. Classification results on five images. First row: original images; Second row: the classification results. (a) Beach wood,
(b) Sailing, (c) Scotland, (d) TP_C01_023, and (e) Japan tower.

non-overlapping irregular image blocks with different colors,
and Fig. 5(c) is edge of the blocks in Fig. 5(b). In Fig. 5(b),
different colors indicate different labels in label matrix ML
obtained by MBS segmentation. The label matrixML is used
to eliminate false matched points in the subsequent steps.
There is an inevitable problem to set the initial size of the
MBS segmentation algorithm. Based on the discovery of
Luo et al. [19] and extensive experiments, setting the initial
size of image blocks to W × H × 0.01 is suitable for an
image with the size ofW × H in the pre-processing stage.
To narrow the scope of searching similar features, the irreg-

ular image blocks are divided into two categories: smooth
regions and texture regions. Searching similar features in
smooth regions and texture regions respectively will save
more time than that in the scope of the whole image. The
smooth regions and texture regions are separated according
to local information entropy of the irregular blocks.

Supposing image I of sizeW × H is divided into K irreg-
ular non-overlapping image blocks Rk (k = 1, 2, · · · ,K ).
To avoid the effect of different distortions by various attacks,
such as noise addition and blurring, the pixel values are
arranged in several pixel intervals determined by the maxi-
mum pixel value Vmax and minimum pixel value Vmin with
2 pixels. The local information entropy Ek of irregular block
Rk is obtained by [44]:

Ek = −
∑
i

[PRk (i) log2 PRk (i)], (11)

where PRk (i) is the probability of the i-th pixel interval men-
tioned above in irregular blockRk which is defined as follows:

Rk =

{
1, Ek < ET,
0, Ek ≥ ET,

(12)

where Rk = 1 denotes that the irregular block belongs to
smooth regions, and Rk = 0 denotes that it belongs to texture
regions. ET is a threshold to distinguish the smooth regions

and texture regions. Through experiments, ET is defined as
follows:

ET = Emin +
2
3
E, E = Emax − Emin, (13)

where Emax and Emin are the maximum and minimum local
information entropy among all irregular blocks, respectively.
E is the difference value between Emax and Emin. Therefore,
ET can be written as follows:

ET =
1
3
Emin +

2
3
Emax. (14)

According to (12) and (14), the whole irregular blocks
are separated into smooth regions and texture regions. For
example, five images and their corresponding classification
results are shown in Fig. 6. The regions of the sky, desert,
and cloud in these images are deemed as smooth regions.
The red regions are smooth regions and the green regions
are texture regions in the classification images depicted in
the second row in Fig. 6. As we can see, the classification
results in Fig. 6 regard the regions of the sky, dessert, and
cloud as smooth regions and regard other regions as texture
regions. The examples demonstrate the effectiveness of this
classification strategy to distinguish smooth regions and tex-
ture regions. The subtitles of Fig. 6 are the image names in
the datasets [26], [45].

B. KEYPOINT DETECTION AND DESCRIPTION
The SURF detector is applied to extract keypoints on smooth
regions and texture regions. The contrast thresholds T s

SURF
in smooth regions and T t

SURF in texture regions are set to
different values to obtain sufficient points uniformly covering
the whole image. The detection results obtained by the SURF
detector on three images are shown in Fig. 7. In Fig. 7,
the red points are extracted from smooth regions and the blue
points are extracted from texture regions. Then, the square
block centered at each point with RPCET pixels is obtained,
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FIGURE 7. Detection results obtained by the SURF detector on three images: (a) Beach wood,
(b) TP_C01_023, and (c) Japan tower.

FIGURE 8. Detection results of the improved g2NN algorithm on three images: (a) Beach wood,
(b) TP_C01_023, and (c) Japan tower.

which also means that the length of the square block is
(2× RPCET + 1). As mentioned in Section III.B, the inner
circle region of the square block is used as the circle block
of the point. The PCET coefficients are extracted from the
circle blocks and used as the descriptor of the keypoints.

