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ABSTRACT The expression of fuzzy information under multi-attribute decision making (MADM) is
constantly expanded by scholars to solve the problem of uncertain decision making in various application
fields. Such as select project private partners, which is difficult to make an appropriate select in a complex
and changeable environments. Although the aggregation operator under interval-valued hesitant Pythagorean
fuzzy environment is an effective method to solve uncertain decision-making problems, there are still some
drawbacks in aggregating operators that do not consider the information loss. In this paper, we develop
Hamacher operations and Choquet integral-based method to solve select project private partner problem
under probabilistic interval-valued hesitant Pythagorean fuzzy information, which could express decision-
makers’ preference information more flexibly and consider the significance and the correlations among the
elements. Firstly, we define the probabilistic interval-valued hesitant Pythagorean fuzzy set (PIVHPFS) as
an extended mathematical expression of fuzzy sets (FS). Afterward, the Hamacher algorithm concepts are
given under the PIVHPFS environment. Besides, we utilize Hamacher operations and Choquet interval-based
method to develop the probabilistic interval-valued hesitant Pythagorean fuzzy Hamacher Choquet integral
geometric (PIVHPFHCIG) operator. At the same time, some definitions and theorems based on PIVHPFH-
CIG operator are proposed. After that, we utilize the PIVHPFHCIG operator to develop an approach to solve
the MADM problems under the PIVHPFS situation. The new method is feasible to overcome the drawback
of information loss, and it is more reasonable for obtaining a better decision result. Finally, the introduction
of the best project private partner selecting problem proves the effectiveness and feasibility of PIVHPFS,
and the comparison between PIVHPFS and other similar techniques decision methods are also provided.

INDEX TERMS Multi-attribute decision making (MADM), probabilistic interval-valued hesitant
pythagorean fuzzy Hamacher Choquet integral geometric (PIVHPFHCIG) operator, Hamacher algorithm,
Choquet integral-based.

I. INTRODUCTION
Project cooperation is a win-win model, which can ease the
tension in the fund chain during the project construction
process. The selection of the project’s private partners is
in the preparatory stage of the project and plays a deci-
sive role in the completion of the whole project. If the
project leader makes a mistake in the selection of a private
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partner, it will bring many potential risks to the entire project.
The decision making in selecting processes of project pri-
vate partner includes qualitative and quantitative attributes.
In the real-world decision-making process, the evaluation
of qualitative attributes of various enterprises by relevant
experts is fuzzy and uncertain, which is difficult to deter-
mine subjectively with accurate numerical values. The fuzzy
multi-attribute decisionmaking (FMADM) is perfect to avoid
this problem. FMADM is widely applied in many fields, such
as human resource evaluation, green supplier selection and
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military management, etc., especially under the circumstance
of uncertain and complex decision making. It usually has
three steps as selection, evaluation and decision. In 1965,
Zadeh [1] applied fuzzy set (FS) to solve the problem of
incomplete, fuzzy and imperfect in the step of evaluation
in MADM; however, it is not able to present the attitude
of decision-makers. Therefore, in 1986, Atanassov [2] intro-
duced intuitionistic fuzzy set (IFS) to consider the mem-
bership and non-membership degree, this had given a more
complete description of the fuzzy and uncertainty in MADM.
In 2010, Torra [3] introduced hesitant fuzzy set (HFS) which
enabled that one evaluation information may have a set of
different possible values, this provide a huge advantage in
depicting hesitation preference of decision-makers. More
recently, the Pythagorean fuzzy set (PFS) has been applied
by Yager [4] is that fulfills the condition is only required
that the square sum of membership and non-membership
degree should be equal or less than one, rather than the
sum of them should be equal or less than one. Beyond and
dispute, the PFS have more ability than IFS and HFS to
express evaluation information for future MADM problems.
Based on the theory of PFS, Khan and Abdullah [5] intro-
duced interval-valued Pythagorean fuzzy Choquet integral
average (IVPFCIA) operator and extended the concept of
traditional grey relational analysis (GRA) method to solve
MADM problem. Khan et al. [6] proposed a new extension
of classical VIKOR method for MADM problems under
PFS information. Khan et al. [7] based on fuzzy measures,
an interval-valued Pythagorean fuzzy Choquet integral geo-
metric (IVPFCIG) operator is investigated for MAGDM
problems. Khan et al. [8] proposed a novel approach
based on TOPSIS method and the maximizing deviation
method for solving MADM problems under PFS information
and the information about attribute weights is incomplete.
Khan et al. [9] introduced the concept of Pythagorean hesi-
tant fuzzy set (PHFS) and define score and accuracy degree
of PHFS, and developed maximizing deviation method for
solvingMADMproblems. Khan et al. [10] developed several
Pythagorean hesitant fuzzy Choquet integral operators under
PFS information with fuzzy measure for MADM problems.
Khan [11] used the Choquet integral and Einstein opera-
tions to develop Pythagorean fuzzy aggregation operators for
MAGDM problems.

