
Received September 16, 2019, accepted October 31, 2019, date of publication November 22, 2019,
date of current version December 10, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2955160

A Secure Protocol for Remote-Code Integrity
Attestation of Embedded Systems:
The CSP Approach
ABDO ALI A. AL-WOSABI 1,2 AND ZARINA SHUKUR1
1Center for Software Technology and Management (Softam), Faculty of Information Science and Technology (FTSM), Universiti Kebangsaan Malaysia (UKM),
Bangi 43600, Malaysia
2Blockchain Centre, BIT Group Sdn Bhd, Cyberjaya 63000, Malaysia

Corresponding author: Abdo Ali A. Al-Wosabi (abdoali.abdullah@bit.com.my)

This work was supported in part by under Grant PRGS/1/2015/ICT01/UKM/01/1, and in part by Universiti Kebangsaan Malaysia research
under Grant AP-2017-003/2.

ABSTRACT No doubt, a person of modern society relying on Embedded Systems (ESs) has increased
rapidly and the era of digital machines is gaining popularity among users and also systems providers. At the
same time, such instruments face substantial security challenges because they usually operate in a physically
unprotected environment, and thus attract the attackers to gain unauthorized access for utilizing the system
functions. Accordingly, system integrity is important and hence there is a need to propose a technique/tool
to verify that the original/pure systems codes have been used in those devices. In this research, our main
objective is to design a system architecture with a secure communication for code integrity attestation of an
ES. Indeed, the study presents the proposed system architecture for ESs integrity attestation which includes
two main phases: fetching an ES code at a server site and examining the ES at a remote site (using a designed
user application). Essentially, the hash function (SHA-2) with a random key to calculate a unique digest value
for a targeted system have been utilized. Also, the study used timestamps and nonce values, two secure keys,
and public key algorithm to design a secure protocol in-order to prevent potential attacks during data and the
associated values transfer between the server and the remote user application. As many researchers state that
the formal methods are very precise and accurate for presenting system specifications; this study modeled
and analyzed the proposed attestation protocol using the Communicating Sequential Processes (CSP) formal
method approach. Besides, the Compiler for the Analysis of Security Protocols (Casper) has been used to
translate the protocol description into the corresponding process algebra CSP model. Then, the researcher
used the Failures Divergences Refinement (FDR) to evaluate the proposed protocol. Those formal method
tools are considered as a reliable verification measurement in-order to figure-out potential flaws and correct
them. Overall, the final output of checking all the defined secrecy and authentication assertions using FDR
4.2.0, and thus all the secrecy and authentication specifications defined in the developed Casper script are
passed.

INDEX TERMS Embedded systems, code integrity, code integrity attestation, software tampering, tamper-
ing detection, CSP formal method approach, FDR, Casper.

I. INTRODUCTION
Embedded Systems (ESs) are now available anywhere and
anytime and they are considered as established part of daily
routines. Their usage in sensing, storing, processing, and
transferring personal and private data in devices such as ATM

The associate editor coordinating the review of this manuscript and

approving it for publication was Remigiusz Wisniewski .

cards, modern car systems, and mobile phones has become
widespread and their utility irreplaceable. However, privacy
and security concerns are influencing the ESs utilization;
such as the adoption of smart wearable devices and Internet
of Things (IoT) [1], [2].

Thus, developers of those systems face significant chal-
lenges in relation to the issue of code integrity and infor-
mation security. Hence, software tampering emerges as one

170238 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-3655-8140
https://orcid.org/0000-0001-6829-2263

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

of those challenges for which software integrity verification
has been established as one of the main approaches used to
defeat it.

Software tampering is not limited to only certain countries
but there are several cases occurred in Asia and in Europe
too. One real-world example is the malpractice that was
detected in a retail fuel outlet in Malaysia. A petrol station
in Silibin, Ipoh was sealed after law enforcers found that
the administrator had manipulated all of its 26 fuel pumps
to make more profit illegally. The metrology expert found
that the petrol gauges at the pumps had been adjusted with
dubious readings [3], [4]. Similar cases have been reported in
India [5]. Another real-world example comes from Germany,
where the authorities found a number of illegal manipulation
cases had been conducted against the recorded data on mod-
ern cash registers [6].

Undoubtedly, authorized persons and organizations are
aware of such illegal manipulations, so they need an appli-
cable technique and procedure to combat such acts. Hence,
tampering detection is gaining more attention and being
given higher priority by ES designers and developers [7], [8].
Checking code integrity achieves tamper-proofing by identi-
fying unauthorized alterations and recognizing whether any
tampered code is being executed or any tampered data are
being used. Such techniques/tools do not prevent theft but
instead discourage software tampering. Thus, unless appro-
priate techniques/tools are used to detect the code integrity of
targeted devices, not only customers will be lost, there may
also be undesirable impacts.

Despite earlier studies, the integrity verification of remote
ESs remains a vibrant research topic [9]. Since most (if not
all) of ESs usually operate outdoors in physically unpro-
tected environments, users need to conduct integrity attes-
tation remotely. Hence, a trustworthy mechanism of system
attestation is one of the main principles for remote attestation,
and the existence of a secure protocol based on cryptogra-
phy to secure communications from attackers is mandatory
[10]. Emphasizes that it is especially challenging to satisfy
the trustworthy principle where data are transmitted over a
public network. Thus, the ordinary approach to handling this
challenge is to utilize cryptographic primitives.

On the other hand, the early study of the system under
development stimulates design decisions for further enhance-
ment. Thus, obtaining early feedback on simulationmodels of
system processes helps in gaining a better understanding of
the behaviour of the developed system under more realistic
settings. As a result, the ideas that system designers can
obtain through prototypes may lead to refined protocols and
algorithms, and thus contribute to the whole system design
process [11]. In fact, many ‘‘researchers have found the use
and importance of prototypes to be substantial’’ [10, p. 492].

Although it is recognized that the security of cryptographic
primitives is guaranteed by the use of state-of-the-art cryp-
tographic algorithms (such as the Rivest-Shamir-Adleman
(RSA) public key cryptosystem and Secure Hash Algo-
rithm 2 (SHA-2), the security of the remaining aspects

must be carefully analysed [13]. Thus, to develop high-
integrity systems in which security attributes are important,
the researcher needs to prove the defined secrecy features
formally [14], [15]. Indeed, a formal method approach assists
designers and users to analyse and verify the proposed sys-
tem at any point in the system life cycle [16]. Therefore,
this research proposes an efficient framework and a secure
protocol to verify the integrity of an ES’s code and evaluates
the proposed protocol in a formal way.

In the following sections, we present related studies in
section 2, and introduce our proposed system architecture
and protocol in sections 3 and 4. Section 5 discusses the
correlated security analysis, while section 6 presents the CSP
formal method approach for evaluating the proposed system
architecture and protocol. Section 7 defines the attack model,
and a brief discussion about the results is highlighted in
section 8. Finally, we conclude the paper.

II. RELATED WORK
This research is related to a number of research stud-
ies [4], [17], [18]. For instance, [19] introduces a Secure
Firmware updates Over The Air (SFOTA) protocol for intel-
ligent vehicles in order to secure the transmission of the
firmware code between the portal and the vehicle. The pro-
posed framework facilitates code verification for firmware
updates based on a simple hash chain calculation on memory
contents, a challenge-response mechanism, and the inclusion
of random numbers to prevent pre-image attacks. However,
the key management for using and storing the encryption key
is not considered well as they assume that a single crypto-
graphic key is used for all the car’s control units.

On the other hand, [20] outlines the application of a Parallel
Message Authentication Code (PMAC) algorithm that takes
into account the utilization of a single hardware encryption
module for both encryption and validation, hence it is system-
resource wise and cost-effective. Furthermore, [21] proposes
usage control mechanisms for information that has to be
shared over the network by smart meters connected to online
social websites. In these studies, it is suggested that the infor-
mation sent to the user should be controlled by requesting.
Based on that, the user needs to provide confirmation to the
targeted provider that he/she has the required usage control
mechanism present and activated on his/her system before the
information is transferred.

At this point, it is worth to mention the trusted computing
base with secure storage and public key cryptography pro-
posed in [22]. The researchers outline how multiparty pro-
cessing units (local substations) can compute the sum of their
energy consumption without revealing the user’s information.
They argue that the current smart metering structure could be
redesigned to include a trusted segment in the meter device
instead of relying on a one-sided trust approach at the central
station or local substation. This is a more versatile architec-
ture where meter devices have their own trusted segment that
can provides a certain level of independence.

VOLUME 7, 2019 170239

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

In addition, a study has been conducted by [13] to design
a remote verification system where the proposed system is
not required to exist on the network. Rather, remote veri-
fication needs a secure network protocol. The researchers
add hardware-level components to externally verify system
integrity. They concentrate on recognizing whether executed
code has been altered by utilizing a field programmable
gate array (FPGA) to construct a secure architecture. How-
ever, the researchers do note that this security technique is
not particularly suitable for high-security systems such as
those operated by the military and government. Addition-
ally, [23] introduces Memory Integrity Verification (MIV)
to ensure data and code integrity. In their method, data
and code are encrypted before they are inserted into the
memory and are decrypted after being read.. This pre-
vents an attacker from observing or modifying the protected
data/code.

Thus, there is no doubt that hash functions such as
SHA-1 and SHA-2 have shown their usefulness in design-
ing many existing verification proposals, and they are
used as the measurement agent by the Trusted Computing
Group [9], [10], [24]–[28]. For instance, [29] have uti-
lized cryptographic hash generation and verification to
introduce an integrity checking and recovery system solu-
tion to increase computer system security by the integrity
checking of files that are vital for system operation. Also,
they suggest storing all of the essential data in physi-
cally write-protected storage to reduce the threat of illegal
alteration.

The widespread use of wearable smart devices has boosted
the importance of user’s data security on such devices. There-
fore, utilizing encryption authentication techniques on the
wearable devices has become as attractive research area for
creating practical solutions to protect those users’ devices.
For instance, a number of innovations and proposals focused
on the use of encryption techniques along with the use of
biometrics identification in-order to ensure secure identifi-
cation and authentication of user, on one hand, and on the
other hand, to ensure security of data transmission to and from
those devices [30], [31].

Indeed, there exist a number of real-world projects on data
and code security in ESs, including for instance, the EVITA
project and INSIKA project that have been introduced
and managed in European countries. The EVITA project
[32], [33] uses a Hardware Security Module (HSM) that
facilitates the means to secure platform safety, to guarantee
integrity and secrecy of significant items, and to improve
cryptographic processes, by the securing crucial resources of
the system.

On the other hand, the aim of INSIKA project [6], [34] is
to introduce an applicable innovation for prohibiting informa-
tion deception in Electronic Cash Registers (ECRs). Themain
idea is based on using digital signatures to detect any illegal
modifications to the protected information. The basic idea of
this project is based on asymmetric cryptography (public key
algorithm) and the SHA-1 algorithm.

III. DESIGN OVERVIEW
The proposed system architecture for ES integrity attestation
consists of two main phases: (1) fetching an ES’s code at the
server site and (2) examining the ES at the remote site.

Fig. 1 illustrates both phases. Moreover, section 4 explains
the proposed protocol in order to facilitate an understanding
of the system architecture in terms of sequential processes.

A. BASIC ASSUMPTIONS
One of the main assumptions is that all targeted ESs have
appropriate ports with a write blocker, so that the designed
application can be connected to them and then scan the
embedded codes residing in the ESs’ ROM. For example,
a USB port allows digital devices to be connected to a PC
for scanning the embedded code to be saved into the server’s
database, while a Wi-Fi/Bluetooth card (wireless access)
allows the designed application installed in a user’s device
to scan the code of a targeted ES for executing the tampering
detection process. Also, all those devices can be identified
with unique codes/IDs, for example, by using suitable stickers
with a Quick Response (QR) code.

This study also assumes that at least one user, who conducts
integrity attestation at a suitable time, is trusted; even when
a malicious user (probably the owner of the targeted instru-
ment) tries to deceive the main attestation server by sending
fake data.

In addition, this study considers that there is a trusted
Certificate Authority (CA) that issues digital certificates for
all users and that the hacker is unable to obtain any private
key belonging to another user. Finally, it assumes that the
main server can be fully trusted due to its adoption of both
hardware and software protection (i.e., a secure firewall)
against external hacking.

B. FETCHING THE SYSTEM CODE
Fetching code at the server site involves storing an encoded
form of the fetched code into a dedicated database and
facilitating attestation processes whenever requested. This
phase encompasses scanning the ES’s code, encrypting it,
and storing the ciphered code in the database (refer to Fig. 1:
part A). Hence, a necessary application needs to be designed
to perform those functions. Note that a symmetric encryp-
tion algorithm (e.g., Advanced Encryption Standard) with a
secure key could be applied to encrypt the extracted code
before storing it.

Code integrity is verified by computing a HMAC of the
ES at a remote site and comparing the generated hash value
to the hash value of the previously saved code in the database.
A secure cryptographic hash algorithm (e.g., the crypto-
graphic hash SHA-2 with 256 bits) can be implemented to
calculate the HMAC. In fact, the integrity information of an
ES is extracted by computing the hash value of the software
code stored in the system’s ROM; and an identical secure
key can be used as a seed value to calculate the hash values
for the remote system and the previously saved code at the

170240 VOLUME 7, 2019

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

FIGURE 1. Proposed system architecture for ES integrity verification.

VOLUME 7, 2019 170241

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

server site. Note that only the hash function is used, and there
is no need to calculate a digital signature because a protected
protocol is used to validate that the transferred data comes
from trusted parties (i.e., server and user).

C. REQUESTING ES CODE-INTEGRITY ATTESTATION
A request for code integrity attestation at the remote site is
facilitated by downloading the dedicated application on the
user’s device. To request system integrity attestation (1) the
user must register online using the registration system and
provide his/her user ID and (2) the system must be able to
retrieve the public key of that user from a trusted server.
Hence, user data can be stored in a dedicated databasemaking
it available for retrieval during the integrity attestation of the
remote system. After the user completes the registration pro-
cess successfully, the downloaded application can facilitate
capturing the ES ID, for example by scanning the QR code of
the targeted system.