C. FEATURE MATCHING AND FALSE MATCHED
POINTS ELIMINATION
After feature extraction, two group features, f s and f t, are
obtained. In feature matching phase, the improved g2NN
algorithm is performed to each group to search similar fea-
tures. Taking the smooth group feature f s for an example, the
ordered distance vector D = {d1, d2, · · · , dn−1} is obtained
by calculating f si and other descriptors using Euclidean dis-
tance and making them orderly. If dj/dj+1 < Tg2NN in D
is not satisfied, where Tg2NN is the pre-set ratio threshold in
the g2NN algorithm, the j points are deemed as the candidate
points of the xsi point [27]. However, since the contrast thresh-
old of the SURF detector is extremely small, the extracted
keypoints, whose spatial distance is too short, may be mis-
judged as matched point pairs. Therefore, it is necessary to
improve the g2NN by eliminating the points, whose spatial
distance to the point xsi is shorter than the pre-set distance
threshold Td.
After performing the improved g2NN algorithm on each

point in the smooth group, the matched points in the smooth
group xsm are obtained. Similarly, the matched points in the
texture group xtm are also obtained. The improved g2NN
algorithm can make the proposed method effective in mul-
tiple copy-move forgeries. In this paper, the k-dimensional
tree is built based on each feature group, and k-nearest
neighbor (KNN) is used to find the NKNN nearest points

of the point. The improved g2NN algorithm is applied to
the scope of the NKNN points. After the improved g2NN
algorithm, the matched points xm are obtained by combining
matched points in the smooth group xsm and texture group xtm.
The detection results of the improved g2NN algorithm on
three images are shown in Fig. 8. In Fig. 8, the red points
are the matched points, and they are connected by blue lines.

After the feature matching phase, many false matched
points are existing in the matched points xm. The RANSAC
iteration algorithm based on [36] and a filtering strategy
combining the label matrix obtained by MBS segmentation
are used to find the regions with dense points and eliminate
false matched points. RANSAC divides the matched points
xm into inlier and outlier groups. To obtain sufficient matched
points, the iteration of RANSAC is stopped only when the
number of the points belonging to the inlier group is less
than the pre-set threshold Tin. The smaller the value of Tin,
the more the matched points and the longer the running time.
The detail of the RANSAC iteration is described in Algo-
rithm 1. Next, the frequency of different labels correspond-
ing to the matched points x′m are counted. Then, the points
whose corresponding label frequency is less than the pre-set
threshold TL are eliminated from the matched points x′m.
Finally, the regionswith dense points are found. The detection
results which are demarcated by dense points on three images
are given in Fig. 9. In Fig. 9, the red points are the final
matched points.

D. TAMPERED REGION LOCALIZATION
For each region with dense points, the minimum and max-
imum coordinates in x and y directions x imin, y

i
min, x

i
max,

and yimax are found. The rectangle region is determined by
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FIGURE 9. Detection results of the rough region located at dense points on three images: (a) Beach
wood, (b) TP_C01_023, and (c) Japan tower.

FIGURE 10. Final detection results of the proposed method on three images: (a) Beach wood,
(b) TP_C01_023, and (c) Japan tower.

Algorithm 1 RANSAC Algorithm
Variable Declaration:

xm : matched points by the improved g2NN
algorithm

xin : matched points belonging to inlier group via the
RANSAC algorithm

Nin : number of the points belonging in inlier group
Tin : threshold of the points belonging to inlier group
x′m : matched points after eliminating false matched

points by RANSAC
RANSAC Iteration Procedure:
while (1)

xin = RANSAC(xm)
if Nin > Tin then

x′m← xin
xin is eliminated from xm

else
break

end if
end while
End Procedure

x imin − Np, x imax + Np, yimin − Np, and yimax + Np, consid-
ering x imin, y

i
min, x

i
max, and yimax may not cover the whole

actual tampered region [46], where the Np is the number of
extended edge pixels. After obtaining the rectangle regions,
these regions are divided into overlapping circular blocks of
radius RPCET pixels, and the PCET coefficients are extracted
from each circle block. Similar to Section IV.C, the improved
g2NN algorithm is used to find similar features. Then, math-
ematical morphology close and open operations are used

to eliminate isolated small regions and fill in holes. The
mask Ib, a binary image where 0 indicates black background
and 1 indicates the detected regions, is obtained. Finally,
an iterative strategy is used to expand the detected tampered
regions. For each (x, y) in Ib, if 0 exists in its 8 neighborhood
regions and Ib(x, y) = 1, the corresponding regions are set
to 1. Three examples of the final detected regions are given
in Fig. 10.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
This section introduces the evaluation metric first. And
then the plain tests, the geometric transformations tests, and
robustness tests are performed to evaluate the performance of
the proposed method.
The tests in the paper are performed in MATLAB 2019a

on a 64-bit win10 PC with the Intel Core i5-4690 CPUmodel
and 8 GB RAM.
In state-of-the-art methods, Cozzolino et al. [26] and

