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ABSTRACT Occlusion is a critical issue that affects the accuracy for light field depth estimation. In the
presence of occlusions, the photo-consistency property is broken, making ambiguity near occlusion areas.
In this paper, we proposed using multi-orientation partial angular coherence to achieve accurate depth
estimation by which the occlusions are explicitly treated. Unlike previous approaches, the correspondence
is partially measured along several lines with different directions. We show that depending on the occlusion
edge orientation, the pixels along the occlusion orientation still preserve photo-consistency. By computing
the partial angular coherence in four potential directions, we can obtain a sharp initial depth map. Since
occlusions are precisely tackled, the outliers can be mostly removed by fast guided filtering on the cost
volume. As a result, the depth accuracy at occlusion boundaries is greatly improved. The proposed method
can obtain sharp transition edges at occlusion boundaries and has no requirement for extra edge information.
Experimental results on a recent benchmark demonstrate that the proposed method outperforms the state-of-
the-art algorithms in the accuracy metrics. Further experiments on real-world scenes also show the superior

performance of the proposed method.

INDEX TERMS Depth estimation, light field, angular coherence, occlusion handling.

I. INTRODUCTION
Light field (LF) imaging combines optics with computation
to provide more attractive scene capture and analysis than
conventional imaging. For a light field camera, the sensor
records not only the intensity of the rays but also the direc-
tions. Therefore, angular information is maintained in LF
imaging [1]. To achieve this, the special optical imaging
system is required to identify the light rays’ direction, such as
multi-view camera systems [2], micro-lens based plenoptic
cameras [3], [4] and aperture-coded plenoptic cameras [5].
The precise combination of the novel imaging system and
algorithms enables improved scene analysis, e.g., post refo-
cusing [6], saliency detection [7] and depth estimation [8].
In light field imaging, accurate depth estimation is a
hot and challenging topic, and it is important for further
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applications such as 3D reconstruction and ligh field editing.
In Ref. [9], a taxonomy of dense light field depth estimation
algorithms is presented. The state-of-art algorithms [10]-[15]
and many more cited in the references can provide accept-
able results. According to the LF representations they rely
upon, these algorithms can be classified into several cate-
gories. Frequently-used representations include sub-aperture
views, epipolar plane images (EPIs), focal stacks and angular
patches. Depth from sub-aperture views is an ancient tech-
nique, and it was recognized as multi-view stereo [16] in
the early days. Because it requires matching the same image
elements in several views, the amount of computation is huge.
EPI is a novel approach to represent depth information as
line features [17], which re-arrange the multi-view images
according to their view positions. Several methods transform
the problem of estimating depth into detecting the slopes of
the lines, thus computation can be greatly reduced compared
with multi-view stereo matching. Depth from the focal stack

169123


https://orcid.org/0000-0003-1369-370X
https://orcid.org/0000-0001-7733-9254
https://orcid.org/0000-0003-0330-6032
https://orcid.org/0000-0002-5829-9864
https://orcid.org/0000-0003-2103-8748
https://orcid.org/0000-0002-2243-6644
https://orcid.org/0000-0001-6391-5919
https://orcid.org/0000-0003-4807-1345

IEEE Access

Z. Guo et al.: Accurate Light Field Depth Estimation Using Multi-Orientation Partial Angular Coherence

is also recognized as depth from defocus/focus (DfD/DfF),
and depth can be inferred based on the in-focus measurement.
The angular patch will have a constant value for a point
when focused at the correct depth, and depth can be esti-
mated based on minimizing angular patch variance. However,
these traditional methods have problems around occlusion
regions, resulting in outliers and fuzzy transitions at occlusion
boundaries.

Removing the influence of occlusions on the light field
depth estimation is a tough problem. Since the photo-
consistency assumption no longer holds in the presence of
occlusions, the rays from an object will be partially blocked
from the light field camera when an occlusion occurs. As a
result, the occluded points are only visible in several sub-
aperture views. Consequently, the methods based on the
photo-consistency assumption will fail at occluded pixels,
causing smooth transitions and outliers around occlusion
boundaries. There have been several methods of handling
occlusions. Chen et al. [18] proposed a bilateral metric on
angular patches to indicate the probability of occlusions.
Wang et al. [13] found that although pixels at occlusion
boundaries do not preserve photo-consistency in general,
they are still consistent in a subset of regions. Moreover,
the occlusion edge has the same orientation as that of the line
separating the two regions. Strecke ef al. [8] used the partial
focal stack symmetry to handle occlusions, and proposed a
refinement method using joint regularization of depth and
normals.