When the server receives the user pre-request for an
integrity check, it generates a timestamp ts1 and a server
nonce value nServ. Those values are encrypted using the
user’s public key, and then the encrypted values are sent to
that user (refer to Fig. 1: part A).

When the user application receives and decrypts those val-
ues with its private key, it then verifies the received timestamp
value. When the timestamp has been verified, the application
prepares a requestmessage containing (refer to Fig. 1: part C):

1) Two secure keys, defined as key1 and key2, both
encrypted with the server’s public key;

2) The received server nonce value nServ and a current
timestamp ts2, both encrypted with the secure key
key2;

3) A hash value of the targeted system code (calculated by
key1) is Xored with the received server nonce; and

4) A generated user nonce value nUsr encrypted with the
server’s public key.

Essentially, the client application generates two secure
keys: key1 and key2. Key1 is used to calculate the hash
value of the targeted ES’s code at the remote site and also at
the server site, and key2 is used to encrypt two values: the
received server nonce value and a current timestamp. Those
secure keys (i.e., key1 and key2) must never be sent as
plaintext, so a public key encryption algorithm needs to be
used for key encryption, and also the generated nonce value
at the remote site needs to be encrypted using the server’s
public key. Thus, the public key algorithm is used to ensure
secure communication between the user application and the
server. Encrypting the secure keys and the user nonce value
with the public key of the server ensures that those ciphered
values can be decrypted only by a specific entity who does
own the corresponding private key (i.e., the server).

Moreover, the hash value of the ES’s code is calculated
to examine the code integrity of the targeted system. This
value is generated based on the code stored on the targeted
system’s ROM. The secure key key1 is used as the seed

value for calculating the HMAC value (also known as the
digest value). Then, the user application Xores the generated
hash value with the received server nonce which is considered
as a one-time pad (OTP). Finally, all those ciphered values are
forwarded to the server system as a system attestation request
(refer to Fig. 1: part B).

D. VERIFYING REMOTE CODE INTEGRITY
When the integrity attestation request is received from the
user application, the code integrity of the targeted ES needs to
be verified. Secure keys (key1 andkey2) and the user nonce
value nUsr are extracted using the server’s private key. Hence,
the server nonce and the timestamp (i.e., nServ and ts2
in Fig. 1) are decrypted using key2 (refer to Fig. 1: part A).

First, the server validates the received request according
to the extracted values of the received server nonce and
timestamp (nServ and ts2). The request is valid only if (1)
the decrypted nonce value is equal to the nonce value that
was previously generated at the server and (2) the extracted
timestamp is within an acceptable time range.

If this validation fails, the server informs the user and ends
the attestation process. Otherwise, the server retrieves the
encrypted code of the targeted ES from the database, decrypts
it with the server’s secure key, generates the HMAC value from
the stored code with the extracted key1, and also decrypts
the received HMAC value using the server nonce value. It then
compares the two hash values (i.e., the received hash value
from the remote user and the generated hash value at the
server site) in order to verify the code integrity of the remote
ES (refer to Fig. 1: part A).

Finally, the server notifies the user of the result (either
verified code or tampered code) and the received user nonce
value, both encrypted with the user’s public key; and it also
logs the attestation status in the database to be used for fur-
ther requests. When the user application receives this result,
it verifies it after decrypting it using the user’s private key.
If the decrypted nonce is a valid value, the user can accept
the received system integrity attestation. Otherwise, the user
application neglects the attestation status and may generate a
fresh integrity attestation request.

Without a doubt, public key encryption, and the use
of nonces and timestamp values to ensure confidentiality,
can prevent a man-in-the-middle attack. The nonce values
(i.e., random numbers) and the timestamps (ts1 and ts2)
included in the request and response validation process avoid
the replay of previous valid remote-code integrity checks, and
also prevent the risk that remote attestation requests could be
replayed to perform a DoS attack [13], [22], [35]. Note that
the combination of the two values cannot be repeated during
the same session.

IV. REMOTE CODE INTEGRITY ATTESTATION PROTOCOL
This section outlines the proposed protocol for conducting
the code integrity attestation of a remote ES. It ensures
that messages are authentic, recent, and confidential. Addi-
tionally, this protocol demonstrates how basic cryptographic

170242 VOLUME 7, 2019

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

primitives can be used to secure the exchanged/transported
data and provide validity.

The basic elements of the proposed protocol are: a secure
one-way function (e.g., the cryptographic hash SHA-2) used
to calculate a HMAC value, a symmetric encryption algo-
rithm (e.g., AES) used to encrypt the data stored in the
database, an asymmetric algorithms (e.g., RSA public key
cryptosystem) used to facilitate the secure transmission of
the secure keys, and timestamps and nonce values used as a
challenge-response mechanism to implement mutual authen-
tication between the user application and the integrity attesta-
tion system. In fact, AES has been suggested due to its speed,
key size and its immunity against code breakage [36] while
the RSA public key cryptosystem is currently used as well as
a potentially more secure system [10], [37].

A. REGISTRATION PROCESS
Fig. 2 shows the steps to register a user on the server by using
a dedicated application installed on the user’s device. User
registration involves sending the necessary information (i.e.,
the user registration data) and the user’s public key which can
be retrieved from the CA. The server then saves the details of
the user registration in a database. Later, the registration data
can be used by the server to identify the user and start verify-
ing a HMAC of the targeted ES via the installed application
on the user’s device.

In the registration process, two user nonce values are gen-
erated, and then the user’s information and the two generated
nonce values (i.e., usrData, nUsr1, and nUsr2 shown
in Fig. 2) are encrypted using the public key of the registration
server pkServ, producing the registration request. When the
registration server receives this request, the ciphered values
are decrypted using the server’s private key skServ. The
registration system then verifies the database to check if the
user already exists or not. If that user already has a record
in the database, the server notifies the user and ends the
process (refer to Fig. 2: steps 1, 2, 3, 4 and 5). Otherwise,
the system generates a nonce value (i.e., nServ1), encrypts
it along with the user’s ID data and one of the received user
nonce values nUsr1 using the secure key seckServ that
was previously granted for private communication between
the registration system and the trusted CA, and then sends
those ciphered values to the CA server (refer to Fig. 2:
steps 6 and 7).

Those ciphered values are decrypted by the CA using the
same secure key in order to check the existence of that user.
If the user data are found, the CA generates a random key
to be used later as a hash key by the registration system
and also by the user application. After that, the CA encrypts
the user’s ID, the public key belonging to that user pkUsr,
the received system nonce value, and the generated hash
key using the secure key seckServ. In addition, the CA
encrypts the registration system’s ID, the received user nonce
value along with the generated hash key using the secure
key seckUsr that is dedicated to private communication
between the targeted user and the trusted CA. The purpose of

sending those values encrypted using the secure user key (i.e.,
seckUsr) is to forward them via the registration system to
the dedicated user to enable that user to trust and authenticate
the system because those values encompass the system’s ID
and the user nonce value nUsr1 encrypted using his/her
secure key which is known only by him/her and the trusted
CA (refer to Fig. 2: steps 8, 9, 10, 11, 12, and 13).

When the registration system receives the ciphered data
from the CA which is dedicated to him/her, it decrypts those
values using the secure key seckServ. Hence, the system
checks the validity of those received values by comparing the
received system nonce value from the CA and the previously
generated nonce value by the system, and also forwards to the
targeted user the encrypted values that were received from the
CA which are dedicated to the user. Then, the system uses
the hash key that it received from the CA to calculate the
digest value of the second user nonce value (i.e., nUsr2), and
generates a new system nonce value. After that, the system
Xores the calculated digest value with the generated nonce
value (i.e., digestNusr2with nServ2), and also encrypts
the system nonce value using the public key of the targeted
user (refer to Fig. 2: steps 14, 15, 17, and 18).

When the user application receives the encrypted val-
ues from the system, the ciphered values from the CA are
decrypted using the secure key seckUsr, and thus the
received user nonce value (i.e., nUsr1) can be verified. If the
received nonce value is valid, the user application is able to
ensure that the current communication is conducted with a
trusted and authenticated system (refer to Fig. 2: step 16).
Then, it decrypts the system nonce value that it received
from the registration system using its private key, and thus
extracts the digest value of its nonce digestNusr2 using
the decrypted system nonce nServ2. After that, it calcu-
lates the digest value of the known user nonce value nUsr2
using the hash key that was previously created by the CA
and forwarded by the system, and hence the user application
can validate the received digest value. Also, the application
calculates the hash value of the received system nonce value,
and generates a fresh nonce value. It thenXores the calculated
hash value with the fresh user nonce (i.e., digestNserv2
with nUsr3), encrypts the newly generated user nonce using
the system’s public key, and sends these ciphered values to
the registration system (refer to Fig. 2: steps 19, 20, 21, 22,
and 23).

Finally, the system decrypts the user nonce using its secure
key in order to extract the digest value of the system nonce,
both received from the user application. Then, it calculates
the hash value of the known nonce value (i.e., nServ2)
using the hash key that it received from the CA, and hence
validates the extracted hash value of the system nonce that it
received from the user. If the digest value is verified, the reg-
istration system records the user ID, the user’s public key,
and the calculated registration expiry date in the dedicated
database (refer to Fig. 2: steps 24 and 25).

The steps to request, deliver, and verify the code integrity
of an ES are explained in the following subsections and

VOLUME 7, 2019 170243

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

FIGURE 2. Registration process.

170244 VOLUME 7, 2019

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

the remote-code integrity attestation protocol is summarized
in Fig. 3.

B. ATTESTATION REQUEST
The attestation application on the user’s device initiates the
protocol and generates the request. The downloaded appli-
cation facilitates capturing the esId and generating a nonce
value. The user request includes the user’s ID, the targeted ES
identifier, and a nonce value (i.e., usr, esId, and nUsr1
in Fig. 3). It then encrypts the usr along with the esId
and the nUsr1 value using the server’s public key (i.e.,
pkServ). The request is received by the system interface and
forwarded to the server (refer to Fig. 3: steps 1, 2, 3, and 4).
Accordingly, the server decrypts the received values using its
private key, and then retrieves the related data of that user
and the targeted ES from the database in order to validate the
request based on the expiry date of the user registration and
the last attestation date of that ES (refer to Fig. 3: steps 5, 6,
7, and 8). The system continues the attestation process if the
user registration is still valid and the previous attestation date
of the targeted ES is beyond the defined date range.

If the request is valid, the server generates a nonce value
nServ and calculates the timestamp ts1. Then, it encrypts
those two values and the received user nonce value nUsr1
using the user’s public key pkUsr, and sends the ciphered
values along with the request confirmation to the targeted
user (refer to Fig. 3: steps 9 and 10). Note that the purpose of
using the timestamp is to avoid the replay of a previous valid
remote system integrity check, and to avoid that request being
replayed to implement a DoS attack against the server. Also,
the nonce values can be used as a challenge-response mech-
anism to implement mutual authentication between the two
parties.

C. DATA DELIVERY FOR INTEGRITY ATTESTATION
When the user application receives the request confirmation,
it uses its private key to extract the received nonce values and
timestamp, and it then validates the decrypted user nonce and
timestamp values. If the received user nonce is a valid value
and the timestamp is within an acceptable range, it scans the
ES’s code (refer to Fig. 3: step 11 and 12). The application can
scan the targeted system code using a suitable port equipped
with a write blocker, as mentioned in subsection 3.1.

Then, the application generates two secure keys (key1 and
key2), and new user nonce and timestamp values (nUsr2
and ts2, respectively). Key1 is used to calculate a HMAC of
the ES’s code and key2 is used to encrypt the received server
nonce value and the calculated timestamp. Also, the appli-
cation uses the server public key to encrypt the secure keys
(i.e.,key1 andkey2) and the generated nonce (i.e.,nUsr2).
In addition, it Xores the calculated HMAC of the ES’s code
with the received server nonce value. A user request message
is required to complete the attestation process of the proposed
protocol, and therefore, all the encrypted values of the secure
keys, the generated user nonce, the received server nonce,
the calculated timestamp, and the encrypted hash value of

the remote system code are forwarded to the server (refer
to Fig. 3: steps 13, 14, 15a, and 15b).

D. ATTESTATION OF CODE INTEGRITY
Whenever the server receives the ciphered values, it extracts
the secure keys (key1 and key2) and the user nonce value
nUsr2 by using its private key skServ, and thus decrypts
the server nonce value nServ along with the timestamp ts2
by using the decrypted key2. It then validates the received
request based on the decrypted server nonce and timestamp
values. The verification request is valid if (1) the received
server nonce and the corresponding nonce value that was
recently generated by the server are identical and (2) the
decrypted timestamp (i.e., ts2) is within the acceptable time
range. If this request is not valid, a notification message is
sent and the current session is halted, which is why step 18 is
shown with dotted lines.

Otherwise, the server decrypts the digest value of the ES’s
code that it received from the user application using the XOR
function and the server nonce nServ, retrieves the encrypted
code of that esId from the database, and decrypts it using its
secure key. It then uses the decrypted key1 to generate the
hash value of the retrieved code, and compares it with the hash
value that it received from the remote user. Hence, the result
should show whether the ES has been altered or tampered
with. It then encrypts the generated result, either a valid
ES code or a tampered code notification, and the received
user nonce nUsr2 using the public key of the targeted user
application (refer to Fig. 3: steps 16, 17, 18, 19, 21, 22,
and 23).

The user expects to receive a attestation status, so the server
prepares the encrypted result of the code attestation and the
encrypted user nonce, and then sends it to the related user.
When the user application receives and decrypts those values
using its private key, it accepts the status of the targeted code
integrity only if the user nonce value nUsr2 is valid. Finally,
the server updates the database with the current attestation
status for that ES (refer to Fig. 3: steps 24, 25, and 26).