Zandi [39] specifically recommended that their methods can
locate the tampered region in smooth regions. Pun et al. [40]
integrated block-based and keypoint-based CMFD methods,
which is similar to the proposed method. Therefore, the pro-
posed method is compared with the methods [26], [39],
and [40] to evaluate its performance.
The images used in the experiments are from three datasets:

GRIP [26], FAU [45], and SBU-CM16 [47] datasets, which
are also used in the methods [26], [39], and [40]. The GRIP
dataset [26], created by Cozzolino et al., includes 80 original
images, plain copy-move forgery images, and corresponding
binary images of the identified tampered regions. The FAU
dataset [45], created by Christlein et al., includes 48 groups
of images. Each group contains plain forgery images and
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distorted copy-move forgery images such as rotation, scaling,
blurring, JPEG compression, and noise addition. The original
images and binary images of the tampered region correspond-
ing to the forgery images are also given. The SBU-CM16
dataset [47], created by Zandi et al., includes 16 groups
of images. Each group contains forgery images and binary
images after rotation, blurring, JPEG compression, and noise
addition, excluding the plain forgery images and original
images.

In CMFD methods, the precision p, recall r , and F score
metrics are commonly used to evaluate the performance of
method and are defined as follows [45]:

p =
Ncf

Ncf + Nff
, r =

Ncf

Ncf + Nfo
, F =

2pr
p+ r

, (15)

whereNcf is the number of pixels correctly detected as forged,
Nff is the number of pixels falsely detected as forged, and
Nfo is the number of pixels falsely detected as original.

In (15), p, r, F ∈ [0, 1]. The smaller the value of p, the
smaller the area of the detected region than the real tampered
region. The smaller the value of r , the larger the area of the
detected region than the real tampered region. The closer p,
r , and F are to 1, the higher accuracy the CMFD method in
detecting tampered region has.

The parameters used in the proposed method are listed
in Table 3.

TABLE 3. Parameters setting in the proposed method.

A. PLAIN IMAGE CMFD TESTS
In the tests of plain copy-move forgery images, the rep-
resentative images shown in Fig. 11 are selected from
the GRIP [26] and FAU [45] datasets to demonstrate
the effectiveness of the proposed method. The forgery of
TP_C01_023 shown in Fig. 11(a) occurs in smooth region.
The forgeries of TP_C01_005 and TP_C01_030 shown
in Fig. 11(b) and Fig. 11(c) occur in high-brightness
smooth regions. The forgeries of TP_C01_024 and
TP_C01_049 shown in Fig. 11(d) and Fig. 11(e) occur
in forgery images involving too many similar but genuine

regions. The forgery of Bricks shown in Fig. 11(f) occurs in
multiple regions.

The detection results of [26], [39], [40], and the pro-
posed method are shown in Fig. 11. In Fig. 11, the images
in the first to seventh rows are: original images, forgery
images, ground-truth tampered regions, detection results
of the PCT-cart method [26], iterative method [39], SLIC
method [40], and detection results of the proposed method
based on SURF and PCET.

For the forgery which occurs in smooth region of the sky,
as shown in Fig. 11(a), the located effects of [26], [39],
and the proposed method are better than those of [40]. The
method [40] has a bad edge processing, resulting in the
smaller detected region. Since the iterative strategy makes
the edge of the detected region slightly smooth, the detection
results of the proposed method are a little worse than those
of [26]. For the forgery which occurs in high-brightness
smooth regions, as shown in Fig. 11(b) and Fig. 11(c),
the methods [26] and [40] cannot locate the tampered regions
of the forgery image. The reason for this is that the tam-
pered regions are small and high-brightness, leading to that
only a few keypoints are detected in the tampered regions.
In addition, the detection results of [39] regard the original
pixels as forged due to the existence of false matched points.
For the forgery which occurs in forgery images involving too
many similar but genuine regions, as shown in Fig. 11(d) and
Fig. 11(e), the detection results of [26] and [39] regard the
original pixels as forged and the location of [40] is smaller
than the real tampered regions. Since the filtering strategy
combines the label matrix to eliminate false matched points,
the proposed method avoids the problems and locates the
tampered regions more accurately. For multiple copy-move
forgeries, multiple tampered regions have different affine
transformations, as shown in Fig. 11(f). The proposedmethod
can locate the tampered regions accurately, which is similar
to the detection results of [26] and [39], and better than
those of [40].