The research on aggregation operators is very rich. Firstly,
Atanassov [12] researched the order operation of the IFS and
the sum and product operations in 1994. Then, De et al. [13]
extend the sum and product of IFS to scalar multiplica-
tion and exponentiation. These aggregation operators are
based on algebraic sum and algebraic product. After that,
Wang and Liu [14] developed the new IFS aggregation oper-
ators based on Einstein t-conorm and t-norm. Hamacher
t-conorm and t-norm [15], which include the parameter
which provides the available choices to decision-makers
during the aggregation operators process and hence makes
it more general and more flexible to model the MADM
than others. Garg [16] defined intuitionistic fuzzy Hamacher

interaction weighted averaging and geometric aggregation
operators with entropy weight to solve MADM problems.
In the real-world decision-making process, the evalua-
tion information among MADM process frequently can-
not be expressed accurately by specific value. In 1989,
Atanassov and Gargov [17] applied interval-valued intu-
itionistic fuzzy set (IVIFS) to overcome the drawback. The
essence of interval-valued is to replace the real numbers value
of membership and non-membership degree by intervals.
After that, many researchers do well in extending differ-
ent interval-valued fuzzy sets for fuzzy MADM. In order
to identify the uncertainty in MADM, Chen et al. [18]
extended HFS to interval-valued hesitant fuzzy set (IVHFS)
in which the membership of elements to a given set is
not precisely defined, but consists of several interval val-
ues. At the same time, a decision-making method based
on interval-valued hesitant preference relation is developed
to consider the differences of opinions between individ-
ual decision-makers. Garg [19] introduced interval-valued
Pythagorean fuzzy set (IVPFS) and two new aggregation
operators, and developed an improved accuracy function
under IVPFS environment by considering the unknown hesi-
tation degree.

In most cases, it is assumed that all elements in different FS
are independent. In 1974, Sugeno [20] introduced fuzzy mea-
sure to simulate the interactions phenomena among decision
criteria. It proved that it is not sufficient to solve the MADM
and multi-attribute group decision making (MAGDM) by
assuming the independence between characters. Therefore,
the Choquet integral [21] is widely applied in MADM
and MAGDM problems, many researchers have extended
it to solve the decision-making problems under different
fuzzy environments. Xu [22] established the intuitionis-
tic fuzzy set operator which may not only consider the
ranks when calculators are concentrated but also point out
the dependence between characters. Wei et al. [23] had
formed up some algorithm and functions based on hesitant
fuzzy Choquet integral in order to solve the problem of
multi-attribute decision-making problem under the circum-
stance of hesitant fuzzy situation. Peng and Yang [24] con-
sidered the importance and correlation between the factors
and applied Pythagorean fuzzy Choquet integral operators
in MADM. Joshi and Kumar [25] developed an improved
intuitionistic fuzzy Choquet integral operator for MADM
Problems. Pasi et al. [26] proposed a multi-criteria decision-
making approach based on the Choquet integral for assess-
ing the credibility of user-generated content. Abdullah and
Mohd [27] considered the interactions among criteria, using
Choquet integral operators to develop an innovation to the
Pythagorean fuzzy Hamacher operator.

The uncertainty in personal decision making is an impor-
tant influence factor of the final decision. Although HFS may
present the opinion of decision-makers, it will fail to represent
the completed decision information since the information
loss problem. Thus, some researchers introduced probability
into fuzzy sets. Zhang et al. [28] applied the probabilistic
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hesitant fuzzy set and its calculation rules. Wang and Li [29]
avoided the inconsistence in decision making by probabilis-
tic hesitant fuzzy information methods based on correla-
tion parameters. It is no doubt that researchers had already
improved a lot in the description of decision making by
hesitant fuzzy sets. Zhai et al. [30] defined the expand
mathematical prescription for PIVHFS, they also established
some newmeasurement models based on PIVIHFSs. In order
to extend the HPFS, Li et al. [31] established probabilis-
tic hesitant multi-attribute decision-making model based on
PHFS and BWM. Farhadinia and Xu [32] defined adjusted
PLTS and transformed it into OWHFE. Li and Wang [33]
solved the group decision-making problem by forming up
the agreement between the PHFPR and predicted consis-
tence. Zhou and Xu [34] introduced uncertain probabilis-
tic hesitant fuzzy elements (UPHFEs) and also expanded it
into uncertain probabilistic hesitant fuzzy preference rela-
tionships (UPHFPRs). Li and Wang [35] defined the prob-
abilistic hesitant fuzzy preference relation (PHFPR) on the
basis of expected multiplicative consistency transitivity in
multi-criteria decision-making.

On the one hand, aggregating information in the
decision-making process is very important. On the other
hand, although many effective methods have been applied,
the information loss and inaccuracy problems are still existing
in decision-making process. However, all of the scholars fail
to solve MADM problems based on Hamacher algorithm
and Choquet integral-based method under the probabilis-
tic interval-valued hesitant Pythagorean fuzzy environment.
We can see that most of the existing hesitant Pythagorean
fuzzy or interval-valued hesitant Pythagorean fuzzy aggrega-
tion operators are based on algebraic product and algebraic
sum, which decision-makers often are limited in rational.
Lacking of attitudinal character parameter decision-makers is
unable to express optimistic or pessimistic attitudes towards
evaluation information. The hesitancy and probability have
been not combined in IVPFS environment at the same time to
describe uncertain information in real-world decision-making
problems. To overcome this limitation, and motivated from
the above-mentioned idea, we define a new aggregate oper-
ator in this paper, it is called as probabilistic interval-valued
hesitant Pythagorean fuzzy Hamacher Choquet integral geo-
metric (PIVHPFHCIG) operator. The contributions of this
paper are as follows:
(1) This paper expands the concept of IVHPFS to PIVH-

PFS and formulated the score function and accuracy
function of PIVHPHE, ways to compare and rank two
PIVHPHEs.