E. SECURITY NOTATIONS
This subsection presents the security notations of the pro-
posed system architecture and the security protocol for ES
integrity verification. The term EncpubKey(M) is used to
denote the encryption of message M under the public key
pubKey. Also, DecprivKey(C) denotes the decryption of
cipher text C under the corresponding private key privKey.
Therefore, if a cipher text C = EncpubKey(M), then the

original message M can be extracted from the cipher text C by
decrypting it using the corresponding private key (also known
as the secret key) as follows:

DecprivKey(C) = DecprivKey(EncPubKey(M)) = M (1)

First, the user application holds the user ID usr, gets the
ID of the targeted ES esId, and generates his/her first nonce
value nUsr1 (refer to Fig. 3: steps 1 and 2). These values

VOLUME 7, 2019 170245

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

FIGURE 3. Remote-code integrity attestation protocol.

170246 VOLUME 7, 2019

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

represent the first message to be encrypted at the remote site
and can be translated as follows:

M1 = (usr, esId, nUsr1) (2)

Also, encrypting M1 (refer to (2)) using the server’s public
key pkServ produces the following cipher text:

C1 = EncpkServ(M1) = EncpkServ(usr, esId, nUsr1) (3)

Whenever the server system receives the user request and
the cipher text C1, the server decrypts C1 (refer to (4)) using
his/her private key (as shown in Fig. 3: step 5) to extract M1
as follows:

M1′ = DecskServ(C1)

= DecskServ(EncpkServ(usr, esId, nUsr1))

= (usr, esId, nUsr1) (4)

where skServ and pkServ stand for the server’s private
key and the server’s public key, respectively.

Hence, the server can validate the received user’s ID and
ES’s ID based on the expiry date of the user registration and
the last integrity verification conducted for that ES. Step 9
(in Fig. 3) shows that the server prepares a response message
consisting of the server nonce nServ, the received user
nonce receivedNusr1, and the current timestamp ts1
(refer to (5)). So this message can be represented as:

M2 = (nServ, receivedNusr1, ts1) (5)

Thus, the server encrypts M2 using the user’s public key
(refer to (6)) and generates the following cipher text:

C2=EncpkUsr(M2)=EncpkUsr(nServ, receivedNusr1, ts1)

(6)

When the user application receives C2, it can verify the
server authentication based on the user nonce and the times-
tamp values extracted from the received cipher text as shown
in (7):

M2′ = DecskUsr(C2)

= DecskUsr(EncpkUsr(nServ, receivedNusr1, ts1))

= (nServ, receivedNusr1, ts1) (7)

where skUsr and pkUsr stand for the user’s private key and
the user’s public key, respectively.

If the extracted nonce and timestamp values are valid,
the application scans the ES’s code, and generates two secret
keys (key1 and key2), a fresh nonce nUsr2, and a times-
tamp value ts2. Those values and the received server nonce
receivedNserv are grouped into two messages (M3 and
M4) as follows:

M3 = (key1, key2, nUsr2) (8)

M4 = (receivedNserv, ts2) (9)

Then, the above messages are encrypted using the server’s
public key and the secret key key2 to produce new cipher
texts C3 and C4, respectively, as represented in (10) and (11):

C3 = EncpkServ(M3)

= EncpkServ(key1, key2, nUsr2) (10)

C4 = Enckey2(M4)

= Enckey2(receivedNserv, ts2) (11)

It also calculates the digest value of the scanned code at
the remote site using the secret key key1 (refer to (12)), and
Xores that value with the received server nonce (refer to (13)).

M5 = HMACkey1(ES_Code) = ES_HMAC (12)

C5 = (ES_HMAC⊕ receivedNserv) (13)

where ES_HMAC represents the calculated digest value of the
scanned code at the remote site (refer to Fig. 3: steps 11, 12,
13, and 14). After the server has received the above cipher
texts, it extracts the corresponding messages as follows:

M3′ = DecskServ(C3)

= DecskServ(EncpkServ(key1, key2, nUsr2))

= (key1, key2, nUsr2) (14)

M4′ = Deckey2(C4)

= Deckey2(Enckey2(receivedNserv, ts2))

= (receivedNserv, ts2) (15)

The server then validates the received server nonce value
and the timestamp. If those values are not valid, the server
ends the session. Otherwise, the server decrypts the received
hash value using theXOR function and the server nonce (refer
to (16)).

M5′ = DecnServ(C5) = (C5⊕ nServ)

= ES_HMAC (16)

Also, the server may send the validity status validStat
and the received user nonce receivedNusr2 both
encrypted using the user’s public key (as shown in Fig. 3:
steps 17 and 18):

M6 = (validStat, receivedNusr2) (17)

C6 = EncpkUsr(M6)

= EncpkUsr(validStat, receivedNusr2) (18)

If the user application receivesC6, it can decrypt it using its
secret key (refer to (19)) to extract the validity status based on
the validity of the received user nonce value (refer to Fig. 3:
step 20) as follows:

M6′ = DecskUsr(C6)

= DecskUsr(EncpkUsr(validStat, receivedNusr2))

= (validStat, receivedNusr2) (19)

Meanwhile, the server generates the hash value of the
targeted ES’s code that was previously saved in the database
using the secret key key1. It then compares the generated

VOLUME 7, 2019 170247

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

value with the extracted digest value M5′ that was recently
received from the user application. Accordingly, the server
sends the result of the integrity verification of that ES
integVerStat along with the second received user nonce
to the targeted user (refer to Fig. 3: steps 19, 21, 22, 23,
and 24) as stated in (20) and (21):

M7 = (esId, integVerStat, receivedNusr2) (20)

C7 = EncpkUsr(M7)

= EncpkUsr(esId, integVerStat, receivedNusr2) (21)

Finally, the user application decrypts using his/her own
secret key and accepts the final result based on the validity
of the received user nonce value (refer to Fig. 3: step 25).

M7′ = DecskUsr(C7)

= DecskUsr(EncpkUsr(esId, integVerStat, receivedNusr2))

= (esId, integVerStat, receivedNusr2) (22)

V. SECURITY ANALYSIS
Firstly, note that the proposed architecture and protocol have
several advantages as follows:

1) While there are some restrictions that are related to
limited resources of the ES [26], [38], [39], the user
application can be coded as a verification application
that runs on the user’s laptop or smartphone in order to
exploit the advancements in the processors and memo-
ries of portable electronic devices. This could be conve-
nient for Machine-to-Machine (M2M) communication
as every device that benefits from a network connection
would have a verification application in the future [40].

2) The proposed architecture and protocol can be used
with AES, which has advantages due to its speed, key
size and its immunity against code breaking [36], and
with the RSA public key cryptosystem, which currently
uses a more potentially secure system [10], [37].

3) Instead of using traditional public key cryptography,
Elliptic Curve Cryptography (ECC) could be utilized
to improve performance in order to implement the pro-
posed protocol on smartphones [41].

4) The proposed protocol uses a simple hash function
which has a low overhead, and is based on a challenge-
response mechanismwith nonce and timestamp values,
and a random hash key in order to prevent pre-image
attack [38], [42], [43]. There is no doubt that hash
functions such as SHA-1 and SHA-2 have shown their
usefulness in designing many existing verification pro-
posals, and they are used as the measurement agent by
the Trusted Computing Group [9], [10], [24]–[28].

5) The designed protocol utilizes the authenticate-then-
encrypt (AtE) method with an OTP that Xores the
digest value of the ES with a nonce value (i.e.,
a random pad). This method is considered robust for
the protection of communications over insecure net-
works [44], [45].

6) Two different keys have been used, the first was for cal-
culating the hash value and the second for encrypting
the nonce and timestamp values as suggested by [46].

7) The dedicated user application, which could be
designed and developed according to the proposed
system architecture, could perform remote verifica-
tion of an ES without the presence of an authorized
professional.

8) This verification application could be downloaded
online, so system integrity checking would be easily
available to many users who may have an interest in
combating system misuse.

At this point it would be useful to explain how the proposed
architecture and protocol might be used to detect system
tampering. Firstly, observing that the system tampering is
detected using a secure cryptographic hash algorithm (e.g.,
the digest function SHA-2) with a random hash key. Since
the protocol utilizes a secure encryption algorithm, it is
possible to generate and authenticate the correct message
authentication code (i.e., the digest value) only if one has the
corresponding hash key and the agent’s private key. Hence,
each agent can authenticate the other one by checking the cor-
rectness of the exchanged cipher nonce and timestamp values
when it receives a message/request. Therefore, the designed
protocol affords mutual authentication among the participat-
ing agents.

Secondly, replay and man-in-the-middle attacks can be
prevented because the protocol utilizes the challenge-
response mechanism, which ensures a fresh session is
conducted each time a user makes a request for system
verification. In other words, the nonce value and timestamp
can prevent such attacks as each time when user starts new
session, the server generates a random number (i.e., nonce
value) and a current timestamp both encrypted with the public
key of that user as challenge. Later, the user decrypts those
values using his/her private key and validates the received
timestamp. If that value is valid, the user generates two
session keys and a fresh nonce value, and encrypts all those
values using the server’s public key. Then the user has to
respond (i.e., to the server) by sending those ciphered values
along with the received server nonce and a current timestamp
both encrypted using one of the generated session keys.When
the server extracts the session keys, and the values of server
nonce and timestamp, the server can validate that further
communication is with a user who does the declared public
key on his/her own because the user is the only one who has
the matched private key. Therefore, the validation mechanism
ensures confidential communication and that the messages
are authentic and fresh.

Thirdly, the attacker cannot impersonate the user when
communicating with the main server because the attacker
does not know the user’s private key and all the responses
sent from the server are encrypted using the user’s public
key that was previously retrieved from a trusted server and
saved into the system database. Hence, the proposed protocol
could withstand impersonation attacks. Fourthly, the attacker

170248 VOLUME 7, 2019

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

cannot impersonate the main server when communicating
with the user because the attacker has to reveal the server’s
private key. Without this key, the attacker cannot reveal the
ciphered values exchanged between the server and the user
as a part of the challenge-response mechanism applied in
the protocol. Hence, the proposed protocol could withstand
server-spoofing attacks.

Fifthly, pre-image attacks can be prevented by using the
proposed solution because the calculation of the digest value
of a targeted system depends on a random hash key value.
Thus, each time a user requests system verification, the key
used (i.e., key1) is freshly and randomly generated for use
in calculating the hash value of the targeted system code.
It could be noted that the protocol applies the AtE method
with OTP that Xores the generated hash value of the targeted
ES with a randomly generated nonce value (i.e., a random
pad).

Sixthly, the user and the main system check the accu-
racy of encrypted data received while communicating before
generating a response to the received request or message.
Since each agent must check the correctness of the received
request or message by verifying the ciphered nonce value and
timestamp, any modification of the transmitted data/values
can be easily detected. Therefore, the proposed protocol
could resist modification attacks.

Finally, this study assumes that the main server randomly
determines the next allowed verification date/time and does
not accede to requests conducting a verification process that
are made by the same user multiple times within a certain
period. This could prevent the owner of a targeted system
from executing fake system verifications several times.

VI. ATTACK MODEL
To put the framework in context, the study needs to present
the feasibility of the proposed integrity verification architec-
ture and the designed protocol in a scenario where a system
code is actually attacked. However, it is not easy to craft
actual exploits for real ESs, such as those that are available
on digital measurement devices and petrol station fuel pumps
(assuming that there even exist potential security threats and
real-world example attacks such as those highlighted in many
articles [3]–[6], [17], [47]). Instead, the study exploits open-
source technology and tools (such as Arduino Uno board)
to simulate a digital measurement device, and introduces
synthetic attacks that target the system code residing on a
system’s ROM. While those experimental attacks do not lead
to suitable exploits, they still represent the type of system
tampering that could happen during a real attack.

This study assumes that an attacker may gain access to
the system code via a USB or a wireless port. When access
is obtained, the attacker could modify the system code that
usually resides on the system’s ROM. A typical attack con-
sists of modifying the related system parameters, such as a
calibration factor defined in the system code of a measure-
ment device. The length of time the attacker can utilize the
conducted deception depends on how long it may take a law

enforcer to detect it. A government authority or an authorized
organization that aims to verify the compliance of measuring
instruments with defined requirements typically schedules
periodic system inspections. Thus, the attacker window may
vary from a few weeks to several months.

To create an attack on the designed measurement device,
a system code attack is implemented by modifying cer-
tain parameter values. An attacker could apply this type of
attack to a system code in order to change system behaviour.
Of course, not all parameter value deceptions change system
behaviour (e.g., a parameter value modified in an unused
subroutine, a change to a parameter value that is never read,
etc.), and thus, these would not be identified by some integrity
verification methods. Therefore, for the purpose of this attack
scenario, the calibration factor is modified to increase (or to
decrease) the measurement readings that are shown on the
device’s LCD. The alteration made on the factor values varies
from very small values to high values.

In fact, the solution proposed in this study, which is detailed
in sections 3 and 4), assumes that system tampering can
be detected after the user has downloaded the developed
software. This work focuses on system tampering detection
at the application level after the system code residing on
the system’s ROM or its parameters have been manipulated.
Specifically, it seeks to protect embedded code by designing a
system architecture with a secure protocol to uncover system
code tampering. Since system code integrity is verified using
cryptographic algorithms, the proposed approach exploits the
uniqueness of the values that can be generated by using a hash
function with a random key to uniquely identify the targeted
system. Thus, all the integrity tests conducted against the
system code should be able to detect system deceptions in
all cases. This outcome is expected since altering the system
code or its parameters leads to a unique digest value calcu-
lated for that code even when there is a very small change.

VII. RESULTS AND DISCUSSION
This research utilizes the CSP formal method approach along
with Casper 2.1 and the model checker FDR 4.2.0 and
involves a number of experiments using the simulationweight
scale instrument and the integrity verification system. This
section highlights the results from the formal the method
approach and from the designed prototype experiments.

A. RESULTS FROM THE FORMAL METHOD APPROACH
As many researchers state that the formal methods are
very precise and accurate for presenting system specifica-
tions [48], [49]; this study modeled and analyzed the pro-
posed verification protocol using the CSP formal method
approach. In fact, the CSP approach has been proven prac-
tically to be successful in verifying security protocols and
in identifying attacks upon a number of them. However,
generating the CSP description that represents the security
properties of a designed protocol is known to be an error-
prone task and is also time-consuming, and even experts often
make mistakes that prove hard to spot. Thus, a number of

VOLUME 7, 2019 170249

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

FIGURE 4. Compiling the proposed protocol in Casper.

researchers use Casper to translate the descriptions of pro-
tocols into the corresponding process algebra (CSP) model,
which is appropriate for verifying protocols using FDR
[50]–[52]. Fortunately, the Casper notation is easy to learn
and can be used to specify the protocol because its notation
is more abstract and similar to the notation found in the
academic literature [50], [53].