In addition, the precision p, recall r , and F score of the
detection results in Fig. 11 are calculated respectively and
listed in Table 4. Table 4 shows that the proposed method
is better than [26], [39], and [40] in locating the tampered
regions. The F score of the proposed method is significantly
higher than that of [26], [39], and [40]. It indicates that the
proposed method is superior to [26], [39], and [40] in the
location of the plain copy-move forgery images, especially
when the forgery occurs in high-brightness smooth regions
or forgery images involving similar but genuine regions.

B. GEOMETRIC TRANSFORMATION TESTS
The above tests are performed only on plain copy-move
forgery images. However, image forgery usually performs
geometric transformations before plain copy-move forgery,
such as rotation and scaling. Therefore, the rotation and
scaling tests are necessary to evaluate the performance of the
proposed method.
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FIGURE 11. Detection results of plain image copy-move forgery on six images. First row: original images; Second row: forgery
images; Third row: ground-truth tampered regions; Fourth row: detection results of the PCT-cart method [26]; Fifth row: detection
results of the iterative method [39]; Sixth row: detection results of the SLIC method [40]; Seventh row: detection results of the
proposed method based on SURF and PCET. (a) TP_C01_023, (b) TP_C01_005, (c) TP_C01_030, (d) TP_C01_024, (e) TP_C01_049, and
(f) Bricks.

TABLE 4. The precision p, recall r, and F score of the detected images shown in Figure 11.

In the rotation tests, the copied region is rotated by an
angle before pasting it into another region in the corre-
sponding image. The rotation tests include slight rotation

tests and large rotation tests. The F scores of detec-
tion results of [26], [39], [40], and the proposed method
in slight rotation tests and large rotation tests are listed
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TABLE 5. The F scores of the detection results on five images in slight rotation tests.

TABLE 6. The F scores of the detection results on five images in large rotation tests.

TABLE 7. The F scores of the detection results on five images in scale down tests.

TABLE 8. The F scores of the detection results on five images in scale up tests.

in Table 5 and Table 6, respectively. In Table 5, the tampered
regions of the images are slightly rotated by 0◦, 2◦, 4◦, 6◦,
and 8◦, respectively. In Table 6, the tampered regions of the
images are large-scale rotated by 10◦, 30◦, 50◦, 70◦, and 90◦,
respectively.

In the scaling tests, the copied region is scaled by a fac-
tor before pasting it into another area in the same image.
The scaling tests include scale down tests and scale up tests.
The F scores of detection results of [26], [39], [40], and the
proposed method in scale down tests and scale up tests are
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FIGURE 12. The average values of p, r , and F of the proposed method and other CMFD methods
under two geometric transformations: (a) rotation and (b) scaling.

listed in Table 7 and Table 8, respectively. In Table 7, the
tampered regions of the images are scaled down by 0.91, 0.93,
0.95, 0.97, and 0.99, respectively. In Table 8, the tampered
regions of the images are scaled up by 1.01, 1.03, 1.05, 1.07,
and 1.09, respectively.

Table 5, Table 6, Table 7, and Table 8 show that the
proposed method is similar or better than other meth-
ods [26], [39], and [40]. To evaluate the performance of the
proposedmethod comprehensively, the average values of p, r ,
and F of the detection results using [26], [39], [40], and the
proposed method, respectively, are calculated and shown in
Fig. 12. The data in Fig. 12(a) are obtained by averaging the
detection results on total ten images in Table 5 and Table 6.
The data in Fig. 12(b) are obtained by averaging the detection
results on total ten images in Table 7 and Table 8. In the
rotation tests and the scaling tests, the proposed method is
superior to [39] and [40], and similar to [26], shown in Fig. 12.
The F score of the proposed method is slightly lower than
that of [26] due to the smooth edge. In addition, the reason
why the F score of [40] is much lower is that the method
cannot locate some tampered regions because the tampered
regions are divided into many image blocks by superpixel
segmentation.

C. ROBUSTNESS TESTS
After copy-move forgery, some different post-processing
manipulations are usually used to cover tampered traces, such
as blurring, JPEG compression, and noise addition. To cover
tampered traces, these manipulations could weaken or cover
the edges caused by image forgery, which means the CMFD
method requires the ability to resist these manipulations.