(2) This paper utilizes Hamacher operations and Choquet
interval-based method to develop the probabilistic
interval-valued hesitant Pythagorean fuzzy Hamacher
Choquet integral geometric (PIVHPFHCIG) opera-
tor, where the correlations among the elements are
considered.

(3) This paper utilizes the PIVHPFHCIG operator to
develop an approach to select the best project private

partner under PIVHPFS situation, which achieves
higher economic efficiency and value for money.

To do so, the remainder of this paper is organized as
follows: Section II reviews some previous researches such
as IVHPFSs, Choquet integral and Hamacher algorithm.
In Section III, we define the concept and Hamacher algorithm
of PIVHPFS. In addition, its score function and comparison
method are applied. In Section IV, we propose the proba-
bilistic interval-valued hesitant Pythagorean fuzzy Hamacher
Choquet integral geometric (PIVHPFHCIG) operator and
its several basic theorems. After that, based on Choquet
interval-based method and PIVHPFHCIG operator, a new
MADM approach is proposed in Section V. In Section VI,
the example of selecting best project private partner is applied
to illustrated and test the method based on PIVHPFHCIG
operator, as well as some necessary comparison with exist-
ing method under IVPFS and HPFS environment. Finally,
in Section VII, the essay is concluded.

II. PRELIMINARIES
In this section the interval-valued hesitant Pythagorean fuzzy
set (IVHPFS), Choquet integral and Hamacher algorithmwill
be introduced.

A. INTERVAL-VALUE HESITATION PYTHAGOREAN FUZZY
SET (IVHPFS)
Definition 1 [36]: Let X be a finite set, the interval-valued

hesitant Pythagorean fuzzy set (IVHPFS) P̃ can be defined
as:

P̃ =
{〈
xi,
(
h̃P̃ (xi) , g̃P̃ (xi)

)
|xi ∈ X

〉}
, (1)

where i = 1, 2, · · · , n, h̃P̃ (xi) , g̃P̃ (xi) are the intervals
belong to [0,1], they represent all the probable IVHPFSmem-
bership and non-membership degrees in P̃. Given xi ∈ X , P̃ =(
h̃P̃ (xi) , g̃P̃ (xi)

)
is identified as a interval-valued hesitant

Pythagorean fuzzy element (IVHPFE),(
h̃P̃, g̃P̃

)
=

{
γ̃ |γ̃ ∈ h̃P̃ (xi) , g̃P̃ (xi)

}
(2)

where γ̃ =
([
ũL , ũU

]
,
[
ṽL , ṽU

])
is the interval-valued, and

ũL = inf h̃P̃ (xi) , ũ
U
= sup h̃P̃ (xi), ṽ

L
= inf h̃P̃ (xi) , ṽ

U
=

sup h̃P̃ (xi) and 0 ≤
(
ũU
)2
+
(
ṽU
)2
≤ 1.

There are two special forms of IVHPFSs:
(1) If ũU = ũL , ṽU = ṽL , then IVHPFSs is reduced to the

HPFSs.
(2) If uU + vU ≤ 1, then IVHPFSs is reduced IVHIFS.
Definition 2 [37]: Let X be a finite set, and P̃ =〈[
ũL , ũU

]
,
[
ṽL , ṽU

]〉
be a finite IVPFS correlated with X ,

the score function is defined as: S(P̃) = 1
2 ((ũ

L)2 + (ũU )2 −
(ṽL)2 − (ṽU )2), and the accuracy function is identified as:
H (P̃) = 1

2 ((ũ
L)2 + (ũU )2 + (ṽL)2 + (ṽU )2).

B. FUZZY MEASURE AND CHOQUET INTEGRAL
When the characteristics of the candidate plans are being
gathered, the additivity is not followed. In order to solve the
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problem, the fuzzy measure was applied by replacing the
additivity measure with a monotonic metric.
Definition 3 [20]: Let X be a finite set and ρ be a set

function ρ : P (X) → [0, 1]. P (X) is the power set of X ,
there exist a fuzzy measure ρ on X if it satisfies:
(1) ρ (∅) = 0, ρ (X) = 1;
(2) ∀B,C ⊆ X , if B ⊆ C , then ρ (B) ≤ ρ (C);
(3) ρ (B ∪ C) = ρ (B) + ρ (C) + τρ (B) ρ (C), for all

B,C ⊆ X and B ∩ C = ∅, where τ > −1.
In the MADM process, fuzzy measure ρ is able to

describe the relationship between characteristics since ρ is a
non-negative and non-addable set function. Let X be the char-
acteristic set, and the importance of sub characteristic set B
and C can be expressed by their fuzzy measure ρ (B) , ρ (C).
LetC be finite set, then∪ni=1ci = C , themeasure definition

of ρ under τ can be expressed as:

ρ (C) =


1
τ

(∏n

i=1
(1+ τρ (ci))− 1

)
, τ 6= 0∑n

i=1
ρ (ci) , τ = 0.