Failures Divergence Refinement (FDR) is the most well-
known refinement checker for CSP models. Furthermore,
Ryan et al. (2010) in [40, page13] states that ‘‘a num-
ber of examples of systems displaying various degrees
of anonymity, such as Chaum’s ‘dining cryptographers’,
have been analyzed using FDR’’. Moreover, on page 35,
the researchers reveal that ‘‘the FDR approach has been
used principally as an efficient and reliable way to uncover
vulnerabilities – to debug protocol designs in effect.’’ It takes
a list of CSP processes expressed in machine-readable CSP
denoted as CSPM that are in pure lazy function language. It is
capable of testing the process refinements according to the
CSP models [54].

The FDR evaluator converts CSPM expressions into syn-
tactic processes that are written in Haskell. It is available as
part of the open-source Haskell library called libcspm type-
checker and evaluator for CSPM . After that, FDR converts
the syntactic processes into a labelled transition system (LTS)
where edges are labelled by events and nodes are process
states. This LTS is used to represent CSP processes dur-
ing refinement testing. In fact, FDR can be used to check
the model refinement, deadlock, and determinacy of process

expressions. It progressively constructs the state-transaction
graph, then compresses it using state-space reduction tech-
niques. It supports basic data types like integer, Boolean,
tuples, sets, and sequences. Lambda terms can be used to
define functions on these types. Properties are expressed as
CSP processes and they are tested using process refinement
[54], [55]. Basically, FDR searches the state-space in order to
look for any system traces that represent unfit specifications
(i.e., exposed series of communications). If FDR finds an
attack, then its debugger can be used to find the exposed
CSP trace in order to perform the necessary security enhance-
ments [50], [54].

Both of the CSP formal method tools introduced above
were found to be reliable and to have the ability to prove the
security properties of a certain system. Casper 2.1 and FDR
4.2.0 were downloaded from the website of the Department
of Computer Science, University of Oxford (Casper 2.1:
http://www.cs.ox.ac.uk/gavin.lowe/Security/Casper/; FDR
4.2.0: https://www.cs.ox.ac.uk/projects/fdr/) into an Ubuntu
16.04 LTS 64-bit PC. The study followed the downloaded
user manuals that explain the complete installation instruc-
tions and discuss a number of designed protocols tested by
those tools.

The protocol was demonstrated using a Casper notation in
order to compile it and generate a CSP code that was suitable
for testing using the model checker FDR. After compiling the
Casper file (as shown in Fig. 4), the generated file that repre-
sents the CSP code is run using FDR 4.2.0, and then the result
is interpreted. Several versions of the proposed protocol were

170250 VOLUME 7, 2019

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

FIGURE 5. Result of checking the refinement assertions using FDR 4.2.0.

written using Casper 2.1, and several tests were conducted
using FDR 4.2.0 to discover undesirable security faults, until
the final draft was developed (refer to Appendix A).

Fig. 5 illustrates the final output of checking all the defined
secrecy and authentication assertions using FDR 4.2.0, from
which it can be seen that all the secrecy and authentication
specifications defined in the developed Casper code were
passed (refer to the appendix). In other words, the FDR failed
to trace any potential attack upon the proposed protocol.

B. KNOWN CASES OF PROTOCOL FAILURE
For the above protocol and during the development phase of
the proposed protocol, a number of protocol versions were
designed. However, while testing the represented assertions,
FDR found that certain assertions failed. In other words,
it discovered that the intruder could learn certain values which
were intended to be secret and only known by the Sender and
Receiver agents. Also, it was found that the protocol did not
correctly authenticate the initiator Sender to the responder
Receiver and vice versa. For instance, the following two
cases represent potential attacks found while checking earlier
versions.

1) CASE 1: DECEIVING THE SERVER SYSTEM
The first case illustrates a protocol failure when the user
and server nonce values are not utilized in the protocol run,
and thus the authentication assertion of the initiator to the

responder fails. This may result in replay and man-in-the-
middle attacks by deceiving the server system and redirecting
the result of the system integrity test to an unauthorized (i.e.,
fake) user. Fig. 6 shows the Casper script that represents the
description and the specification sections of the proposed
protocol without using two nonce values: the first generated
user nonce nUsr1 and the server nonce nServ in messages
1, 4, and 5b.

Compiling the above Casper code produced eight asser-
tions to be checked. FDR 4.2.0 was used to test the pro-
duced CSP file and it recognized that the sixth and seventh
assertions (i.e., AUTH4 and AUTH5 in Fig. 7 (a)), which are
related to the timed agreement authentication requirements
defined in the specification section of the Casper file, failed.

Then, the FDR debugger showed the following trace:
signal.Running4.INITIATOR_role.
User.ServerSystem.NUser2
tock
tock
tock
signal.Commit4.RESPONDER_role.Server
System.User.NUser

Furthermore, the interpret function in Casper was used to
print the above trace as:

User believes (s)he is running the
protocol, taking role INITIATOR, with
ServerSystem, using data items NUser

VOLUME 7, 2019 170251

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

FIGURE 6. Description and specification of protocol failure case 1.

Time passe
Time passe
Time passe
ServerSystem believes (s)he has
completed a run of the protocol,
taking role RESPONDER, with User,
using data items NUser

Hence, the above attack can be described as follows: the
responder agent (i.e., ServerSystem) believes that he/she
has successfully completed a protocol run with the sender
agent (i.e., User), and hence the protocol does not correctly
authenticate the user to the server system and vice versa. The
above description hides most of the details at the top level.
However, as a result of exploring the debug tree to the process

170252 VOLUME 7, 2019

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

FIGURE 7. Checking failure protocol case 1 using FDR 4.2.0. (a) Failed authentication assertions; (b) Exploring the
debug tree to the process SYSTEM.

SYSTEM (as shown in Fig. 7: b), the FDR debugger showed
the following trace:

env.User.(Env0, ServerSystem, <NUser2,
ServerSystem, Hk, Sk, ESCode1>)
send.User.ServerSystem.(Msg1, Encrypt.
(PkServer, <User, EsId>), <>)

receive.ServerSystem.User.(Msg4,
Encrypt.(PkUser, <ServerSystem,
Timestamp.0>), <>)
send.User.ServerSystem.(Msg5a,
Encrypt.(PkServer, <Hk, Sk, NUser2>),
<>)

VOLUME 7, 2019 170253

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

send.User.ServerSystem.(Msg5b,
Encrypt.(Sk, <Timestamp.0, Hash.(hf,
<Hk, ESCode1>)>), <NUser2, Hk, Sk>)
tock
receive.User.ServerSystem.(Msg1,
Encrypt.(PkServer, <User, EsId>),
<IntegVer>)
send.ServerSystem.DbServer.(Msg2,
Encrypt.(SKeyServer, <User, EsId>),
<>)
receive.ServerSystem.DbServer.(Msg2,
Encrypt.(SKeyServer, <User, EsId>),
<ESCode2>)
send.DbServer.ServerSystem.(Msg3,
Encrypt.(SKeyServer, <PkUser, Reg
ExpiryDate, LastVerifyDate>), <>)
receive.DbServer.ServerSystem.(Msg3,
Encrypt.(SKeyServer, <PkUser, Reg
ExpiryDate, LastVerifyDate>), <>)
send.ServerSystem.User.(Msg4,
Encrypt.(PkUser, <ServerSystem, Times
tamp.0>), <>)
receive.User.ServerSystem.(Msg5a,
Encrypt.(PkServer, <Hk, Sk, NUser2>),
<Hk, DbServer>)
receive.User.ServerSystem.(Msg5b,
Encrypt.(Sk, <Timestamp.-1, Hash.(hf,
<Hk, ESCode1>)>), <>)
send.ServerSystem.DbServer.(Msg6,
Encrypt.(SKeyServer, <EsId, Hk>),
<Hk>)
tock
tock
receive.ServerSystem.DbServer.(Msg6,
Encrypt.(SKeyServer, <EsId, Hk>), <>)
send.DbServer.ServerSystem.(Msg7,
Encrypt.(SKeyServer, <Hash.(hf, <Hk,
ESCode2>)>), <Hk>)
receive.DbServer.ServerSystem.(Msg7,
Encrypt.(SKeyServer, <Hash.(hf, <Hk,
ESCode2>)>), <>)
send.ServerSystem.User.(Msg8,
Encrypt.(PkUser, <EsId, IntegVer,
NUser2>), <NUser2, Hk, Sk>)

Copying the above trace from the FDR debugger and then
pasting it into the Casper interpret function deduced the
following attack:

R1.0. -> User: Intruder
R1.1. User -> I_ServerSystem: {usr,
esId}{pkServ}
R1.4. I_ServerSystem -> User:
{servSys, ts}{pkUs}
R1.5a. User -> I_ServerSystem: {hk,
sk, nUsr}{pkServ}

R1.5b. User -> I_ServerSystem: {ts2,
hf(hk, esCode1)}{sk}
Time passe

R2.1. I_User -> ServerSystem: {usr,
esId}{pkServ}
R2.2. ServerSystem -> I_DbServe:
{usr, esId}{SkeyServ}
R2.2. I_ServerSystem -> DbServe:
{usr, esId}{SkeyServ}
R2.3. DbServer -> I_ServerSyste:
{pkUsr, regExpDate, lastVerDate}
{SkeyServ}
R2.3. I_DbServer -> ServerSyste:
{pkUsr, regExpDate, lastVerDate}
{SkeyServ}
R2.4. ServerSystem -> I_User:
{servSys, ts}{pkUs}
R2.5a. I_User -> ServerSystem: {hk, sk,
nUsr}{pkServ}
R2.5b. I_User -> ServerSystem: {ts2,
hf(hk, esCode1)}{sk}
R2.6. ServerSystem -> I_DbServe:
{esId, h}{SkeyServ}
Time passe
Time passe

R3.6. I_ServerSystem -> DbServe:
{esId, h}{SkeyServ}
R3.7. DbServer -> I_ServerSyste:
{hf(hk,esCode2}{SkeyServ}
R3.7. I_DbServer -> ServerSyste:
{hf(hk, esCode2)}{SkeyServ}
R3.8. ServerSystem -> I_User: {esId,
integVer, nUsr}{pkUs}

Thus, the above interpretation represents a potential attack
in relation to the failed authentication agreement between
the user and the server system. Essentially, the intruder
plays ping-pong with the server, and hence he/she can
replay messages and update the timestamp used. Further-
more, the intruder uses the values received in messages
R1.5a and R1.5b to deceive the server site so that the
server site thinks that he/she is receiving the values from
an authentic user in messages R2.5a and R2.5b. Besides,
the intruder deceives the database server and use the values
received in R2.6 to get the hash value of the targeted sys-
tem and forward that value to the server system (as shown
in message R3.7). Subsequently, the server system thinks
that he/she has successfully completed a protocol run with
the sender agent, which is supposed to be the authentic
user, but instead the server system has sent the result of
the system integrity test to the intruder (as shown in mes-
sage R3.8). Note that the notations I_ServerSystem,
I_User, and I_DbServer represent the intruder taking
the identities of the server system, user, and database server,
respectively.

170254 VOLUME 7, 2019

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

FIGURE 8. Description and specification of protocol failure case 2.

2) CASE 2: DECEIVING THE USER AGENT
The second case illustrates a protocol failure when the user
nonce value is not utilized to authenticate the final integrity
result in the protocol run, and thus the authentication assertion
of the responder to the initiator fails. This may result in a
potential attack by deceiving the user agent and receiving the
result of system integrity test from an unauthenticated (fake)

server system. Furthermore, Fig. 8 shows the Casper script
that represents the description and the specification sections
of the proposed protocol where the second generated user
nonce value (nUsr2) is missing in messages 5a and 8.

After compiling and testing the ten assertions produced
from the above code, FDR identified that the fifth and the
ninth assertions (i.e., AUTH3 and AUTH7 in Fig. 9 (a)),

VOLUME 7, 2019 170255

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

FIGURE 9. Checking failure protocol case 2 using FDR 4.2.0. (a) Failed authentication assertions; (b) Exploring the
debug tree to the process SYSTEM.

which are related to the agreement and timed agreement
authentication specifications, failed.