The F scores of detection results in robustness tests includ-
ing blurring tests, JPEG compression tests, and noise addition
tests are listed in Table 9, Table 10, and Table 11, respec-
tively. In the blurring tests, to obtain blurred images shown
in Table 9, the images are filtered by circular averaging filters.
The filter is the square matrix of size 2rc + 1, where rc
is a radius of circular filter ranging from 0.4 to 2.5. In the
JPEG compression tests, the images are JPEG compressed
with different QFs to obtain JPEG format images, as shown

in Table 10. The QF ranges from 100 to 50 with a step size
of 10. The QF denotes the compression degree. The higher
the QF, the better the image quality. In the noise addition
tests, Guassian noise with zero mean and different variances
are added to the images, as shown in Table 11. In addition,
several images in the robustness tests are selected from the
SBU-CM16 [47] directly, that’s why the filter sizes in the
blurring tests have different intervals.

The tampered regions of these blurred images, JPEG
compressed images, and noise added images are detected
by [26], [39], [40], and the proposed method, respectively.
Table 9, Table 10, and Table 11 show that the proposed
method is better than other methods [26], [39], and [40].
To evaluate the performance of the proposed method com-
prehensively, the average values of p, r , and F of the detec-
tion results using [26], [39], [40], and the proposed method,
respectively, are calculated and shown in Fig. 13. The data
in Fig. 13(a) are obtained by averaging the detection results
on total six images in Table 9. The data in Fig. 13(b) are
obtained by averaging the detection results on total six images
in Table 10. The data in Fig. 13(c) are obtained by averaging
the detection results on total five images in Table 10. The
detection results display that the proposed method can detect
the tampered regions of the forgery images even if they are
subjected to varying degrees of blurring, JPEG compression,
and noise addition. As shown in Fig. 13, the proposed method
is superior to [26], [39], and [40] in terms of resisting blurring,
JPEG compression, and noise addition. In addition, in the
detection results of noise addition tests, it can be seen that
the noise interference is enormous when the forgery occurs
in forgery images involving similar but genuine regions.

In summary, the proposed CMFD method can detect tam-
pered regions in plain and multiple forgeries in images, and
can resist different distortions by various attacks, includ-
ing rotation, scaling, blurring, JPEG compression, and noise
addition. Compared with other CMFD methods [26], [39],
and [40], the proposed method is more accurate in terms
of detecting forgery, especially when the forgery occurs in
high-brightness smooth regions or forgery images involving
similar but genuine regions. In terms of resisting rotation,
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TABLE 9. The F scores of the detection results on six images in blurring tests.

TABLE 10. The F scores of the detection results on six images in JPEG compression tests.

TABLE 11. The F scores of the detection results on five images in noise addition tests.

FIGURE 13. The average values of p, r , and F of the proposed method and other CMFD methods under three post-processing manipulations:
(a) blurring, (b) JPEG compression, and (c) noise addition.

scaling, blurring, JPEG compression, and noise addition,
the proposed CMFDmethod is more effective than [26], [39],
and [40]. However, the cost of these advantages is the running

time related to the size of the tampered region, which means
the running time will be long when the tampered region
becomes large.
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VI. CONCLUSION
Aiming at the difficulty of detecting forgery which occurs
in high-brightness smooth regions or forgery images involv-
ing similar but genuine regions correctly, an image CMFD
method based on SURF and PCET is proposed. The pro-
posed method combines the advantages of block-based and
keypoint-based image CMFD methods. Since features are
extracted and matched based on keypoints, the proposed
method has low computational complexity and accurate
detection in tampered regions. In addition, false matched
points are eliminated based on blocks, which makes the
proposed method has low probability of false matching.
The experiments have proved that the proposed method
based on SURF and PCET can locate the tampered regions
of the copy-move forgery image in the high-brightness
smooth regions.Moreover, the falsematching situation can be
avoided, when the forgery occurs in forgery images involving
similar but genuine regions. The proposed method based on
SURF and PCET can resist different distortions by various
attacks, including rotation, scaling, blurring, JPEG compres-
sion, and noise addition.

However, there are several aspects need to be improved
in the future. In mathematical morphology operations and
hierarchical cluster sections, the parameters are difficult to
generalize in various conditions. In feature matching section,
a new time-saving method is desired to be created. In addi-
tion, due to the sampling or interpolation of large-scale reduc-
tion or enlargement in the image regions, it is difficult to
detect whether the images are tampered using the existing
methods.

REFERENCES
[1] K. Asghar, Z. Habib, and M. Hussain, ‘‘Copy-move and splicing image

forgery detection and localization techniques: A review,’’ Austral. J. Foren-
sic Sci., vol. 49, no. 3, pp. 281–307, 2017.