In this paper, we proposed a new method to deal with
occlusions. The proposed method is based on partial angu-
lar coherence and is free of being affected by occlusions.
We compute the coherence with only a line subset of the
angular patches in multiple orientations. Assumption is made
that if the occlusion is present, it occurs only in one direction.
This is true when the occlusion boundary is a straight line
or the baseline is small enough. For light field cameras and
real scenes, the assumption is reasonable. Under such the
assumption, the partial angular patch will have the minimum
cost when the direction is parallel to that of the occlusions.
By comparing the partial coherence in several directions,
we can tackle problems around occlusions. The proposed
method is insensitive to occlusions and has no requirement for
the occlusion information. After the initial depth estimation,
further refinement is applied by a simple guided filtering
process on the cost volume.

Il. OCCLUSIONS AND PARTIAL ANGULAR COHERENCE
Angular coherence will play an important role in our method,
so we discuss the traditional angular coherence and explain
why occlusions can be handled by the proposed partial
coherence.

A. ANGULAR COHERENCE

Firstly, we introduce our notations. The light field is param-
eterized by two-plane parameterization (2PP), as shown in
Fig.1(a). In 2PP, the positions and directions of a ray are
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FIGURE 1. lllustration of parameterization of the light field camera.
(a) 2PP parameterization. (b) The two parameterization planes for the
micro-lens based light field camera are both in the image side. (c) The
two parameterization planes for the camera-array based light field
camera are both in the object side.

recorded by its intersections with two parallel planes whose
separation is D. Thus a light field Lr(u, v, s, t) is parame-
terized by the (u,v) and (s,t) planes. Therefore, (s,t) are the
spatial coordinates and (u,v) are the angular coordinates. For
different light field cameras, the two parameterization planes
are distinct. As shown in Fig.1(b), for the micro-lens based
light field cameras, the u-v plane is on the exit pupil plane
of the main lens or on the sensor, because the two planes
are conjugate. As shown in Fig.1(c), for the camera arrays,
the positions of each viewpoints indicate the (u,v) position.
It can be seen that the two parameterization planes for the
micro-lens based light field cameras are located in the image
side, and the planes for camera-array based light field cam-
eras are in the object side. The angular patch can be obtained
from the 4D light field by fixing the (s,t) coordinates. The
values of the pixels in the angular patch denote the radiance
distribution of the spatial point in different directions.

For an input light field Ly, we can shear the light field to
propagate it to a new (s,t) plane which is D from the u-v
plane [3], where « is the ratio of the initial separation to the
new separation. The shearing process is as follows:

LoGu, v, s, 1) = Lo(u, v, § (@), ¥ (@), 1)

where ¢ (a) = s+ u(l — &) and (o) = 1 +v(1 — é). Given
the ground-truth depth o, (s, 1) of every spatial point, we can

refocus each spatial pixel to its corresponding depth as
Lo, (u, v, 5,1) = Lo(u, v, 8/ (ctge (s, ), ¥ (age (5. 1)) (2)

Under Lambertian assumption, when a point is refocused to
the correct depth, the pixels of the angular patch will exhibit
angular coherence. In other words, for non-occluded spatial
pixels, the values of these pixels in the angular patch are
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almost the same since all the rays come from a single (Lam-
bertian) spatial point in the scene, just as depicted in Fig.1(b)
and (c). The phenomenon is called angular coherence. There
are two forms to evaluate the angular coherence. The first
one is done by calculating the variance among the angular
pixels as

S (L(u, v, s, 1) — Lu, v, s, 1))

2 s
o= , (3
NLtNV

where L is the mean value of all the angular pixels, and
(Ny, N,) are the widths of the u-v planes. This metric is widely
used in multi-view stereo. The other one is based on a unique
property of the central view where the angular coordinates
are at (#, v) = (0, 0). According to Equation (1), the shearing
amount for the central view is independent of . At every «,

Ly(0,0,s,1) =1, 1), “)

where /€ is the central view of the light field. That is, regard-
less of the focus, the camera at the central angular coordinate
always images the same spatial point. According to Equa-
tion (4), the angular coherence can also be calculated by

> (L, v, s,1) = Is, 1))
2 u,v
o° = . 5

NN, )
Generally, the two metrics are in alignment with each other.
But confusion may occur in textureless regions for the first
metric. Even at incorrect depth, the angular pixels may exhibit
low variance. However, it is hard for the second metric to deal
with a noisy light field, especially for the light fields in which
the central view has low signal-to-noise-ratio (SNR).