Then, the FDR debugger was utilized and found the fol-
lowing trace:

signal.Commit3.INITIATOR_role.User.
ServerSystem.NServerSys

Also, this trace was interpreted using the interpret function
in Casper as follows:

170256 VOLUME 7, 2019

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

User believes (s)he has completed a
run of the protocol, taking role
INITIATOR, with ServerSystem,
using data items NServerSys

However, the FDR debugger (as shown in Fig. 9: b) was
used to describe the defined attack in more detail, and showed
the following trace:

env.User.(Env0, ServerSystem,
<NUser1, ServerSystem, Hk, Sk,
ESCode1>)
send.User.ServerSystem.(Msg1,
Encrypt.(PkServer, <User,
EsId, NUser1>), <>)
receive.User.ServerSystem.(Msg1,
Encrypt.(PkServer, <User, EsId,
NUser1>), <NServerSys, IntegVer>)
send.ServerSystem.DbServer.(Msg2,
Encrypt.(SKeyServer, <User,
EsId>), <>)
receive.ServerSystem.DbServer.(Msg2,
Encrypt.(SKeyServer, <User,
EsId>), <ESCode2>)
send.DbServer.ServerSystem.(Msg3,
Encrypt.(SKeyServer, <PkUser,
RegExpiryDate, LastVerifyDate>), <>)
receive.DbServer.ServerSystem.(Msg3,
Encrypt.(SKeyServer, <PkUser,
RegExpiryDate, LastVerifyDate>), <>)
send.ServerSystem.User.(Msg4,
Encrypt.(PkUser, <ServerSystem,
NServerSys, Timestamp.0, NUser1>),
<>)
receive.ServerSystem.User.(Msg4,
Encrypt.(PkUser, <ServerSystem,
NServer, Timestamp.0, NUser1>), <>)
send.User.ServerSystem.(Msg5a,
Encrypt.(PkServer, <Hk, Sk>), <>)
send.User.ServerSystem.(Msg5b,
Sq.<Encrypt.(Sk, <NServer,
Timestamp.-1>), Xor.(Hash.(hf,
<Hk, ESCode1>), NServer)>, <NUser1,
Hk, Sk>)
receive.ServerSystem.User.(Msg8,
Encrypt.(PkUser, <EsId, EsId>),
<NServer>)

When the Casper interpret function was used to repre-
sent the defined attack, the following communication was
inferred:

0. -> User: Intruder
1. User -> I_ServerSystem: {usr,
esId, nUsr1} {pkServ}
1. I_User -> ServerSystem: {usr,
esId, nUsr1} {pkServ}
2. ServerSystem -> I_DbServer: {usr,
esId}{SkeyServ}

2. I_ServerSystem -> DbServer: {usr,
esId}{SkeyServ}
3. DbServer -> I_ServerSystem:
{pkUsr, regExpDate, lastVerDate}
{SkeyServ}
3. I_DbServer -> ServerSystem:
{pkUsr, regExpDate, lastVerDate}
{SkeyServ}
4. ServerSystem -> I_User: {servSys,
nServ, ts1, nUsr1}{pkUsr}
4. I_ServerSystem -> User: {servSys,
nServ, ts1, nUsr1}{pkUsr}
5a. User -> I_ServerSystem: {hk, sk}
{pkServ}
5b. User -> I_ServerSystem: {nServ,
ts2}{sk}, ((hf(hk, esCode1) %
esHMAC1) (+) nServ)
8. I_ServerSystem -> User: {esId,
integVer}{pkUsr}

The above interpretation represents a potential attack in
relation to the failed authentication agreement between the
user and the server system. In this case, the intruder deceives
each agent to receive the original message and resends that
message to the other agent. For example in message 1,
the intruder misleads the server system by receiving and
forwarding the original request message of the targeted user
and hence the server system thinks he/she has received that
message from an authentic user. Also, the user thinks that
he/she has successfully completed a protocol run with the
server system, which is supposed to be an authentic sys-
tem, but instead has received the result of a system integrity
test from the intruder (as shown in message 8). As men-
tioned before, the notations I_ServerSystem, I_User,
and I_DbServer represent the intruder taking the identities
of the server system, user, and database server, respectively.

C. RESULTS FROM THE CONDUCTED EXPERIMENTS
Software prototyping refers to the framework of activities
during software development that result in the creation of
prototypes, i.e., incomplete versions of the software program
being developed. It is the most popular incremental method-
ology. ‘‘The system prototype is a quick and dirty version
of the system and provides minimal features’’ [49, p. 54].
In fact, prototyping has always been an essential tool for
designers and engineers [12]. For the purpose of this research,
a prototype system has been developed that reflects the main
features of the system architecture described in section 3. It
performs the two main phases: (1) fetching an ES’s code and
(2) verifying the integrity of the selected ES.

This study develops and tests a code integrity verification
prototype on a low-cost, open-source I/O board (Arduino
Uno board) that might be helpful in several labs [57]. One
of the strong points of Arduino boards is that an executable
script can be loaded onto the board’s memory and it can keep
running without interfacing with PCs or outer programming,

VOLUME 7, 2019 170257

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

FIGURE 10. Screenshots of the prototype results. (a) ES’s code is authentic; (b) ES’s code is
inauthentic.

which allows for complete independence, portability, and
accuracy. In fact, one of the most important features of these
devices is the ease of learning how to program them. They
are also small in size, offer the possibility of connecting

with digital and analogue sensors, and also the possibility of
adding shields for wireless and Bluetooth communications.
These devices are also available at (relatively) cheap prices
and can be connected to different types of sensors that are

170258 VOLUME 7, 2019

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

available in the market [58], [59]. In addition, these platforms
are ‘‘given the available support from the Arduino commu-
nity’’ and ‘‘even researchers with little programming and
electronics background should consider using Arduino rather
than other similar boards’’ [53, p. 306].

Eclipse software (Kepler Service Release 2) was used to
design the prototype software in Java language. Based on the
system design that has already been explained in section 3,
two main modules were developed consisting of six main
classes in order to design the two main phases.

Essentially, the first module of the developed system was
used to generate and then save the hash value of the simulated
digital weight scale instrument’s code in a dedicated database.
When the first module was executed properly, the second
module was run against the simulation weight scale instru-
ment. All the conducted integrity tests of the genuine code
showed that the tested system was authentic (as shown
in Fig. 10 (a)). After that, the system code was intentionally
manipulated to make the measurements of the weight scale
instrument incorrect by modifying the calibration value used
in the embedded code of the weight scale instrument. Thus,
the calculated weights were (+/-) 50, 100, 150, and 200 g.

Fortunately, all the conducted integrity tests of the tam-
pered code showed that the tested system was forged (as
shown in Fig. 10 (b)).

VIII. FUTURE WORK
We have utilized automated model checking tools to analyse
the proposed protocol. However, we plan to utilize another
logical and computational method, such as using reduction
proof, in order to analyse the proposed artefact; and compare
our proposal with a number of related schemes in terms of
complexity and security cost.

IX. CONCLUSION
This research promises significant contributions to knowl-
edge, practice, and the community. Those contributions that
could be used by researchers are considered as knowledge
contributions while those contributions that could be utilized
by practitioners and organizations are considered as contribu-
tions to practice. In addition, contributions to the community
are those that could be applied for fraud detection to protect
people’s goods by detecting software tampering on digital
measurement devices.

Firstly, the knowledge contributions of this study con-
sist of a framework for code integrity verification and a
secure communication protocol in order to fight unauthorized
manipulation in an ES by facilitating the process of tampering
detection. In fact, the study demonstrates how basic crypto-
graphic primitives can be utilized for fraud detection and also
to secure the exchanged/transported data and provide validity.

Secondly, this study makes a contribution to practice
through the development of a prototype system that could
be utilized (with additional enhancement if necessary) by
authorized agents for verifying system integrity. In addition,
this research may assist governmental authorities and system
developers to discover the status of system tampering by

utilizing basic cryptographic primitives. Moreover, this study
may contribute to the protection of commercial rights by
facilitating the process of detecting illegal system manipu-
lations for those willing companies.

Finally, the main aim of this research is to contribute (even
in a preliminary way) to combating the manipulation of the
accuracy of systems that are related to public services in the
local community in a simple and possible way. Thus, this
project may provide an opportunity for the community to
participate in improving and strengthening the information
security skills and intellectual property in the targeted society.

APPENDIXES
APPENDIX A: PROTOCOL REPRESENTATION IN CSP
We use Communicating Sequential Processes (CSP) formal
method approach to program the proposed security protocol
that was introduced in section 4, and it also adopts the Casper
and FDR tools in order to verify the security features of the
protocol. The next two subsections (6.1 and 6.2) introduce
the CSP notation for the secrecy and authentication features
of the proposed protocol. The intention was to utilize a reli-
able verification measurement instrument in order to discover
potential flaws in the proposed protocol and correct any found
weaknesses.

The proposed protocol involves three main agents: user,
server system, and database server. Basically, it can be rep-
resented as the following messages:

Message 1 usr→ servSys: {usr, esId, nUsr1}pkServ
Message 2 servSys→ dbServ: {usr, esId}SkeyServ
Message 3 dbServ → servSys: {pkUsr, regExpDate,
lastVerDate}SkeyServ
Message 4 servSys → usr: {servSys, nServ, ts1,
nUsr1}pkUsr
Message 5a usr→ servSys: {hk, sk, nUsr2}pkServ
Message 5b usr → servSys: {nServ, ts2}sk, {esH-
MAC1 Xor nServ}
Message 6 servSys→ dbServ: {esId, hk}SkeyServ
Message 7 dbServ→ servSys: {esHMAC2}SkeyServ
Message 8 servSys→ usr: {esId, integVer, nUsr2}pkUsr

Obviously, the participating agents can play one of two
roles: the initiator role that is represented by the sender of
message 1 (i.e., the usr agent), or the responder role that
is represented by the sender of message 2 (i.e., the servSys
agent). In addition, it can be observed that the protocol defines
a dbServ agent, whose role is to provide the stored data of
the targeted user and ES when appropriately prompted.

Consequently, the transferred messages can be represented
based on the view of each process that states the series
of sent or received messages as summarized below. Firstly,
the view of the user process (namely usr in the protocol) that
plays the INITIATOR role can be described as follows:

Message 1 usr sends to servSys: {usr, esId, nUsr1}pkServ
Message 4 usr gets from ‘servSys’: {servSys, nServ, ts1,
nUsr1}pkUsr
Message 5a usr sends to servSys: {hk, sk, nUsr2}pkServ

VOLUME 7, 2019 170259

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

Message 5b usr sends to servSys: {nServ, ts2}sk.
{esHMAC1 Xor nServ}
Message 8 usr gets from ‘servSys’: {esId, integVer,
nUsr2}pkUsr

Secondly, the view of the server system process (namely
servSys in the protocol) that plays the RESPONDER role
can be described as follows:

Message 1 servSys gets from ‘usr’: {usr, esId,
nUsr1}pkServ
Message 2 servSys sends to dbServ: {usr, esId}SkeyServ
Message 3 servSys gets from ‘dbServ’: {pkUsr, regEx-
pDate, lastVerDate}SkeyServ
Message 4 servSys sends to usr: {servSys, nServ, ts1,
nUsr1}pkUsr
Message 5a servSys gets from ‘usr’: {hk, sk,
nUsr2}pkServ
Message 5b servSys gets from ‘usr’: {nServ, ts2}sk.
{esHMAC1 Xor nServ}
Message 6 servSys sends to dbServ: {esId, hk}SkeyServ
Message 7 servSys gets from ‘dbServ’:
{esHMAC2}SkeyServ
Message 8 servSys sends to usr: {esId, integVer,
nUsr2}pkUsr

Finally, the view of the database server process (namely
dbServ in the protocol) that plays the DBSERVER role can
be described as follows:

Message 2 dbServ gets from ‘servSys’:{usr, esId}SkeyServ
Message 3 dbServ sends to servSys: {pkUsr, regExp-
Date, lastVerDate}SkeyServ
Message 6 dbServ gets from ‘servSys’: {esId,
hk}SkeyServ
Message 7 dbServ sends to servSys:
{esHMAC2}SkeyServ

Note that the single quotation marks around the senders
of messages are used to emphasize that the receivers can-
not ensure about the source of the received messages, and
also they cannot ensure that the messages they send will be
delivered.

‘‘The best and easiest way to program a CSP process only
to accept messages of the right form that it can understand
is to form an external choice over all acceptable messages’’
[53]. Furthermore, the study needs to develop CSP represen-
tations for each of the above roles. In this protocol, the defi-
nition of the initial run of the protocol could be caused by an
external event/process such as the initiator’s user who states
withwhom the initiator agentmust run the protocol. An initia-
tor agent usr equipped with a secret key, two nonce values,
a hash key and a session key, and using the server system
servSys can be represented in (23), as shown at the bottom
of the next page.

Where Nonce and TimeStamp are the two sets of all nonces
and timestamp values, respectively, that are randomly gener-
ated, and the server nonce nServ and the two timestamps
(ts1 and ts2) are members of those sets, while Message
is the set of all messages that the user process can accept,

and the result of the system integrity verification integVer,
which can be received from the server system process, is
a member of this set. Note that esHMAC1 represents the
digest value of the system’s code esCode1, which is cal-
culated by applying the hash function and using the hash
key (i.e., hf (hk, esCode1)). Thus, the set of calculated
hash values is called HashValues and the calculated digest
values of the targeted ES at the remote site esHMAC1 is a
member of this set. The key pkUsr is the user’s public key
that is known and can be retrieved by all agents. Basically,
the study assumes that the user agent is the only one that
knows the corresponding secret key (i.e., the private key). The
protocol run starts when the local environment tells the user
process (as initiator) to start a session with the server system
process, which is represented as ‘‘env?servSys: Agent’’.
The exact way in which this occurs is unrelated to security.
Moreover, to prevent the user agent asking to communicate
with him/herself (asusr∈Agent and so the communication
env.usr is permitted), the protocol prescribes that the user and
the server system agentsmust be different; ‘‘env?servSys:
Agent \ {usr}’’ states that criterion.
The server system (namely servSys) has to accept the

user request to verify the integrity of an ES. So, the server
receives the generated hash key, and the digest value of the
targeted ES by receiving messages 5a and 5b from the user
agent. Then it receives the corresponding digest value from
the database server to verify the code integrity, which it does
by comparing this value and the received digest value from
the user.

Finally, the server informs the user agent about the result
of verifying the code integrity conducted for the targeted ES
by sending message 8. The study assumes that the server
can handle more than one protocol run and can produce a
different result corresponding to the result of the conducted
system integrity test. Thus, the role of the responder agent
servSys can be represented using a general interleaving
as shown in (24), as shown at the bottom of the next page.
Where Agent is the set of all agents’ IDs that the server
system process can communicate with and user is a mem-
ber of this set. Message is the set of all messages that the
server system process can accept, and the ES’s ID, which
can be received from the user agent, is a member of this
set. PublicKey and Nonce are the two sets of all public
keys and nonce values, and the user’s public key pkUsr and
the two user nonces (nUsr1 and nUsr2) are members of
these sets, respectively. Date is the set of all date values,
and the user registration expiry date and the last integrity
re-verification date of the targeted ES are members of this
set. HashKey, SessionKey, and TimeStamp are the sets
of all hash key, session key, and timestamp values that are
randomly generated; and the hash key hk, the session key
sk, and the timestamps (ts1 and ts2) are members of
those sets, respectively. Note that esHMAC1 and esHMAC2
represent the digest values of the system’s codes esCode1
and esCode2, which are calculated by applying the hash
function and using the hash key (i.e., hf (hk, esCode1) and

170260 VOLUME 7, 2019

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

hf (hk, esCode2)). Thus, the set of calculated hash values
of the targeted ES is called HashValues and the calculated
digest values at the remote site esHMAC1 and at the server
site esHMAC2 are members of this set. The key pkServ is
the server’s public key that is known and can be retrieved by
all agents. In addition, the study assumes that the server agent
is the only one that knows the corresponding secret key. The
server key SkeyServ is a secret key that the server agent
servSys shares with the database server dbServ, and the
study assumes that the two agents are the only ones that know
that key. Note that receiving a message from the user agent
(the initiator agent) promotes the protocol and it is not the
local environment that does this as in the previous case.