(3)

where ci ∩ cj = ∅, i 6= j, the sub set with only one element
ci, ρ (ci) is called the fuzzy measure and ρi = ρ (ci). When
ρ (C) = 1, then

τ =
∏n

i=1
(1+ τρ (ci))− 1. (4)

Definition 4 [21]: Let f be the positive real number func-
tion in X , ρ is the fuzzy measure in X , then the discrete
Choquet integral for f according to ρ is:

Cρ
(
fc(1), fc(2), · · · , fc(n)

)
=

n∑
i=1

fc(i)
[
ρ
(
A(i)

)
− ρ

(
A(i+1)

)]
(5)

where (i) is the substitute in fc(i) which lead to fc(1) ≤ fc(2) ≤
· · · ≤ fc(n), A(i) = {c (i) , c (i+ 1) , · · · , c (n)}, and A(n+1) =
0.

C. HAMACHER ALGORITHM
t−norms and t−conorms are applied in fuzzy set identifica-
tion, which is very significant in MADM.
Definition 5 [38]: Generalized t−norm and t−conorm are

introducted by Hamacher, this includes Hamacher product
and Hamacher sum, and the definitions are:

Hamacher product ⊗ is the t−norm, Hamacher sum ⊕ is
the t−conorm:

T (a, b) = a⊗ b =
ab

γ + (1− γ ) (a+ b− ab)
(6)

T ∗ (a, b) = a⊕ b =
a+ b− ab− (1− γ ) ab

1− (1− γ ) ab
(7)

where γ > 0, especially, when γ = 1, then Hamacher
t−norm and t−conorm equal to algebraic t−norm and
t−conorm:

T (a, b) = a⊗ b = ab (8)

T ∗ (a, b) = a⊕ b = a+ b− ab (9)

when γ = 2, then Hamacher t−norm and t−conorm are
equal to Einstein t−norm and t−conorm:

T (a, b) = a⊗ b =
ab

1+ (1− a) (1− b)
(10)

T ∗ (a, b) = a⊕ b =
a+ b
1+ ab

(11)

III. PROBABILISTIC INTERVAL-VALUED HESITANT
PYTHAGOREAN FUZZY SET (PIVHPFS)
Definition 6: Let X be a finite set, then a Probabilistic

interval-valued hesitant Pythagorean fuzzy set (PIVHPFS)
associated with X can be identified as:

S =
{〈
x,
[([

ũL , ũU
]
,
[
ṽL , ṽU

])
, p
]
|x ∈ X

〉}
(12)

S is formed up by a series of probabilistic interval-valued hes-
itant Pythagorean fuzzy elements (PIVHPFE) which can be
expressed as

[([
ũL (x) , ũU (x)

]
,
[
ṽL (x) , ṽU (x)

])
, p
]
, these

elements include both membership and non-membership
degrees. Obviously, PIVHPFE is a special situation of PIVH-
PFS, similar to the relationship between a fuzzy number
and fuzzy set. Every PIVHPFE is formed up by a group of
interval-valued Pythagorean fuzzy number (IVPHFN) and
the probability, where the probability is used to present
the possible degree of its corresponding IVPHFN. When[([
ũL , ũU

]
,
[
ṽL , ṽU

])
, p
]
is a finite PIVHPFE, it can be

identified as [([ũLil (x), ũ
U
il (x)], [ṽ

L
il (x), ṽ

U
il (x)]), pil ], where l =

1, 2, · · · ,L (PIVHPFE) are positive integer that express the
number of elements that contained by PIVHPFE and with
the probability that pil ∈ [0, 1] ,

∑L(PIVHPFE)
l=1 pil ≤ 1.

The vagueness interval
[
π̃Lil (x) , π̃

U
il (x)

]
can be calculated

by π̃Lil (x) =

√
1−

(
ũUil (x)

)2
−

(
ṽUil (x)

)2
and π̃Uil (x) =√

1−
(
ũLil (x)

)2
−

(
ṽLil (x)

)2
.

Example 1: Let X be a finite set, there are two PIVH-
PFEs on X , 〈[([0.3, 0.4] , [0.4, 0.5]) , 0.9]〉 and 〈[([0.1, 0.2] ,
[0.3, 0.4]) , 0.3], [([0.2, 0.3] , [0.3, 0.4]) , 0.7]〉, each PIVH-
PFE independently depicts the entire uncertainty space. The
first PIVHPFE of PIVHPFS uses only one probabilistic
IVHPFN to characterize the entire uncertain environment,
where

∑L(PIVHPFE2)
i=1 pi = 0.9 < 1; another PIVHPFE

uses two probabilistic IVHPFNs to characterize the entire
uncertainty space, where

∑L(PIVHPFE1)
i=1 pi = 0.3+ 0.7 = 1.