B. LIGHT FIELD OCCLUSION MODELING

Occlusion is an unavoidable part of light field imaging, and
it is one of the main causes of errors in light field depth
estimation. We firstly analyze the impact of occlusions on
the angular patches based on the physical image formation.
We assume that the pixel is occluded by only one occluder
in one direction. This is true when occluder boundaries are
straight or when the equivalent baseline is small enough,
ensuring that if the occlusion occurs, it separates the angular
patch into two parts with a straight line. In addition, the occlu-
sion edge can also be approximated by a line since the spatial
patch the light field camera looks at is small. The assumption
is quite reasonable in real-world scenes and for current light
field cameras, and has been adopted by Wang et al. [19].
However, in our method, this assumption is not strict and will
be described in the next section in detail.

As in Fig.2, the rays from point A is partially blocked by
the yellow occluder. For a proof, we use more variables as
shown in Fig.2, where y is the slope of the occlusion edge
and £ is the height of the occluder. The normal of the blue
plane in Fig.2 is

n=mn; Xm

= (—yD —dy),D—dy, r(xo —x1) — (o —y1). (6)
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FIGURE 2. The occlusion model and its effects on the captured light field.

The plane equation is
P(x,y,2) =n-(x —x0,y —y0,2—D)=0. )

Thus, the slope due to the occlusion in the angular patch is

the intersection of the u-v plane and P(x, y, z):

Yodi =D yaD = xodi) _

D —d, D—dy
®)

Therefore, the slope of the projection line on the angular patch
is y. This indicates that the occlusion edge in the angular
patch has the same orientation as the occlusion edge in the
spatial domain.

The intercept of the line is a function of the object posi-
tion, occluder position and the occluder’s slope. For a more
intuitive understanding about the intercept, we use 1-D sim-
plification as in Fig.3, and rewrite the intercept part as

s(x,y)=y—yx—

yodi —yi1D  yodi — yi1D + yidi — yid,
D —d, o D — d;
di(yo —y1)

= p—a ©)
With a geometric analysis in Fig.3, Equation (9) is easily
derived, and here we do not conduct a detailed derivation.
Similar 1-D analysis has been presented by Sheng et al. [20].
Another part of the intercept is y(x1D — xod1)/(D — dy),
which is similar with Equation (9), but with a ratio factor
of y. This is true because the intercept is the intersection
with y-axis, and when the occlusion edge moves along x-
axis, the corresponding change in the intercept will be scaled
according to the slope.

We also give an intuitive explanation of the above proof.
Consider a simple light field camera with 3 x 3 angular
sampling where the orientation of the occluder is diagonal.
The sub-aperture images and the angular patch of this point
become what is shown in Fig.4(a) and Fig.4(b). Although
the whole angular patch loses photo-consistency, the pix-
els which are not occluded still holds photo-consistency
property. Moreover, the line separating the un-occluded and
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A(3,,D)

s-t plane

FIGURE 3. 1-D illustration of the occlusion model. Using the similarity
relationship, the position of the occlusion edge is easily obtained.

O O
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FIGURE 4. The effects on the captured light field due to occlusions.
(a) The sub-aperture images of the occluded point. (b) The angular patch
of the occluded point.

FIGURE 5. Some occlusion cases in real light field images. The two parts
at the right side are the angular patches of the spatial points in the two
rectangles in the left-side central view, which are colored red and green.

occluded pixels in the angular patch has the same orientation
as that of the occlusion edge. We also present some cases in
real light field images, as shown in Fig.5.