[2] Photoshop. Accessed: Nov. 20, 2019. [Online]. Available:
https://www.photoshop.com/

[3] ACDSee. Accessed: Nov. 20, 2019. [Online]. Available:
https://www.acdsee.com/

[4] L. Zheng, Y. Zhang, and L. Vrizlynn, ‘‘A survey on image tampering and its
detection in real-world photos,’’ J. Vis. Commun. Image Represent., vol. 58,
pp. 380–399, Jan. 2019.

[5] S. Sharma and U. Ghanekar, ‘‘A rotationally invariant texture descriptor
to detect copy move forgery in medical images,’’ in Proc. IEEE Int.
Conf. Comput. Intell. Commun. Technol., Ghaziabad, India, Feb. 2015,
pp. 795–798.

[6] Photo Tampering Throughout History. Accessed: Nov. 20, 2019. [Online].
Available: https://pth.izitru.com/2016_02_01.html

[7] X. Lin, J.-H. Li, S.-L. Wang, A.-W.-C. Liew, F. Cheng, and X.-S. Huang,
‘‘Recent advances in passive digital image security forensics: A brief
review,’’ Engineering, vol. 4, pp. 29–39, Feb. 2018.

[8] C. Wang, H. Zhang, and X. Zhou, ‘‘A self-recovery fragile image water-
marking with variable watermark capacity,’’ Appl. Sci., vol. 8, no. 4,
Apr. 2018, Art. no. 548.

[9] A. Zear, A. K. Singh, and P. Kumar, ‘‘A proposed secure multiple
watermarking technique based on DWT, DCT and SVD for application
in medicine,’’ Multimedia Tools Appl, vol. 77, no. 4, pp. 4863–4882,
Feb. 2018.

[10] A. Shehab, M. Elhoseny, K. Muhammad, A. K. Sangaiah, P. Yang,
H. Huang, and G. Hou, ‘‘Secure and robust fragile watermarking scheme
for medical images,’’ IEEE Access, vol. 6, pp. 10269–10278, Feb. 2018.

[11] X.Wang, J. Xue, Z. Zheng, Z. Liu, and N. Li, ‘‘Image forensic signature for
content authenticity analysis,’’ J. Vis. Commun. Image Represent., vol. 23,
no. 5, pp. 782–797, Jul. 2012.

[12] M.Okawa, ‘‘FromBoVW toVLADwithKAZE features: Offline signature
verification considering cognitive processes of forensic experts,’’ Pattern
Recognit. Lett., vol. 113, pp. 75–82, Oct. 2018.

[13] M.Okawa, ‘‘Synergy of foreground–background images for feature extrac-
tion: Offline signature verification using Fisher vector with fused KAZE
features,’’ Pattern Recognit., vol. 79, pp. 480–489, Jul. 2018.

[14] S. Teerakanok and T. Uehara, ‘‘Copy-move forgery detection: A state-
of-the-art technical review and analysis,’’ IEEE Access, vol. 7,
pp. 40550–40568, 2019.

[15] A. J. Fridrich, D. Soukal, and J. Lukáš, ‘‘Detection of copy-move forgery
in digital images,’’ in Proc. Digit. Forensic Res. Workshop, Cleveland, OH,
USA, Aug. 2003, pp. 55–61.

[16] Y. Huang, W. Lu, W. Sun, and D. Long, ‘‘Improved DCT-based detection
of copy-move forgery in images,’’ Forensic Sci. Int., vol. 206, nos. 1–3,
pp. 178–184, Mar. 2011.

[17] J. Zhao and J. Guo, ‘‘Passive forensics for copy-move image forgery using
a method based on DCT and SVD,’’ Forensic Sci. Int., vol. 233, nos. 1–3,
pp. 158–166, Dec. 2013.

[18] G. Li, Q. Wu, D. Tu, and S. Sun, ‘‘A sorted neighborhood approach for
detecting duplicated regions in image forgeries based on DWT and SVD,’’
in Proc. IEEE Int. Conf. Multimedia Expo, Beijing, China, Jul. 2007,
pp. 1750–1753.

[19] W. Luo, J. Huang, and G. Qiu, ‘‘Robust detection of region-duplication
forgery in digital image,’’ inProc. Int. Conf. Pattern Recognit., HongKong,
Aug. 2006, pp. 746–749.