Let L (PIVHPFE1) and L (PIVHPFE2) be the num-
ber of elements of PIVHPFE1 and PIVHPFE2. let
L (PIVHPFE1) = L (PIVHPFE2) for calculation pur-
pose, assume that the number of elements of PIVHFE is
L (PIVHPFE).

In order to compare the size of different PIVHPHEs, it is
necessary to include membership degree, non-membership
degree and hesitation degree,

([
ũLil (x) , ũ

U
il (x)

]
,[

ṽLil (x) , ṽ
U
il (x)

]
,
[
π̃Lil (x) , π̃

U
il (x)

])
, to define the following

score function and exact function.
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Definition 7: Let X be a finite set, and P̃i =[([
ũLil (x) , ũ

U
il (x)

]
,
[
ṽLil (x) , ṽ

U
il (x)

])
, pil

]
be a collection

of PIVHPHEs associated with X , where i = 1, 2, · · · , n, l =
1, 2, · · · ,L (PIVHPFE).
The PIVHPHE’s score function P̃i can be formulated as:

S
(
P̃i
)
=

L(PIVHPFE)∑
l=1

pil × [(ũLil (x)− ṽ
U
il (x))

+ (ũUil (x)− ṽ
L
il (x))]/2 (13)

The PIVHPHE’s accuracy function P̃i can be defined as:

H
(
P̃i
)
=

L(PIVHPFE)∑
l=1

pil ×
2− π̃Lil (x)− π̃

U
il (x)

2
(14)

Definition 8: Let X be a finite set, for any two
P̃i =

[([
ũLil (x) , ũ

U
il (x)

]
,
[
ṽLil (x) , ṽ

U
il (x)

])
, pil

]
be the

finite PIVHPHEs associated with X , where i = 1, 2, l =
1, 2, · · · ,L (PIVHPFE), then:

(1) If S
(
P̃1
)
> S

(
P̃2
)
, then P̃1 � P̃2, that is, P̃1 is greater

than P̃2;
(2) If S

(
P̃1
)
< S

(
P̃2
)
, then P̃1 ≺ P̃2, that is, P̃1 is less

than P̃2;
(3) If S

(
P̃1
)
= S

(
P̃2
)
, then

(i) If H
(
P̃1
)
> H

(
P̃2
)
, then P̃1 � P̃2, that is, P̃1 is

greater than P̃2;
(ii) If H

(
P̃1
)
< H

(
P̃2
)
, then P̃1 ≺ P̃2, that is, P̃1 is

less than P̃2;
(iii) If H

(
P̃1
)
= H

(
P̃2
)
, then P̃1 ∼ P̃2, that is, P̃1 is

equals P̃2.

Definition 9: Let X be a finite set, and for any P̃i =〈
ũil (x) , ṽil (x) , pil

〉
be the finite PHPFE associated with X ,

where i = 1, 2, · · · , n, l = 1, 2, · · · ,L (PHPFE), S
(
P̃i
)
=∑L(PIVHPFE)

l=1 pil ×
(
ũil (x)− ṽil (x)

)
is called the score func-

tion and H
(
P̃i
)
=
∑L(PIVHPFE)

l=1 pil ×
(
ũil (x)+ ṽil (x)

)
is

called the accuracy function.
Definition 10: Let X be a finite set, for any two P̃i =[([
ũLil (x) , ũ

U
il (x)

]
,
[
ṽLil (x) , ṽ

U
il (x)

])
, pil

]
be the finite

PIVHPHEs associated with X , where i = 1, 2, l =
1, 2, · · · ,L (PIVHPFE), γ ∈ (0,+∞) , λ > 0, the prob-
abilistic interval-valued hesitant Pythagorean Hamacher
fuzzy (PIVHPHF) operation can be identified as follows:

(1)

P̃1 ⊕ P̃2

= 〈[

√√√√√√√
(̃
uL1l

)2
+

(̃
uL2l

)2
−

(̃
uL1l

)2(̃
uL2l

)2
−(1−γ)

(̃
uL1l

)2(̃
uL2l

)2
γ+(1−γ)

(
1−

(̃
uL1l

)2(̃
uL2l

)2) ,

√√√√√√√
(̃
uU1l

)2
+

(̃
uU2l

)2
−

(̃
uU1l

)2(̃
uU2l

)2
−(1−γ)

(̃
uU1l

)2(̃
uU2l

)2
γ+(1−γ)

(
1−

(̃
uU1l

)2(̃
uU2l

)2) ],

[
ṽL1l ṽ

L
2l√

γ + (1− γ )
((
ṽL1l

)2
+

(
ṽL2l

)2
−

(
ṽL1l

)2(
ṽL2l

)2) ,
ṽU1l ṽ

U
2l√

γ + (1− γ )
((
ṽU1l

)2
+

(
ṽU2l

)2
−

(
ṽU1l

)2(
ṽU2l

)2) ],
p1l + p2l 〉 (15)

(2)

P̃1 ⊗ P̃2

= 〈[
ũL1l ũ

L
2l√

γ + (1− γ )
((
ũL1l

)2
+

(
ũL2l

)2
−

(
ũL1l

)2(
ũL2l

)2) ,
ũU1l ũ

U
2l√

γ + (1− γ )
((
ũU1l

)2
+

(
ũU2l

)2
−

(
ũU1l

)2(
ũU2l

)2) ],

[

√√√√√√√
(̃
vL1l

)2
+

(̃
vL2l

)2
−

(̃
vL1l

)2(̃
vL2l

)2
−(1−γ)