Although the physical occlusion cases are complex,
the angular patch images are simple. As is shown in Fig.5, the
occlusion amount varies for different spatial points while
the slopes of the occlusion edges remain constant, which
is parallel to the occluder edge. For different spatial points
occluded by the same occluder, when the spatial coordinates
vary, the amount of being occluded changes. The shifting
amount of the separating edge can be calculated according to
Equation (9). We take the angular patches in the green box for
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an example. Because occlusion edge is vertical, the occlusion
amount changes only in the horizontal direction, while the
occlusion amount in the red box varies in both dimension with
different scale factors.

C. MULTI-ORIENTATION PARTIAL

ANGULAR COHERENCE

Traditional angular coherence is invalid in the presence of
occlusions. However, according to the above analysis, the
angular pixels along the separation line will still remain
photo-consistent. This is the main motivation of the multi-
orientation partial angular coherence. Instead of evaluating
the angular coherence using all the angular pixels, we only
utilize some subsets of the angular pixels.

Like most light field depth estimation methods, the refer-
ence view is set as the central view in this paper. It is hard to
exactly extract the separating line in the angular patches due
to the complex slopes and occlusion amounts. In this paper,
the multi-orientation lines used to calculate partial angular
coherence are parallel to the occlusion edge but go through
the origin (v = 0, v = 0). In general, the optimal direction
for calculating the partial angular coherence near occlusion
boundaries is parallel to the occlusion edge. As shown in
Fig.6(a), the angular pixels on the red lines, which is parallel
to the occlusion edge, hold photo-consistency property.

FIGURE 6. The optimal directions for evaluating partial angular
coherence in some occlusion cases. (a) Straight line occlusion edge.
(b) Ridge-shaped occlusion edge.

In order to obtain the optimal occlusion direction, we use
four directions to calculate angular coherence: vertical, hor-
izontal and two diagonal directions. After individually com-
puting the partial angular coherence, we compare each with
the other three. However, in the four directions, there may
be no one that is parallel to the occlusion edge. More direc-
tions will provide better performance, but not essentially for
validating our method. In addition, there may be more than
one optimal direction. As shown in Fig.6(a), many cases of
different occlusion amount are present. It can be seen that in
one angular patch, there is often more than one direction in
the four used directions that can ensure photo-consistency,
such as the blue, green and purple lines. The other lines are
not always parallel to the occlusion edge, but the pixels on
these lines have similar pixel values. As shown in Fig.6(b),
if the occluder is not a straight line and the angle is less than
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180°, there will also be extra lines on which the pixels have
photo-consistency. However, for the hill-shaped occluders,
it is hard to find an optimal direction. In other words, if the
angular pixels on the four candidate directions are from the
un-occluded rays, our method will perform well. For complex
occlusion situations, rotation will bring limitations to our
method, but the degradation is not severe.

In fact, the partial coherence is valid by utilizing the rays
that are not occluded. In the optics, this can be achieved by
using a line mask on the main lens plane or a “line” lens.
If the direction of the line is equal to that of the occlusion,
the occluder will not be observed by the camera. With a tradi-
tional camera, this is not practical because of the uncertainty
of the occlusion direction. A light field camera records the
direction for each ray; thus, it is capable of recording and
resolving the angular coherence in any direction in a single
one snapshot. In other words, an adaptive line mask is formed
for every spatial point by computation. By choosing the right
direction, depth can be inferred near occlusion border. Gen-
erally, it is impossible to utilize such a physical adaptive line
mask in photography. With the strong power brought by the
combination of novel optics and computations, the light field
camera enables complex analysis about the scene.

Ill. DEPTH ESTIMATION ALGORITHM

In this section, we present a compact algorithm for depth esti-
mation using the proposed partial angular coherence. For the
initial depth estimation, we consider four possible occlusion
orientations and we use a guided filter [21] for cost volume
refinement to generate the final depth map.