The database server (namely dbServ) has to store the
users’ and ESs’ data and related information, such as the
users’ public keys, users’ account validity, and the date of

recent system testing. Also, it stores the targeted systems’
codes that were previously scanned during the fetching stage
(refer to section 3.2). Thus, to verify the code integrity of a
targeted system, this server has to provide the correspond-
ing hash value of that ES’s code to the main server (i.e.,
the servSys process which plays the responder role). Con-
sequently, the main server can compare the digest value of the
targeted ES that it received from the user and the hash value
of the system’s code retrieved from the database server. The
role of the database server agent dbServ can be represented
as in (26), shown at the bottom of this page.

Where the value hk is a hash key that the server agent
forwards from the user agent to be used to calculate the digest
value of the corresponding ES’s code that was previously
stored in the database server. Note that esHMAC2 represents
the digest value of the system’s code esCode2, which is

Initiator(usr, skUsr, nUsr1, nUsr2, servSys, esId, esCode1, hk, sk) = env?servSys : Agent {usr}

→ send .usr .servSys.{usr, esId, nUsr1}pkServ

→

�
nServ ∈ Nonce

ts1, ts2 ∈ TimeStamp
integVer ∈ Message

esHMAC1 ∈ HashValues

receive.servSys.usr .{servSys, nServ, ts1, nUsr1}pkUsr →
send .usr .servSys.{hk, sk, nUsr2}pkServ→

send .usr .servSys.{nServ, ts2}sk .
{esHMAC1 XornServ} →

receive.servSys.usr .{esId, integVer, nUsr2}pkUsr →
Session(usr, skUsr, nUsr1, nUsr2, servSys, esId,

eSCode1, hk, sk, nServ, ts1, ts2, integVer)

(23)

Responder(servSys) = |||
integVer ∈ Message

Respond(servSys, skServ, nServ, dbServ, integVer) (24)

where

Respond(servSys, skServ, nServ, dbServ, integVer)

=

�
usr ∈ Agent

esId ∈ Message
pkUsr ∈ PublicKey

nUsr1, nUsr2 ∈ Nonce
regExpDate, lastVerDate ∈ Date

hk ∈ HashKey
sk ∈ SessionKey

ts1, ts2 ∈ TimeStamp
esHMAC1, esHMAC2 ∈ HashValues

receive.usr .servSys.{usr, esId, nUsr1}pkServ→
send .servSys.dbServ.{usr, esId}SkeyServ→

receive.dbServ.servSys.{
pkUsr, regExpDate,

lastVerDate

}
SkeyServ

→

send .servSys.usr .
{
servSys, nServ,
ts1, nUsr1

}
pkUsr

→

receive.usr .servSys.{hk, sk, nUsr2}pkServ→
receive.usr .servSys.{nServ, ts2}sk .
{esHMAC1 XornServ} →

send .servSys.dbServ.{esId, hk}SkeyServ→
receive.dbServ.servSys.{esHMAC2}SkeyServ→

send .servSys.usr .{esId, integVer, nUsr2}pkUsr →
Responder(servSys)

(25)

DBServer(dbServ, SkeyServ, servSys, usr, pkUsr, regExpDate, esId, esCode2, lastVerDate)

=

�
hk ∈ HashKey

esHMAC2 ∈ HashValues

receive.servSys.dbServ.{usr, esId}SkeyServ→

send .dbServ.servSys.
{
pkUsr, regExpDate,

lastVerDate

}
SkeyServ

→

receive.servSys.dbServ.{esId, hk}SkeyServ→
send .dbServ.servSys.{esHMAC2}SkeyServ→

Session(dbServ, SkeyServ, servSys, usr, pkUsr,
regExpDate, esId, eSCode2, lastVerDate, hk)

(26)

VOLUME 7, 2019 170261

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

calculated by applying the hash function and using the hash
key (i.e., hf (hk, esCode1)). Thus, the calculated digest
value of the targeted ES esHMAC2 is a member of the
HashValues set.
The proposed protocol can then be described in (27) as

comprising the users, the responder server, and the database
server. This is expressed as the ESIntegVer process:

ESIntegVer = Userusr |||ServerSystemservSys
|||DbServerdbServ (27)

A. SECRECY PROPERTY SPECIFICATIONS
In order to describe the secrecy features of the proposed
protocol, it is normal to use an event signal.Claim_
Secret.usr.servSys.secVal at the point in the usr’s
run of the protocol with servSys where the protocol can
guarantee that an intruder will not be able to acquire
the secret value secVal. In other words, the secret value
initiated by the user agent and used in the protocol run appar-
ently with the server agent should be secret during the whole
protocol run. Hence, the initiator agent usr can be stated as
in (28), shown at the bottom of this page.

The above secrecy specification can be defined as the
requirement that if the user agent claims that the two user
nonce values, the hash key, the session key, and the targeted
ES’s code at the remote site are secret, then the potential
intruder must not be able to learn those values. Moreover, this
requirement can be expressed as in (29), shown at the bottom
of this page.

The secrecy requirement of the server system has a sim-
ilar program. Thus, the responder agent servSys can be
described as in (30), shown at the bottom of the next page.

The above secrecy requirement states that if the server
agent claims that the server nonce value, the integrity ver-
ification result of an ES, and the hash key are secret,
then the potential intruder must not be able to learn
those values. Moreover, the secrecy requirement speci-
fied between the server system and the user agents can
be expressed as in (32), shown at the bottom of the
next page.

While the secrecy requirement between the server system
and database server agents can be expressed as in (33), shown
at the bottom of the next page.

Now, the secrecy specification of the database server
dbServ can be represented as in (34), shown at the bottom
of the next page.

This secrecy requirement declares that if the database
server agent claims that the previously saved targeted ES’s
code is secret, then any unauthorized agent must not be
able to leak this value. Naively, the requirement specified
could be stated as in (35), shown at the bottom of the
next page.

B. AUTHENTICATION PROPERTY SPECIFICATIONS
Whenever a certain agent (e.g., the user agent) exchanges
messages with another agent (e.g., the server agent), then the
authentication feature provides an assurance to the user agent
that the communication has executed with the server agent.
Indeed, the authentication feature is related to the assertion
of an agent’s pretended identity.

This specification can be programmed in CSP using two
signals: inputting the Running.sender.responder
event into the sender’s description and the Commit.

Initiator(usr, skUsr, nUsr1, nUsr2, servSys, esId, esCode1, hk, sk)

= env?servSys : Agent {usr} → send .usr .servSys.{usr, esId, nUsr1}pkServ

→

�
nServ ∈ Nonce

ts1, ts2 ∈ TimeStamp
integVer ∈ Message

esHMAC1 ∈ HashValues

receive.servSys.usr .{servSys, nServ, ts1, nUsr1}pkUsr →
send .usr .servSys.{hk, sk, nUsr2}pkServ→

send .usr .servSys.{nServ, ts2}sk .
{esHMAC1 XornServ} →

receive.servSys.usr .{esId, integVer, nUsr2}pkUsr →
if servSys ∈ Honest

then signal.Claim_Secret.usr .servSys.nUsr1,
signal.Claim_Secret.usr .servSys.nUsr2,
signal.Claim_Secret.usr .servSys.hk,
signal.Claim_Secret.usr .servSys.sk,

signal.Claim_Secret.usr .servSys.esCode1→
Session(usr, skUsr, nUsr1, nUsr2, servSys, esId,

eSCode1, hk, sk, nServ, ts1, ts2, integVer)
elseSession(usr, skUsr, nUsr1, nUsr2, servSys, esId,

eSCode1, hk, sk, nServ, ts1, ts2, integVer)

(28)

Secretusr,servSys(trace) = ∀ secVal : {nUsr1, nUsr2, hk, sk, esCode1}

• signal.Claim_Secret.usr .servSys.secVal in trace ∧ usr ∈ Honest ∧ servSys

∈ Honest ⇒⇁ (leak.secVal in trace) (29)

170262 VOLUME 7, 2019

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

responder.sender event into the responder’s description.
In order to achieve the authentication of the user agent by the
server agent, the first event (i.e.,Running.usr.servSys)
in the user’s protocol run should always have executed by
the time the second event (i.e., Commit.servSys.usr)

in the main server’s protocol run is performed. In addition,
the definition of those events needs to include certain values
that are related to the proposed protocol, such as nonce values
and secret keys, where a run of the proposed protocol between
the user and the server system involves two user nonces

Responder(servSys) = |||
integVer ∈ Message

Respond(servSys, skServ, nServ, dbServ, integVer) (30)

where

Respond(servSys, skServ, nServ, dbServ, integVer)

=

�
usr ∈ Agent

esId ∈ Message
pkUsr ∈ PublicKey

nUsr1, nUsr2 ∈ Nonce
regExpDate, lastVerDate ∈ Date

hk ∈ HashKey
sk ∈ SessionKey

ts1, ts2 ∈ TimeStamp
esHMAC1, esHMAC2 ∈ HashValues

receive.usr .servSys.{usr, esId, nUsr1}pkServ→
send .servSys.dbServ.{usr, esId}SkeyServ→

receive.dbServ.servSys.{
pkUsr, regExpDate,

lastVerDate

}
SkeyServ

→

send .servSys.usr .
{
servSys, nServ,
ts1, nUsr1

}
pkUsr

→

receive.usr .servSys.{hk, sk, nUsr2}pkServ→
receive.usr .servSys.{nServ, ts2}sk.
{esHMAC1 Xor nServ} →

send .servSys.dbServ.{esId, hk}SkeyServ→
receive.dbServ.servSys.{esHMAC2}SkeyServ→

send .servSys.usr .{esId, integVer, nUsr2}pkUsr →
if usr ∈ Honest ∧ dbServ ∈ Honest

then signal.Claim_Secret.servSys.usr .nServ,
signal.Claim_Secret.servSys.usr .integVer,
signal.Claim_Secret.servSys.dbServ.hk →

Responder(servSys)
elseResponder(servSys)

(31)

SecretservSys,usr (trace)

= ∀ secVal : {nServ, integVer} • signal.Claim_Secret.servSys.usr .secVal in trace

∧ servSys ∈ Honest ∧ usr ∈ Honest ⇒⇁ (leak.secVal in trace) (32)

SecretservSys,dbServ(trace)

= ∀ hk • signal.Claim_Secret.servSys.dbServ.hk in trace

∧ servSys ∈ Honest ∧ dbServ ∈ Honest ⇒⇁ (leak.hkintrace) (33)

DBServer(dbServ, SkeyServ, servSys, usr, pkUsr, regExpDate, esId, esCode2, lastVerDate)

=

�
hk ∈ HashKey

esHMAC2 ∈ HashValues

receive.servSys.dbServ.{usr, esId}SkeyServ→

send .dbServ.servSys.
{
pkUsr, regExpDate,

lastVerDate

}
SkeyServ

→

receive.servSys.dbServ.{esId, hk}SkeyServ→
send .dbServ.servSys.{esHMAC2}SkeyServ→

if servSys ∈ Honest
then signal.Claim_Secret.dbServ.servSys.esCode2→

Session(dbServ, SkeyServ, servSys, usr, pkUsr,
regExpDate, esId, eSCode2, lastVerDate, hk)

elseSession(dbServ, SkeyServ, servSys, usr, pkUsr,
regExpDate, esId, eSCode2, lastVerDate, hk)

(34)

SecretdbServ,servSys(trace)

= ∀ esCode2 • signal.Claim_Secret.dbServ.servSys.esCode2 in trace

∧ dbServ ∈ Honest ∧ servSys ∈ Honest ⇒⇁ (leak.esCode2 in trace) (35)

VOLUME 7, 2019 170263

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

FIGURE 11. Authentication of user agent by main server.

nUsr1 and nUsr2, the hash key hk, the session key sk, and
one server nonce nServ.
Basically, the system needs to ensure authentication for

each of the two main agents (i.e., the user agent and the main
server) that are involved in the proposed protocol discussed
in section 4. Thus, each of the participating agents needs a
definite assurance about the claimed identity of the other.

1) USER AUTHENTICATION BY THE MAIN SERVER
Firstly, the protocol from the main server’s view (i.e.,
the responder’s view) is described. Thus, the user and the
server agents need to agree on the mentioned nonce values,
and the hash key and session key that are related to the run.
This will authenticate to each of the participating agents that
the other agent was involved in that run. If agreement between
the user agent and the server agent on those values is essential,
then an event:
signal.Running_Initiator.usr.servSys.

nUsr1.nUsr2.hk.sk.nServ in the user agent descrip-
tion must precede an event signal.Commit_Respon-
der.servSys.usr.nUsr1.nUsr2.hk.sk.nServ
which must be defined in the server’s run. Those events
should be defined in a proper position within the agent’s
definition. Therefore, the authentication of the user by the
server may require as stated in (36), as shown at the bottom
of this page.

Also, this can be represented as in (37), shown at the
bottom of this page.

Fig. 11 shows the protocol chart of the message exchanged
between the involved agents.

The figure states that the server site (i.e., the responder)
is not able to possess all the related information until receipt
of the last message, so the Commit signal must be placed
at the end of the run. Likewise, the user agent (i.e., the
initiator) is not able to possess all the related information until
just before its last message. However, the Running signal
should precede the server’s Commit signal, and therefore the
Running signalmust be positioned before sending the user’s
last message. Thus, equation (38), as shown at the bottom
of the next page. enhances the representation of the initiator
agent usr.

On the other hand, the protocol responder’s description can
then be represented as in (39), shown at the bottom of the next
page.