(̃
vL1l

)2(̃
vL2l

)2
γ+(1−γ)

(
1−

(̃
vL1l

)2(̃
vL2l

)2) ,

√√√√√√√
(̃
vU1l

)2
+

(̃
vU2l

)2
−

(̃
vU1l

)2(̃
vU2kl

)2
−(1−γ)

(̃
vU1l

)2(̃
vU2l

)2
γ+(1−γ)

(
1−

(̃
vU1l

)2(̃
vU2l

)2) ],

p1l + p2l > (16)

(3)

λP̃

= 〈[

√√√√√√
(
1+ (γ − 1)

(
ũLl
)2)λ
−

(
1−

(
ũLl
)2)λ(

1+ (γ − 1)
(
ũLl
)2)λ
+ (γ − 1)

(
1−

(
ũLl
)2)λ ,√√√√√√

(
1+ (γ − 1)

(
ũUl
)2)λ
−

(
1−

(
ũUl
)2)λ(

1+ (γ − 1)
(
ũUl
)2)λ
+ (γ − 1)

(
1−

(
ũUl
)2)λ ],

[
√
γ
(
ṽLl
)λ√(

1+ (γ − 1)
(
1−

(
ṽLl
)2))λ

+ (γ − 1)
(
ṽLl
)2λ ,

√
γ
(
ṽUl
)λ√(

1+(γ−1)
(
1−

(
ṽUl
)2))λ

+ (γ − 1)
(
ṽUl
)2λ ], p〉

(17)
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(4)

P̃λ

= 〈[
√
γ
(
ũLl
)λ√(

1+ (γ − 1)
(
1−

(
ũLl
)2))λ

+ (γ − 1)
(
ũLl
)2λ ,

√
γ
(
ũUl
)λ√(

1+ (γ − 1)
(
1−

(
ũUl
)2))λ

+ (γ − 1)
(
ũUl
)2λ ],

[

√√√√√√
(
1+ (γ − 1)

(
ṽLl
)2)λ
−

(
1−

(
ṽLl
)2)λ(

1+ (γ − 1)
(
ṽLl
)2)λ
+ (γ − 1)

(
1−

(
ṽLl
)2)λ ,√√√√√√

(
1+ (γ − 1)

(
ṽUl
)2)λ
−

(
1−

(
ṽUl
)2)λ(

1+ (γ−1)
(
ṽUl
)2)λ
+(γ − 1)

(
1−

(
ṽUl
)2)λ ], p〉

(18)

where p1l + p2l = (p1l + p2l )/((
L(PIVHPFE)∑

l=1
p1l ) +

(
L(PIVHPFE)∑

l=1
p2l )), l = 1, 2, · · · ,L (PIVHPFE1), k =

1, 2, · · · ,L (PIVHPFE2), and
L(PIVHPFE)∑

k=1
p(k)1 + p

(k)
2 = 1.

Obviously, when γ = 1, the probabilistic interval-valued
hesitant Pythagorean fuzzy Hamacher operation degener-
ates into a classical probabilistic interval-valued hesitant
Pythagorean fuzzy operation; when γ = 2, the proba-
bilistic interval-valued hesitant Pythagorean fuzzy Hamacher
operation degenerates into rate interval-valued hesitant
Pythagorean fuzzy Einstein operation.
Theorem 1: The probabilistic interval-valued hesitant

Pythagorean fuzzy Hamacher product is a t−norm, and
the probabilistic interval-valued hesitant Pythagorean fuzzy
Hamacher sum is a t−conorm.
Theorem 2: Let P̃, P̃1, P̃2 be three PIVHPFEs, and

λ, λ1, λ2 > 0, then the Hamacher operations of PIVHPFS
can be expressed as follows:

(1) P̃1 ⊕ P̃2 = P̃2 ⊕ P̃1;
(2) P̃1 ⊗ P̃2 = P̃2 ⊗ P̃1;
(3) λ

(
P̃1 ⊕ P̃2

)
= λP̃1 ⊕ λP̃2;

(4)
(
P̃1 ⊗ P̃2

)λ
= P̃λ1 ⊗ P̃

λ
1 ;

(5) λ1P̃⊕ λ2P̃ = (λ1 + λ2) P̃;
(6) P̃λ1 ⊗ P̃λ2 = P̃λ1+λ2 .

It is easy to prove that above PIVHPHF operation rules
proposed satisfy the Theorem 1 and Theorem 2. Theorem 1
as an extended mathematical expression of t−norm and
t−conorm for our proposed approaches. Theorem 2 pro-
vides the rules of operation for our proposed algo-
rithm, which plays a significant role in the aggregation
operator.