A. INITIAL DEPTH ESTIMATION

The reference view is chosen as the central view to define
the direction of observation. To obtain the light field corre-
sponding to different depth, we can shear the whole light field
by Equation (1). In order to make the shearing process more
concise, we re-write the right-side of Equation (1) to be

Lo, v, 5 @), 7 (@) = L{V( @), /@),  (10)

where d = r x u(l — 1 / «) is the disparity between the
current view and the central view. r = Au / As is a ratio
to deal with the unequal sampling rates in the spatial and
angular dimensions. In fact, the shearing process is a linear
shift on each individual view with corresponding disparity.
In practice, we translate each view within a disparity range.
Here we use line-shaped masks to pick up the desired
angular pixels. The masks are applied to the sheared light
field to calculate the variance according to Equation (5) by

3 (L5 (d), ¥ (d)) — I(s, 1))
N,N, ’

oy (d) =
{(u,)IMP (u,v)#0}
(11)

where MP(u, v) are the masks defined by the directions for
evaluating the partial angular coherence. Considering the
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discussion in section II, we compute the partial angular coher-
ence in four directions around the origin of the angular coor-
dinates. Since we utilize four directions whose angle are 0°,
45°, 90° and 45° in our method, we will use the angle as
the superscript. In addition, we still compute the full angular
coherence and we denote its superscript as ALL. For example,
assuming a light field with 3 x 3 sub-aperture images, in our
setup, the masks are

1 0 0 0 0 1
M¥=10o 1 o], Mm*® =0 1 0],
0 0 1 1 0 0
0 0 0 0 1 0
M=(1 1 1), M*=[0 1 0], and

0 0 0 0 1 0
11 1

MALL =1 1 1 (12)
1 1 1

An advantage to apply such a mask is that we can take
vignetting into account with little effort if necessary. The
weights in the mask could be modified according to the
angular coordinates of each view.

To further control the robustness against noise, we use the
following cost function:

o, (d)
¢(d) = 1 — exp(——=—-), (13)
20

where o; controls the sensitiveness to noise. The value for
every pixel will be globally minimal at the ground-truth depth
in the partial angular patch of the same orientation with the
occlusion boundary. Thus, the initial depth can be obtained
by global optimization for each pixel within all the partial
angular coherences:

dinit
= arg min(min(¢°(d), 9*°(d), ¥ (d), 94 (d), p*1E())).
(14)

We take the scene dino for an example to present the work-
ing process of the initial estimation, as shown in Fig.7. It can
be seen that the initial depth map has sharp edges around
occlusion boundaries, proving that our method can tackle
occlusion problems in practice. The partial angular coherence
cost of an occluded pixel marked in red in Fig.7(a) is com-
puted in Fig.7(b). The cost function is depicted in Fig.7(c) and
the initial depth map is Fig.7(d). The occlusion orientation
is vertical, thus the partial angular pixels in this direction
have significantly lower variance than that of other directions.
Even if the point is defocused, the partial angular pixels that
are parallel to the occlusion orientation will still have lower
variance. For the point around the occlusion boundary marked
red in Fig.7(a), its vertical partial angular coherence cost
keeps at a low level in all disparity labels and reaches the
globally minimum value at the ground-truth disparity.
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FIGURE 7. The working principle of the proposed method. (a) The input
light field image. (b) The partial angular coherence is calculated in
multiple directions. (c) The cost function of the spatial pixel

marked red in (a). (d) The initial depth map.
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FIGURE 8. The comparison before and after guided filtering for a certain
slice in the cost volume. (a) The initial cost. (b) After filtering guided by
the central view. The values are normalized to [0,255] for display.

B. DEPTH OPTIMIZATION
Just as depicted in Fig.7, the initial depth map typically con-
tains outliers due to noise and inherent matching uncertainty,
especially in the noisy and textureless regions. Therefore,
depth refinement methods are widely used in previous works.
In order to refine the initial depth map, typical methods are
either within a Markov random field (MRF) or a variational
framework [22]. A light field image typically involves a
large number of views and depth labels. Both frameworks
are global approaches which are computationally expensive
when being applied to light field depth estimation. For fast
cost volume filtering, the guided filter has been widely used
in labeling problems for computer vision tasks [23]. However,
if occlusion regions are not dealt with strictly before filtering,
the guided filter will propagate wrong information to similar
regions.