2) MAIN SERVER AUTHENTICATION BY THE USER AGENT
In order to describe the protocol from the user’s view,
the signals that state the user (i.e., the initiator) is authen-
ticating the main server (i.e., the responder) are defined
here. This authentication can be represented by inserting the
event signal.Commit_Initiator.usr.servSys.
nUsr1.nUsr2.hk.sk.nServ at the end of the user’s
description. Likewise, this requires the occurrence of the

usr ∈ Honest ⇒ signal.Running_Initiator .usr .servSys.nUsr1.nUsr2.hk.sk.nServ

precedes signal.Commit_Responder .servSys.usr .nUsr1.nUsr2.hk.sk.nServ (36)

signal.Commit_Responder .servSys.usr .nUsr1.nUsr2.hk.sk.nServ in trace⇒

signal.Running_Initiator .usr .servSys.nUsr1.nUsr2.hk.sk.nServ in trace (37)

170264 VOLUME 7, 2019

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

corresponding Running signal in the server’s run, and
because the last message sent by the server is the last message
of the protocol, the suitable place for this event is before the
last message (as shown in Fig. 12).

The authentication requirement for authenticating the
server agent to the user agent can be stated in (41), as shown
at the bottom of this page. In addition, this can be represented
in (42), as shown at the bottom of this page.

Hence, the CSP descriptions in (43) and (44), as shown at
the bottom of page 30, are the enhanced representations of
the participating agents based on this requirement.

APPENDIX B: THE CASPER SYNTAX
The following code shows the Casper syntax used to specify
the proposed protocol. The Casper file contains two main
parts. The first part represents as a model of a system per-
forming the proposed protocol, describes the communicated

agents, the initial knowledge of those agents, the message
transferred between them, the data types used in the trans-
ferred messages, and the protocol specification that supposed
to attain. While the second part represents as an actual image
of that model to be examined, identifying the agents par-
ticipating in the actual system and their roles, the types of
actual data items involved, and the attained knowledge of the
potential intruder.
- A Proposed Protocol for Remote-Code
Integrity Attestation
#Free variables
usr, servSys: Agent
dbServ: DBServer
nServ, nUsr1, nUsr2: Nonce
esId, integVer: Message
regExpDate, lastVerDate: Date
esCode1, esCode2: Secret

Initiator(usr, skUsr, nUsr1, nUsr2, servSys, esId, esCode1, hk, sk)

= env?servSys : Agent {usr} → send .usr .servSys.{usr, esId, nUsr1}pkServ→

�
nServ ∈ Nonce

ts1, ts2 ∈ TimeStamp
integVer ∈ Message

esHMAC1 ∈ HashValues

receive.servSys.usr .{servSys, nServ, ts1, nUsr1}pkUsr →
signal.Running_Initiator .usr .servSys.

nUsr1.nUsr2.hk.sk.nServ→
send .usr .servSys.{hk, sk, nUsr2}pkServ→

send .usr .servSys.{nServ, ts2}sk .
{esHMAC1 Xor nServ} →

receive.servSys.usr .{esId, integVer, nUsr2}pkUsr →
Session(usr, skUsr, nUsr1, nUsr2, servSys, esId,

eSCode1, hk, sk, nServ, ts1, ts2, integVer)

(38)

Responder(servSys) = |||
integVer ∈ Message

Respond(servSys, skServ, nServ, dbServ, integVer) (39)

where

Respond(servSys, skServ, nServ, dbServ, integVer)

=

�
usr ∈ Agent

esId ∈ Message
pkUsr ∈ PublicKey

nUsr1, nUsr2 ∈ Nonce
regExpDate, lastVerDate ∈ Date

hk ∈ HashKey
sk ∈ SessionKey

ts1, ts2 ∈ TimeStamp
esHMAC1, esHMAC2 ∈ HashValues

receive.usr .servSys.{usr, esId, nUsr1}pkServ→
send .servSys.dbServ.{usr, esId}SkeyServ→

receive.dbServ.servSys.{
pkUsr, regExpDate,

lastVerDate

}
SkeyServ

→

send .servSys.usr .
{
servSys, nServ,
ts1, nUsr1

}
pkUsr

→

receive.usr .servSys.{hk, sk, nUsr2}pkServ→
receive.usr .servSys.{nServ, ts2}sk .
{esHMAC1 Xor nServ} →

send .servSys.dbServ.{esId, hk}SkeyServ→
receive.dbServ.servSys.{esHMAC2}SkeyServ→

send .servSys.usr .{esId, integVer, nUsr2}pkUsr →
signal.Commit_Responder .servSys.usr .

nUsr1.nUsr2.hk.sk.nServ→
Responder(servSys)

(40)

servSys ∈ Honest ⇒ signal.Running_Responder .servSys.usr .nUsr1.nUsr2.hk.sk.nServ

precedes signal.Commit_Initiator .usr .servSys.nUsr1.nUsr2.hk.sk.nServ (41)

signal.Commit_Initiator .usr .servSys.nUsr1.nUsr2.hk.sk.nServ in trace⇒

signal.Running_Responder .servSys.usr .nUsr1.nUsr2.hk.sk.nServ in trace (42)

VOLUME 7, 2019 170265

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

FIGURE 12. Authentication of main server by user agent.

pkUsr, pkServ: PublicKey
skUsr, skServ: SecretKey
SkeyServ: ServerKey
PubK: Agent -> PublicKey
SecK: Agent -> SecretKey
SKey: Agent -> ServerKey
realAgent: Agent -> Bool
hk: HashKey
sk: SessionKey
hf: HashFunction
ts1, ts2: TimeStamp
InverseKeys = (PubK, SecK), (pkUsr,
skUsr), (pkServ, skServ), (sk, sk),
(SKey, SKey), (SkeyServ, SkeyServ)

#Processes
INITIATOR(usr, skUsr, nUsr1, nUsr2,
servSys, esId, esCode1, hk, sk) \
knows PubK, SecK(usr) \
generates nUsr1, nUsr2, hk, sk
RESPONDER(servSys, skServ, nServ, dbServ,
integVer) \
knows PubK, SecK(servSys), SKey(servSys)\
generates nServ, integVer
DBSERVER(dbServ, SkeyServ, servSys, usr,
pkUsr, regExpDate, esId, esCode2,
lastVerDate) \
knows PubK, SKey

#Protocol description
0. -> usr: servSys
[realAgent(servSys) and usr != servSys]
<pkServ:= PubK(servSys)>

1. usr -> servSys: {usr, esId, nUsr1}
{pkServ}
<SkeyServ:= SKey(servSys)>

2. servSys -> dbServ: {usr, esId}
{SkeyServ}
[realAgent(usr) and usr != servSys]
3. dbServ -> servSys: {pkUsr,
regExpDate, lastVerDate}{SkeyServ}
4. servSys -> usr: {servSys, nServ, ts1,
nUsr1}{pkUsr}
[ts1 == now or ts1+1 == now]
5a. usr -> servSys: {hk, sk, nUsr2}
{pkServ}
5b. usr -> servSys: {nServ, ts2}{sk},
((hf(hk, esCode1) % esHMAC1) (+) nServ)
[ts2 == now or ts2+1 == now]
6. servSys -> dbServ: {esId, hk}
{SkeyServ}
7. dbServ -> servSys: {hf(hk, esCode2) %
esHMAC2}{SkeyServ}
[esHMAC1 == esHMAC2]
8. servSys -> usr: {esId, integVer,
nUsr2}{pkUsr}

#Specification
StrongSecret(usr, nUsr1, [servSys])
StrongSecret(usr, nUsr2, [servSys])
StrongSecret(usr, hk, [servSys])
StrongSecret(usr, sk, [servSys])
StrongSecret(usr, esCode1, [servSys])
StrongSecret(servSys, nServ, [usr])
StrongSecret(servSys, integVer, [usr])
StrongSecret(servSys, hk, [dbServ])

170266 VOLUME 7, 2019

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

StrongSecret(dbServ, esCode2, [servSys])
Agreement(usr, servSys, [nUsr1, nUsr2])
Agreement(usr, servSys, [hk, sk])
Agreement(servSys, usr, [nServ])
Agreement(servSys, dbServ, [hk])
TimedAgreement(usr, servSys, 2, [nUsr1,
nUsr2])
TimedAgreement(usr, servSys, 2, [hk, sk])
TimedAgreement(servSys, usr, 2, [nServ])
TimedAgreement(servSys, dbServ, 2, [hk])

#Actual variables
User, ServerSystem, Mallory: Agent
DbServer: DBServer
NServer, NUser1, NUser2, Nm: Nonce
EsId, IntegVer: Message
RegExpiryDate, LastVerifyDate: Date
ESCode1, ESCode2: Secret
PkUser, PkServer, PkMallory: PublicKey
SkUser, SkServer, SkMallory: SecretKey

SKeyServer: ServerKey
Hk: HashKey
Sk, Km: SessionKey
InverseKeys = (PkUser, SkUser),
(PkServer, SkServer), (Sk, Sk), \
(SKeyServer, SKeyServer), (PkMallory,
SkMallory), (Km, Km)
TimeStamp = 0.. 2
MaxRunTime = 1

#Inline functions
PubK(User) = PkUser
PubK(ServerSystem) = PkServer
PubK(Mallory) = PkMallory
SecK(User) = SkUser
SecK(ServerSystem) = SkServer
SecK(Mallory) = SkMallory
SKey(ServerSystem) = SKeyServer
realAgent(User) = true
realAgent(ServerSystem) = true

Initiator(usr, skUsr, nUsr1, nUsr2, servSys, esId, esCode1, hk, sk))

= env?servSys : Agent {usr} → send .usr .servSys.{usr, esId, nUsr1}pkServ

→

�
nServ ∈ Nonce

ts1, ts2 ∈ TimeStamp
integVer ∈ Message

esHMAC1 ∈ HashValues

receive.servSys.usr .{servSys, nServ, ts1, nUsr1}pkUsr →
send .usr .servSys.{hk, sk, nUsr2}pkServ→

send .usr .servSys.{nServ, ts2}sk .
{esHMAC1 Xor nServ} →

receive.servSys.usr .{esId, integVer, nUsr2}pkUsr →
signal.Commit_Initiator .usr .servSys.

nUsr1.nUsr2.hk.sk.nServ→
Session(usr, skUsr, nUsr1, nUsr2, servSys, esId,

eSCode1, hk, sk, nServ, ts1, ts2, integVer)

(43)

Responder(servSys) = |||
integVer ∈ Message

Respond(servSys, skServ, nServ, dbServ, integVer) (44)

where

Respond(servSys, skServ, nServ, dbServ, integVer)

=

�
usr ∈ Agent

esId ∈ Message
pkUsr ∈ PublicKey

nUsr1, nUsr2 ∈ Nonce
regExpDate, lastVerDate ∈ Date

hk ∈ HashKey
sk ∈ SessionKey

ts1, ts2 ∈ TimeStamp
esHMAC1, esHMAC2 ∈ HashValues

receive.usr .servSys.{usr, esId, nUsr1}pkServ→
send .servSys.dbServ.{usr, esId}SkeyServ→

receive.dbServ.servSys.{
pkUsr, regExpDate,

lastVerDate

}
SkeyServ

→

send .servSys.usr .
{
servSys, nServ,
ts1, nUsr1

}
pkUsr

→

receive.usr .servSys.{hk, sk, nUsr2}pkServ→
receive.usr .servSys.{nServ, ts2}sk .
{esHMAC1 Xor nServ} →

send .servSys.dbServ.{esId, hk}SkeyServ→
receive.dbServ.servSys.{esHMAC2}SkeyServ→

signal.RunningResponder .servSys.usr .
nUsr1.nUsr2.hk.sk.nServ→

send .servSys.usr .{esId, integVer, nUsr2}pkUsr →
Responder(servSys)

(45)

VOLUME 7, 2019 170267

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

realAgent(Mallory) = true
realAgent(_) = false

#System
INITIATOR(User, SkUser, NUser1, NUser2,
ServerSystem, EsId, ESCode1, Hk, Sk)
RESPONDER(ServerSystem, SkServer,
NServer, DbServer, IntegVer)
DBSERVER(DbServer, SKeyServer,
ServerSystem, User, PkUser,
RegExpiryDate, EsId, ESCode2,
LastVerifyDate)

#Intruder Information
Intruder = Mallory
IntruderKnowledge = {Mallory, User,
ServerSystem, DbServer, PkUser,
PkServer, SkMallory, PkMallory,
Nm, Km, EsId}

REFERENCES
[1] A. Adapa, F. F.-H. Nah, R. H. Hall, K. Siau, and S. N. Smith, ‘‘Factors

influencing the adoption of smart wearable devices,’’ Int. J. Hum.-Comput.
Interact., vol. 34, no. 5, pp. 399–409, 2018.

[2] Z. A. Solangi, Y. A. Solangi, S. Chandio, M. B. S. A. Aziz,
M. S. B. Hamzah, and A. Shah, ‘‘The future of data privacy and security
concerns in Internet of Things,’’ in Proc. IEEE Int. Conf. Innov. Res.
Develop. (ICIRD), Bangkok, Thailand, May 2018, pp. 1–4.

[3] M. Kaur. (2013). Deceitful Petrol Operators, The Star.
Accessed: Jun. 16, 2014. [Online]. Available: http://www.thestar.
com.my/News/Community/2013/11/06/Deceitful-petrol-operators-Some-
petrol-stations-in-Ipoh-found-tampering-with-petrol-pumps/

[4] M. A. Ibrahim, Z. Shukur, N. Zainal, and A. A. A. Al-Wosabi, ‘‘Software
manipulative techniques of protection and detection: A review,’’ ARPN J.
Eng. Appl. Sci., vol. 10, no. 23, pp. 17953–17961, 2015.

[5] G. Anand. (2013). Electronic Fuel Pumps Not Tamper-Proof
TheHindu.com. Accessed: Jun. 16, 2014. [Online]. Available:
http://www.hindu.com/2008/08/24/stories/2008082450410100.htm

[6] J. Reckendorf, N. Zisky, J. Wolff, and J. Neumann, ‘‘INSIKA-
demonstration quickstart instructions,’’ Physikalisch-Technische Bunde-
sanstalt, Berlin, Germany, Tech. Rep. 0.1.2en, 2010.