IV. PIVHPHS HAMACHER CHOQUET INTEGRAL
GEOMETRIC MEAN (PIVHPFHCIG) OPERATOR
In the real-world MADM process, in order to reflect the
information aggregation and importance of decision-makers
completely, PIVHPFE will be applied to express the eval-
uation information under the programming characteristics.
After that, the information aggregation operator will be
applied to aggregating the comprehensive characteristics of
information. Therefore, based on Definition 10, the proba-
bilistic interval-valued hesitant Pythagorean fuzzy Hamacher
Choquet integral geometric (PIVHPFHCIG) operator will be
introduced to investigate the related characteristics.
Definition 11: Let X be a finite set, and for any P̃i =〈

ũil (x) , ṽil (x) , pil
〉
be the finite PIVHPFE associated with

X , where i = 1, 2, · · · , n, l = 1, 2, · · · ,L (PIVHPFE), ρ is
the fuzzy measure, and the PIVHPFHCIG operator can be
identified as follows:

PIVHPFHCIGρ(P̃1, P̃2, · · · , P̃n)

=
n
⊗
i=1

P̃
ρ(A(i))−ρ(A(i+1))
i

= (P̃
ρ(A(1))−ρ(A(2))
1 )⊗ (P̃

ρ(A(2))−ρ(A(3))
2 )

⊗ · · · ⊗ (P̃
ρ(A(n))−ρ(A(n+1))
n ), (19)

where (i) is a permutation of P̃i, which lead to P̃(1) ≤ P̃(2) ≤
· · · ≤ P̃(n), A(i) =

(
c(i), c(i+1), · · · , c(n)

)
, and A(n+1) = 0.

On the Hamacher operation laws (1) to (6) of PIVHPFS,
the following theorem can be derived.
Theorem 3: Let X be a finite set, and for any P̃i =〈

ũil (x) , ṽil (x) , pil
〉
be a collection of PIVHPFEs associated

with X , where i = 1, 2, · · · , n, l = 1, 2, · · · ,L (PIVHPFE),
ρ is the fuzzy measure, then shown as follows:

PIVHPFHCIGρ
(
P̃1, P̃2, · · · , P̃n

)
= 〈([
√
γ
∏n

i=1

(
ũLil

)ρ(A(i))−ρ(A(i+1))
/(
∏n

i=1

(
1+ (γ − 1)

(
1−

(
ũLil

)2))ρ(A(i))−ρ(A(i+1))
+ (γ − 1)

∏n

i=1

(
ũLil

)2ρ(A(i))−ρ(A(i+1))
)1/2,

√
γ
∏n

i=1

(
ũUil

)ρ(A(i))−ρ(A(i+1))
/

/(
∏n

i=1

(
1+ (γ − 1)

(
1−

(
ũUil

)2))ρ(A(i))−ρ(A(i+1))
+ (γ − 1)

∏n

i=1

(
ũUil

)2ρ(A(i))−ρ(A(i+1))
)1/2],

[(
∏n

i=1

(
1+ (γ − 1)

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
−

∏n

i=1

(
1−

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
)1/2

/(
∏n

i=1

(
1+ (γ − 1)

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
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+ (γ − 1)
∏n

i=1

(
1−

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
)1/2,

(
∏n

i=1

(
1+ (γ − 1)

(
ṽUil

)2)ρ(A(i))−ρ(A(i+1))
−

∏n

i=1

(
1−

(
ṽUil

)2)ρ(A(i))−ρ(A(i+1))
)1/2

/(
∏n

i=1

(
1+ (γ − 1)

(
ṽUil

)2)ρ(A(i))−ρ(A(i+1))
+ (γ − 1)

∏n

i=1

(
1−

(
ṽUil

)2)ρ(A(i))−ρ(A(i+1))
)1/2],

n∑
i=1

pil )〉 (20)

where
n∑
i=1

pil =
n∑
i=1

pil/
L(PIVHPFE)∑

l=1

n∑
i=1

pil .

Proof of Theorem 3: By operation laws of PIVHPFS and
the mathematical induction, we have the following:

(1) When n = 2, according to the PIVHPFHCIG operator
on Definition 11, then

PIVHPFHCIGρ
(
P̃1, P̃2

)
= P̃

ρ1,2
1 ⊗ P̃

ρ2,3
2

= 〈([

√
γ
(
ũL1l

)ρ1,2√(
1+(γ−1)

(
1−

(
ũL1l

)2))ρ1,2
+(γ−1)

(
ũL1l

)2ρ1,2 ,
√
γ
(
ũU1l

)ρ1,2√(
1+(γ−1)

(
1−

(
ũU1l

)2))ρ1,2
+(γ−1)

(
ũU1l

)2ρ1,2 ],

[

√√√√√√√√
(
1+(γ−1)

(
ṽL1l

)2)ρ1,2
−

(
1−

(
ṽL1l

)2)ρ1,2
(
1+(γ−1)

(
ṽL1l

)2)ρ1,2
+(γ−1)

(
1−

(
ṽL1l

)2)ρ1,2 ,
√√√√√√√√

(
1+(γ−1)

(
ṽU1l

)2)ρ1,2
−

(
1−

(
ṽU1l

)2)ρ1,2
(
1+(γ−1)

(
ṽU1l

)2)ρ1,2
+(γ−1)

(
1−

(
ṽU1l

)2)ρ1,2 ],
p1)〉

⊗〈([

√
γ
(
ũL2k

)ρ2,3√(
1+(γ−1)