[20] G. Liu, J. Wang, S. Lian, and Z. Wang, ‘‘A passive image authentication
scheme for detecting region-duplication forgery with rotation,’’ J. Netw.
Comput. Appl., vol. 34, no. 5, pp. 1557–1565, Sep. 2011.

[21] J. Ouyang, Y. Liu, and M. Liao, ‘‘Robust copy-move forgery detection
method using pyramid model and Zernike moments,’’ Multimedia Tools
Appl., vol. 78, no. 8, pp. 10207–10225, Apr. 2019.

[22] B. Soni, P. K. Das, and D. M. Thounaojam, ‘‘Dual system for copy-move
forgery detection using block-based LBP-HF and FWHT features,’’ Eng.
Lett., vol. 26, no. 1, pp. 171–180, Feb. 2018.

[23] J. Deng, J. Yang, S.Weng, G. Gu, and Z. Li, ‘‘Copy-move forgery detection
robust to various transformation and degradation attacks,’’ KSII Trans.
Internet Inf. Syst., vol. 12, no. 9, pp. 4467–4486, Sep. 2018.

[24] P.-T. Yap, X. Jiang, and A. C. Kot, ‘‘Two-dimensional polar harmonic
transforms for invariant image representation,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 32, no. 7, pp. 1259–1270, Jul. 2010.

[25] K. M. Hosny, H. M. Hamza, and N. A. Lashin, ‘‘Copy-move forgery
detection of duplicated objects using accurate PCET moments and mor-
phological operators,’’ Imag. Sci. J., vol. 66, no. 6, pp. 330–345, Aug. 2018.

[26] D. Cozzolino, G. Poggi, and L. Verdoliva, ‘‘Efficient dense-field
copy-move forgery detection,’’ IEEE Trans. Inf. Forensics Security, vol. 10,
no. 11, pp. 2284–2297, Nov. 2015.

[27] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, and G. Serra, ‘‘A SIFT-
based forensic method for copy-move attack detection and transfor-
mation recovery,’’ IEEE Trans. Inf. Forensics Security, vol. 6, no. 3,
pp. 1099–1110, Sep. 2011.

[28] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, L. Del Tongo, and
G. Serra, ‘‘Copy-move forgery detection and localization by means of
robust clustering with J-Linkage,’’ Signal Process., Image Commun.,
vol. 28, no. 6, pp. 659–669, Jul. 2013.

[29] P.Mishra, N.Mishra, S. Sharma, and R. Patel, ‘‘Region duplication forgery
detection technique based on SURF and HAC,’’ Sci. World J., vol. 2013,
Sep. 2013, Art. no. 267691.

[30] L. Chen,W. Lu, J. Ni,W. Sun, and J. Huang, ‘‘Region duplication detection
based on Harris corner points and step sector statistics,’’ J. Vis. Commun.
Image Represent., vol. 24, no. 3, pp. 244–254, Apr. 2013.

[31] Y. Liu, H.-X. Wang, H.-Z. Wu, and Y. Chen, ‘‘An efficient copy-move
detection algorithm based on superpixel segmentation and Harris key-
points,’’ in Proc. 3rd Int. Conf. Cloud Comput. Secur., in Lecture Notes
in Computer Science, Nanjing, China, vol. 10602, Jun. 2017, pp. 61–73.

[32] G. Ulutas and G. Muzaffer, ‘‘A new copy move forgery detection method
resistant to object removal with uniform background forgery,’’Math. Prob-
lems Eng., vol. 2016, Oct. 2016, Art. no. 3215162.

[33] Y. Zhu, X. Shen, and H. Chen, ‘‘Copy-move forgery detection based on
scaled ORB,’’ Multimedia Tools Appl., vol. 75, no. 6, pp. 3221–3233,
Mar. 2016.

[34] L. Yu, Q. Han, and X. Niu, ‘‘Feature point-based copy-move forgery detec-
tion: Covering the non-textured areas,’’ Multimedia Tools Appl., vol. 75,
no. 2, pp. 1159–1176, Jan. 2016.

170046 VOLUME 7, 2019



C. Wang et al.: Image CMFD Method Based on SURF and PCET

[35] M. M. Isaac and M. Wilscy, ‘‘Copy-move forgery detection based on
Harris corner points and BRISK,’’ in Proc. 3rd Int. Symp. Women Comput.
Inform., Kochi, India, Aug. 2015, pp. 394–399.