The proposed initial estimation is able to handle occlusions
during the process. Therefore, we can use guided filtering
to fast optimize the cost volumes. The guided image is the
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FIGURE 9. The center views and the ground-truth disparity of the dataset
used in the experiment.

reference view. The cost volume C to be filtered is the local
minimum of the five partial angular cost function as

C(@) = min(@"(a), ”(@), 9 (@), 9 ™F (@), - (@)).
(15)

Thus, the cost volume C is a three-dimensional array storing
the costs for deciding the depth label. In the filtering process,
each slice of the cost volume is filtered guided by the ref-
erence view. To be more detailed, we take a pixel index i at
depth label « as an example. The output is a weighted average
of all pixels in the cost volume slice:

Cl(a)= Z Wi i ()Cjer)

J

1
Wij=— 3 (+0f = m) (Se+eU) ™ U = ),

k(i )ewx
(16)

where j is the pixel indexes defined by the filter window. For
colorful central views, If, Ij” and uy are 3 x 1 color vectors
and X is the co-variance matrix. U is the identity matrix of
size 3 x 3 and ¢ is a penalty coefficient to control the edge-
preserving ability.

A major assumption here is that depth discontinuity occurs
at occlusion boundaries. Therefore, each slice of the cost
volume will have similar edge information to that in the
central view, as shown in Fig.8(a). This ensures the cost
volume slices are linear with the central view. The out-
lier in the initial depth map results from the outliers in
the cost volumes. By guided filtering, we can propagate
the correct information with higher confidence to the near-
ing regions with noise or less texture. In Fig.8(b), the out-
liers in the slice of the cost volume are mostly removed.
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FIGURE 10. Our depth maps for the training and stratified datasets compared to that of the other methods.
The pseudo-color depth maps are shown using the disparity value.

Therefore, the cost volume slices become smooth while still
preserving sharp edges.

IV. EXPERIMENTS AND RESULTS

In this section, we validate our method both on a recent
benchmark and real light field images taken by a Lytro
camera. For the images in the benchmark, the depth maps
obtained are converted to the corresponding disparity value
to keep consistency with the dataset. For the real light field
images, we calculate the depth label map and evaluate it
with human perception. The o, in Equation (13) is 0.01, and
the radius and the penalty coefficient in the Equation (16)
are 5 and 10™*. When we deal with several scenes in the
stratified group, the o, is increased. The depth labels are
256 1in all the experiments. The proposed algorithm is denoted
as LF_PAC.

A. PERFORMANCE ON THE BENCHMARK DATASET

To test the accuracy of our algorithm, we use the light field
benchmark dataset [14]. The central views and ground-truth
disparity maps of the light fields used are shown in Fig.9.
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The results in Fig.10 demonstrate the superior performance
of the partial angular coherence in depth estimation. It can
be seen that our method can preserve sharper transitions
around occlusion boundaries in all scenes than the five state-
of-the-art algorithms, which serve as a baseline to stimulate
further progress. Among these algorithms, LF_OCC is the
most similar one to our method. It proposed to use the edges in
the central view to perform occlusion-aware depth estimation
and fails at the non-texture areas with depth discontinuity.
The result can be seen in the scene stripes, which is designed
to assess the influence of texture and contrast at occlusion
boundaries. The amount of texture is gradually increasing
from left to right. Our method produces fine depth map
from left to right while LF_OCC fails in the left because it
heavily relies on the edge information. Because the occlusion
handling is independent, our method is occlusion-free.

For further quantitative assessment, an overview of the
results and a comparison for BadPixel(0.07) and MSE are
shown in Table.1 and Table.2. The BadPixel(0.07) is cal-
culated by the percentage of the pixels that differ from the
ground-truth disparity by more than 0.07 pixels. The num-
ber in bold shows the best metric among the results of the
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Chlorophytum Bycicle

Central View

FIGURE 11. Our depth maps for real-world scenes. The first two columns are the results for images
captured by a Lytro FO1 camera, and the latter two columns for Lytro Illum.

TABLE 1. Badpixel(0.07) comparison with the baseline algorithms?.

LF O LF_P

Scene EPI1 EPI2 LF cC MV AC
Boxes 2445 2980 23.02 2652 21.64 20.32
Cotton 1393  16.69 7.83 6.22 9.25 4.20
Dino 1035 15.67 19.03 1491 6.29 4.08
Sideboard 18.38 1895 2199 1850 17.30  8.65
Backgammon  21.33  22.08  5.52 19.01  8.92 2.29
Dots 62.00 46.53  2.90 5.82 4559 7.23
Pyramids 0.86 1.08 1235 3.17 0.78 0.21
Stripes 25.81 23.81 3574 18.41 46.19 5.12

“ BadPix(0.07): The percentage of pixels with errors more than 0.07 pixels.
Lower scores are better and the best score among the six algorithms are in
bold.