[7] G. Santucci, ‘‘The Internet of Things: Between the revolution of the Inter-
net and the metamorphosis of objects,’’ Forum Amer. Bar Assoc., vol. 20,
pp. 1–23, Mar. 2010.

[8] S. Babar, A. Stango, N. Prasad, J. Sen, and R. Prasad, ‘‘Proposed embed-
ded security framework for Internet of Things (IoT),’’ in Proc. 2nd Int.
Conf. Wireless Commun. Veh. Technol. Inf. Theory Aerosp. Electron. Syst.
Technol. (Wireless VITAE), Feb./Mar. 2011, pp. 1–5.

[9] F. Brasser, K. B. Rasmussen, A. Sadeghi, and G. Tsudik, ‘‘Remote attes-
tation for low-end embedded devices: The prover’s perspective,’’ in Proc.
53nd ACM/EDAC/IEEEDesign Automat. Conf. (DAC), Jun. 2016, pp. 1–6.

[10] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon,
J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen, ‘‘Principles of remote
attestation,’’ Int. J. Inf. Secur., vol. 10, no. 2, pp. 63–81, 2011.

[11] B. Richerzhagen, D. Stingl, J. Ruckert, and R. Steinmetz, ‘‘Simonstrator:
Simulation and prototyping platform for distributed mobile applications,’’
in Proc. 8th EAI Int. Conf. Simulation Tools Techn., 2015, pp. 1–6.

[12] C. W. Elverum and T. Welo, ‘‘The role of early prototypes in concept
development: Insights from the automotive industry,’’ Proc. CIRP, vol. 21,
pp. 491–496, Nov. 2014.

[13] C. Basile, S. Di Carlo, and A. Scionti, ‘‘FPGA-based remote-code integrity
verification of programs in distributed embedded systems,’’ IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev., vol. 42, no. 2, pp. 187–200, Mar. 2012.

[14] A. Gargantini, E. Riccobene, and P. Scandurra, ‘‘Combining formal meth-
ods and MDE techniques for model-driven system design and analysis,’’
Int. J. Adv. Softw., vol. 3, no. 1, pp. 1–17, 2010.

[15] A. Gargantini, E. Riccobene, and P. Scandurra, ‘‘Integrating formal meth-
ods with model-driven engineering,’’ in Proc. 4th Int. Conf. Softw. Eng.
Adv., Sep. 2009, pp. 86–92.

[16] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, ‘‘Formal
methods: Practice and experience,’’ ACM Comput. Surv., vol. 41, no. 4,
p. 19, 2009.

[17] A. A. A. Al-Wosabi and Z. Shukur, ‘‘Software tampering detection in
embedded systems—A systematic literature review,’’ J. Theor. Appl. Inf.
Technol., vol. 76, no. 2, pp. 211–221, 2015.

[18] A. A. A. Al-Wosabi, Z. Shukur, and M. A. Ibrahim, ‘‘Framework for
software tampering detection in embedded systems,’’ in Proc. Int. Conf.
Elect. Eng. Inform. (ICEEI), Aug. 2015, pp. 259–264.

[19] D. K. Nilsson, L. Sun, and T. Nakajima, ‘‘A framework for self-verification
of firmware updates over the air in vehicle ECUs,’’ in Proc. IEEE Globe-
com Workshops, Nov. /Dec. 2008, pp. 1–5.

[20] A. Rogers and A. Milenković, ‘‘Security extensions for integrity and con-
fidentiality in embedded processors,’’ Microprocess. Microsyst., vol. 33,
nos. 5–6, pp. 398–414, 2009.

[21] P. Kumari, F. Kelbert, and A. Pretschner, ‘‘Data protection in het-
erogeneous distributed systems: A smart meter example,’’ in Proc.
Dependable Softw. Crit. Infrastruct. (INFORMATIK), Berlin, Germany,
Oct. 2011.

[22] F. D. Garcia and B. Jacobs, ‘‘Privacy-friendly energy-metering via
homomorphic encryption,’’ in Security and Trust Management
(Lecture Notes in Computer Science), vol. 6710. Heidelberg,
Germany: Springer, 2011, pp. 226–238. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-642-22444-7_15

[23] S. Nimgaonkar, M. Gomathisankaran, and S. P. Mohanty, ‘‘TSV: A novel
energy efficient Memory Integrity Verification scheme for embedded sys-
tems,’’ J. Syst. Archit., vol. 59, no. 7, pp. 400–411, Aug. 2013.

[24] H. M. J. Almohri, D. Yao, and D. Kafura, ‘‘Process authentication for high
system assurance,’’ IEEE Trans. Dependable Secure Computing, vol. 11,
no. 2, pp. 168–180, Mar. 2014.

[25] A. K. Dalai, S. K. Panigrahy, and S. K. Jena, ‘‘A novel approach
for message authentication to prevent parameter tampering
attack in Web applications,’’ Proc. Eng., vol. 38, pp. 1495–1500,
Jan. 2012.

[26] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Callas, and J. Walker, ‘‘The Skein hash function family,’’ SHA3 Sub-
mission NIST (Round 3), Version 1.3, Oct. 2010.

[27] G. Myles and H. Jin, ‘‘A metric-based scheme for evaluating tamper
resistant software systems,’’ in Proc. IFIP Int. Inf. Secur. Conf., vol. 330.
Berlin, Germany: Springer, 2010, pp. 187–202.

[28] A. Perrig, P. Khosla, A. Seshadri, M. Luk, and L. van Doorn, ‘‘Verifying
integrity and guaranteeing execution of code on untrusted computer plat-
form,’’ Google Patents US 9 177 153 B1, Nov. 3, 2015.

[29] J. Kaczmarek and M. R. Wrobel, ‘‘Operating system security by integrity
checking and recovery using write-protected storage,’’ Inf. Security, IET,
vol. 8, no. 2, pp. 122–131, Mar. 2014.

[30] D. M. Lerner, ‘‘User-wearable secured devices provided assuring authen-
tication and validation of data storage and transmission,’’ U.S. Patent
10, 154, 031, B1, Dec. 11, 2018.

[31] I. J. Forster, ‘‘Wearable NFC device for secure data interaction,’’
U.S. Patent 20 180 041 859 A1, Feb. 8, 2018.

[32] H.-K. Kong, M. K. Hong, and T.-S. Kim, ‘‘Security risk assessment
framework for smart car using the attack tree analysis,’’ J. Ambient Intell.
Humanized Comput., vol. 9, no. 3, pp. 531–551, 2018.

[33] B. Weyl et al., ‘‘Secure on-board architecture specification,’’ EVITA
Project, Darmstadt, Germany, Tech. Rep. Deliverable D3.2, ver. 1.3,
Aug. 2011.

[34] R. K. Rajasekaran, ‘‘Cyber-security challenges for wireless networked
aircraft,’’ in Proc. Integr. Commun. Navigat. Surveill. Conf. (ICNS),
Apr. 2017, pp. 3C3-1–3C3-10.

[35] C. Alcaraz, J. Lopez, R. Roman, and H.-H. Chen, ‘‘Selecting key man-
agement schemes for WSN applications,’’ Comput. Secur., vol. 31, no. 8,
pp. 956–966, 2012.

[36] S. K. Abd, S. A. Al-Haddad, F. Hashim, A. B. H. Abdullah, and S. Yussof,
‘‘Enhance data transferred security in cloud using combination of dynamic
eventual batch rekeying with DHKE and AES encryption algorithm,’’
J. Eng. Appl. Sci., vol. 11, no. 3, pp. 384–389, 2016.

[37] S. Subashini and V. Kavitha, ‘‘An adaptive security framework delivered
as a service for cloud environment,’’ J. Eng. Appl. Sci., vol. 7, nos. 8–12,
pp. 468–482, 2012.

170268 VOLUME 7, 2019

A. A. A. Al-Wosabi, Z. Shukur: Secure Protocol for Remote-Code Integrity Attestation of ESs: The CSP Approach

[38] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang, ‘‘Remote attes-
tation to dynamic system properties: Towards providing complete system
integrity evidence,’’ in Proc. IEEE/IFIP Int. Conf. Dependable Syst. Netw.,
Jun./Jul. 2009, pp. 115–124.

[39] S.Mao and T.Wolf, ‘‘Hardware support for secure processing in embedded
systems,’’ IEEE Trans. Comput., vol. 59, no. 6, pp. 847–854, Jun. 2010.

[40] T. S. Hjorth and R. Torbensen, ‘‘Trusted domain: A security platform for
home automation,’’ Comput. Secur., vol. 31, no. 8, pp. 940–955, 2012.

[41] D. He and S. Zeadally, ‘‘Authentication protocol for an ambient assisted
living system,’’ IEEE Commun. Mag., vol. 53, no. 1, pp. 71–77, Jan. 2015.

[42] O. Gelbart, E. Leontie, B. Narahari, and R. Simha, ‘‘A compiler-hardware
approach to software protection for embedded systems,’’ Comput. Elect.
Eng., vol. 35, no. 2, pp. 315–328, Mar. 2009.

[43] A. Venčkauskas, N. Jusas, I. Mikuckienè, and S. Maciulevičius, ‘‘Gener-
ation of the secret encryption key using the signature of the embedded
system,’’ Inf. Technol. Control, vol. 41, no. 4, pp. 368–375, 2012.

[44] B. Alomair and R. Poovendran, ‘‘Information Theoretically Secure
Encryption with Almost Free Authentication,’’ J. Univers. Comput. Sci.,
vol. 15, no. 15, pp. 2937–2956, 2009.

[45] H. Krawczyk, ‘‘The order of encryption and authentication for protecting
communications (or: how secure is SSL?),’’ in Proc. Annu. Int. Cryptol.
Conf., 2001, pp. 310–331.

[46] E. Barker, Recommendation for Key Management: Part 1: General (Revi-
sion 4), Standard DRAFT NIST SP 800-57, 2015.

[47] A. A. A. Al-Wosabi and Z. Shukur, ‘‘Proposed System Architecture for
Integrity Verification of Embedded Systems,’’ J. Eng. Appl. Sci., vol. 12,
no. 9, pp. 2371–2376, 2017.

[48] Z. Shukur, N. Alias, M. H. M. Halip, and B. Idrus, ‘‘Formal specification
and validation of selective acknowledgement protocol using Z/EVES the-
orem prover,’’ J. Appl. Sci., vol. 6, no. 8, pp. 1712–1719, 2006.

[49] M. A. Sullabi and Z. Shukur, ‘‘SNL2Z: Tool for translating an informal
structured software specification into formal specification,’’ Amer. J. Appl.
Sci., vol. 5, no. 4, pp. 378–384, 2008.

[50] G. Lowe, P. Broadfoot, C. Dilloway, and M. L. Hui, ‘‘Casper: A compiler
for the analysis of security protocols—User manual and tutorial,’’ Tech.
Rep., 2009.

[51] A. Pironti, D. Pozza, and R. Sisto, ‘‘Automated formal methods for security
protocol engineering,’’ in Cyber Security Standards, Practices and Indus-
trial Applications: Systems and Methodologies. Hershey, PA, USA: IGI
Global, Aug. 2011, pp. 138–166.

[52] A.W. Roscoe,Understanding Concurrent Systems, vol. 42. NewYork, NY,
USA: Springer-Verlag, 2010.

[53] P. Y. A. Ryan, S. A. Schneider, M. H. Goldsmith, G. Lowe, and
A.W. Roscoe, The Modelling and Analysis of Security Protocols: The CSP
Approach. London, U.K.: Pearson, Dec. 2010.

[54] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W. Roscoe,
‘‘FDR3: A parallel refinement checker for CSP,’’ Int. J. Softw. Tools
Technol. Transf., vol. 18, no. 2, pp. 149–167, Apr. 2016.

[55] M. Frappier, B. Fraikin, R. Chossart, R. Chane-Yack-Fa, and M. Ouenzar,
‘‘Comparison of model checking tools for information systems,’’ in Proc.
Int. Conf. Formal Eng. Methods, 2010, pp. 581–596.

[56] A. Dennis, B. H. Wixom, and R. M. Roth, System Analysis and Design,
5th ed. Hoboken, NJ, USA: Wiley, 2012.

[57] M. McRoberts, Beginning Arduino. New York, NY, USA: APress, 2010.
[58] N. Davidovic, D. Rančić, and L. Stoimenov, ‘‘Ardsense: Extending mobile

phone sensing capabilities using open source hardware for new citizens as
sensors based applications,’’ in Proc. 16th AGILE Conf. Geographic Inf.
Sci., Leuven, Belgium, May 2013, pp. 14–17.

[59] P. Wright and A. Manieri, ‘‘Internet of Things in the Cloud,’’ in Proc. 4th
Int. Conf. Cloud Comput. Services Sci., 2014, pp. 164–169.

[60] A. D’Ausilio, ‘‘Arduino: A low-cost multipurpose lab equipment,’’ Behav.
Res. Methods, vol. 44, no. 2, pp. 305–313, 2012.

ABDO ALI A. AL-WOSABI received the master’s
degree in computer science (information security)
from the UTM Advanced Informatics School (for-
merly CASE), University Technology Malaysia,
in January 2011, and the Ph.D. degree in computer
science from the Universiti Kebangsaan Malaysia,
in May 2018. He is currently a Solutions Archi-
tect with Blockchain Centre, BIT Group Sdn Bhd,
Cyberjaya, Malaysia. His current researches focus
on blockchain technologies and smart contracts,

and cyber security. He received the Innovative Product Award by FTSM,
UKM University for obtaining Intellectual Property in the Doctoral Pro-
gramme, in November 2018, and the Postgraduate Best Student Award by
the UTM’s Graduate Studies Academic Committee, based on his excellent
academic achievements, in 2011.

ZARINA SHUKUR received the Ph.D. degree
from the University of Nottingham, in 1999. She
is currently a Professor with the Cyber Secu-
rity Center, Universiti Kebangsaan Malaysia. Her
research interests include formal methods and
cyber security.

VOLUME 7, 2019 170269