[36] X. Pan and S. Lyu, ‘‘Region duplication detection using image fea-
ture matching,’’ IEEE Trans. Inf. Forensics Security, vol. 5, no. 4,
pp. 857–867, Dec. 2010.

[37] F. Yang, J. Li, W. Lu, and J. Weng, ‘‘Copy-move forgery detection based
on hybrid features,’’ Eng. Appl. Artif. Intell., vol. 59, pp. 73–83, Mar. 2017.

[38] G. Jin and X. Wan, ‘‘An improved method for SIFT-based copy–move
forgery detection using non-maximum value suppression and optimized
J-Linkage,’’ Signal Process., Image Commun., vol. 57, pp. 113–125,
Sep. 2017.

[39] M. Zandi, A. Mahmoudi-Aznaveh, and A. Talebpour, ‘‘Iterative copy-
move forgery detection based on a new interest point detector,’’ IEEE
Trans. Inf. Forensics Secur., vol. 11, no. 11, pp. 2499–2512, Nov. 2016.

[40] C. Pun, X. Yuan, and X. Bi, ‘‘Image forgery detection using adaptive
oversegmentation and feature point matching,’’ IEEE Trans. Inf. Forensics
Security, vol. 10, no. 8, pp. 1705–1716, Aug. 2015.

[41] Y. Rao and J. Ni, ‘‘A deep learning approach to detection of splicing
and copy-move forgeries in images,’’ in Proc. IEEE Int. Workshop Inf.
Forensics Secur., Abu Dhabi, United Arab Emirates, Dec. 2016, pp. 1–6.

[42] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, ‘‘Speeded-up robust
features (SURF),’’ Comput. Vis. Image Understand., vol. 110, no. 3,
pp. 346–359, Jun. 2008.

[43] Y. Hu, Y. Li, R. Song, P. Rao, and Y. Wang, ‘‘Minimum barrier superpixel
segmentation,’’ Image Vis. Comput., vol. 70, pp. 1–10, Feb. 2018.

[44] M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, ‘‘Entropy rate
superpixel segmentation,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., Providence, RI, USA, Jun. 2011, pp. 2097–2104.

[45] V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou,
‘‘An evaluation of popular copy-move forgery detection approaches,’’
IEEE Trans. Inf. Forensics Security, vol. 7, no. 6, pp. 1841–1854,
Dec. 2012.

[46] C. Wang, Z. Zhang, and X. Zhou, ‘‘An image copy-move forgery detection
scheme based on A-KAZE and SURF features,’’ Symmetry, vol. 10, no. 12,
Dec. 2018, Art. no. 706.

[47] M. Zandi, A. Mahmoudi-Aznaveh, and A. Mansouri, ‘‘Adaptive matching
for copy-move forgery detection,’’ in Proc. IEEE Int. Workshop Inf. Foren-
sics Secur., Atlanta, GA, USA, Dec. 2014, pp. 119–124.

CHENGYOU WANG (M’16) received the B.E.
degree in electronic information science and tech-
nology fromYantai University, China, in 2004, and
the M.E. and Ph.D. degrees in signal and infor-
mation processing from Tianjin University, China,
in 2007 and 2010, respectively. He is currently
an Associate Professor and a Supervisor of mas-
ter’s students with Shandong University, Weihai,
China. His current research interests include digi-
tal image/video processing and analysis, computer

vision, machine learning, and wireless communication technology.

ZHI ZHANG received the B.E. degree in electronic
information engineering from the Shandong Uni-
versity of Science and Technology, China, in 2016,
and the M.E. degree in information and commu-
nication engineering from Shandong University,
China, in 2019. His current research interests
include image forgery detection and computer
vision.

QIANWEN LI received the B.E. degree in elec-
tronic information engineering from the Shandong
University of Science and Technology, China,
in 2019. She is currently pursuing the M.E. degree
in information and communication engineering
with Shandong University, China. Her current
research interests include image forgery detection,
image watermarking, and computer vision.

XIAO ZHOU (M’19) received the B.E. degree in
automation from the Nanjing University of Posts
and Telecommunications, China, in 2003, the
M.E. degree in information and communication
engineering from Inha University, South Korea,
in 2005, and the Ph.D. degree in information
and communication engineering from Tsinghua
University, China, in 2013. She is currently an
Associate Professor and a Supervisor of master’s
students with ShandongUniversity,Weihai, China.

Her current research interests include wireless communication technology,
digital image processing, and computer vision.

VOLUME 7, 2019 170047