TABLE 2. MSE comparison with the baseline algorithms?.

LF O LF P

Scene EPI1 EPI2 LF cC MV AC
Boxes 8.72 1093 1743 9.85 8.59 9.39
Cotton 2.25 4.32 9.17 1.07 3.44 1.05
Dino 1.23 2.07 1.16 1.14 0.75 0.43
Sideboard 2.85 4.65 5.07 2.30 1.89 1.10
Backgammon  9.56 20.78 13.01 21.59 1323 3.65
Dots 5.73 6.66 5.68 3.30 7.26 4.92
Pyramids 0.03 0.02 0.27 0.10 0.05 0.01
Stripes 2.67 6.10 17.45  8.13 12.17  1.68

“ MSE: The mean squared error over all pixels, multiplied with 100. Lower
scores are better and the best scores among the six algorithms are in bold.

compared algorithms. We get better results than the previ-
ous methods in both metrics except for the scene dots and
boxes. The scene named boxes contains complex occlusion
orientations and the occlusion changes quickly. This breaks
the basic assumption of our method, resulting in a large
number of outliers around the holes. However, although the
MSE is not the best, the Badpixel(0.07) is still best due
to the accurate depth extraction near occlusion boundaries.
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A way to remedy this problem is to use more orientations
and less angular pixels corresponding to the un-occluded
rays. In addition, the improvement is huge on the quantitative
metrics. It is worth noting that the Badpixel(0.07) of the scene
Backgammon ranks first in the current benchmark is 2.937,
and our score is 2.293. Another outlier is the performance
on the stratified scene dots, with the unsatisfactory results in
the lower right regions. Since our method uses partial angular
pixels to compute coherence, the robustness against noise
is inevitably reduced. A way to remedy this is to combine
several cues like Tao et al. [24].

B. REAL LIGHT FIELD IMAGES

To test the performance of the proposed method on real-world
images, we evaluate on light field images captured by Lytro
FO1 and Illum cameras. The light field images of the Illum
camera is from a freely available EPFL [25] datasets. The
images of the FO1 camera is taken by ourselves and the decod-
ing method for the FO1 image is from Dansereau ef al. [26].
The results are shown in Fig.11. Clearly, our depth maps
have sharp edges but with remaining outliers in the low-
SNR regions. This is due to the noise in the capturing
and decoding process. The depth results from the LF_OCC
are placed in the second row. It can be seen our depth
maps are similar to that of the LF_OCC, while ours are a
little better at occlusion edges. In some occlusion bound-
aries where occlusion textures are weak, LF_OCC fails to
maintain sharp edges. The reason accounting for this is
that they heavily rely on the edge information in the cen-
tral view. If the edge detection fails, the depth estimation
will also fail to keep sharp transitions. Our results can also
be further optimized by combining more cues to provide
better robustness.

VOLUME 7, 2019



Z. Guo et al.: Accurate Light Field Depth Estimation Using Multi-Orientation Partial Angular Coherence

IEEE Access

V. CONCLUSION

In this paper, we proposed an accurate depth estimation
method which can deal with occlusions explicitly for light
field images. We show that when occlusions present, although
the whole angular patch will lose photo-consistency property,
a line subset of the pixels still exhibit photo-consistency.
Utilizing this unique phenomenon, we can tackle occlusions
without knowing any information about the occlusion edges
and orientations. The initial depth estimation is accomplished
by using four directions and can obtain sharp edges with sev-
eral outliers. For depth map optimization, because the occlu-
sions are well dealt with during initial estimation, we used
guided filtering on each cost volume slice to remove the
outliers in the initial depth map. We demonstrated the benefits
and superior performance on a recent benchmark designed
for light field depth estimation, which quantitatively empha-
sized the high-accuracy and the strong power for handling
occlusions. In addition, we also validated our algorithm on
light fields captured by real Lytro cameras, showing that
our method performs excellently in real light field images,
especially near occlusion boundaries. In future work, it would
be interesting to exploit a rotation-invariant method to deal
with complex occlusion areas and orientations.
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