(
1−

(
ũL2k

)2))ρ2,3
+(γ−1)

(̃
uL2k

)2ρ2,3 ,
√
γ
(
ũU2k

)ρ2,3√(
1+(γ−1)

(
1−

(
ũU2k

)2))ρ2,3
+(γ−1)

(
ũU2k

)2ρ2,3 ],

[

√√√√√√√√
(
1+(γ−1)

(
ṽL2k

)2)ρ2,3
−

(
1−

(
ṽL2k

)2)ρ2,3
(
1+(γ−1)

(
ṽL2k

)2)ρ2,3
+(γ−1)

(
1−

(
ṽL2k

)2)ρ2,3 ,
√√√√√√√√

(
1+(γ−1)

(
ṽU2k

)2)ρ2,3
−

(
1−

(
ṽU2k

)2)ρ2,3
(
1+(γ−1)

(
ṽU2k

)2)ρ2,3
+(γ−1)

(
1−

(
ṽU2k

)2)ρ2,3 ],
p2k )〉

= 〈([

√
γ

2∏
i=1

(̃
uLil

)ρi,i+1
√

2∏
i=1

(
1+(γ−1)

(
1−

(̃
uLil

)2))ρi,i+1
+(γ−1)

2∏
i=1

(̃
uLil

)2ρi,i+1 ,
√
γ

2∏
i=1

(̃
uUil

)ρi,i+1
√

2∏
i=1

(
1+(γ−1)

(
1−

(̃
uUil

)2))ρi,i+1
+(γ−1)

2∏
i=1

(̃
uUil

)2ρi,i+1 ],

[

√√√√√√√√
2∏
i=1

(
1+(γ−1)

(̃
vLil

)2)ρi,i+1
−

n∏
i=1

(
1−

(̃
vLil

)2)ρi,i+1
2∏
i=1

(
1+(γ−1)

(̃
vLil

)2)ρi,i+1
+(γ−1)

n∏
i=1

(
1−

(̃
vLil

)2)ρi,i+1 ,
√√√√√√√√

2∏
i=1

(
1+(γ−1)

(̃
vUil

)2)ρi,i+1
−

n∏
i=1

(
1−

(̃
vUil

)2)ρi,i+1
2∏
i=1

(
1+(γ−1)

(̃
vUil

)2)ρi,i+1
+(γ−1)

n∏
i=1

(
1−

(̃
vUil

)2)ρi,i+1 ],
2∑
i=1

pil )〉

where ρ
(
A(i)

)
− ρ

(
A(i+1)

)
= ρi,i+1, l = 1, 2, · · · ,

L (PIVHPFE) and
n∑
i=1

pil =
n∑
i=1

pil/
L(PIVHPFE)∑

l=1

n∑
i=1

pil . There-

fore when n = 2, it is correct.
(2) Assuming that n = q, the theorem is true, and the

following proves that n = k + 1 is also true.
The proof ends. There are proved by mathematical induction
the Theorem 3 is correct, which Provides methods and ways
for information aggregation.
Theorem 4: Let P̃i =

[([
ũLil , ũ

U
il

]
,
[
ṽLil , ṽ

U
il

])
, pil

]
be

a collection of PIVHPFEs, where i = 1, 2, · · · , n, l =
1, 2, · · · ,L (PIVHPFE), ρ is the fuzzy measures,then

(1) (Idempotency): If all P̃i are equal, i.e., P̃i =
P̃ = [([ũLil , ũ

U
il ], [ṽ

L
il , ṽ

U
il ], pil )] are PIVHPFEs, where l =

1, 2, · · · ,L (PIVHPFE), then

PIVHPFHCIGρ
(
P̃1, P̃2, · · · , P̃n

)
= P̃.
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Proof: According to Theorem 3, if P̃i = P̃, for all
i (i = 1, 2, · · · , n), then

PIVHPFHCIGρ
(
P̃1, P̃2, · · · , P̃n

)
= 〈([
√
γ
(
ũLil

) n∑
i=1
ρ(A(i))−ρ(A(i+1))

/(
(
1+ (γ − 1)

(
1−

(
ũLil

)2)) n∑
i=1
ρ(A(i))−ρ(A(i+1))

+ (γ − 1)
(
ũLil

) n∑
i=1

2ρ(A(i))−ρ(A(i+1))
)1/2,

√
γ
(
ũUil

) n∑
i=1
ρ(A(i))−ρ(A(i+1))

PIVHPFHCIGρ
(
P̃1, P̃2, · · · , P̃k , P̃k+1

)
= PIVHPFHCIGρ

(
P̃1, P̃2, · · · , P̃k

)
⊗ P̃k+1

= 〈([

√
γ

k∏
i=1

(
ũLil

)ρi,i+1
√

k∏
i=1

(
1+ (γ − 1)

(
1−

(
ũLil

)2))ρi,i+1
+ (γ − 1)

k∏
i=1

(
ũLil

)2ρi,i+1 ,
√
γ

k∏
i=1

(
ũUil

)ρi,i+1
√

k∏
i=1

(
1+ (γ − 1)

(
1−

(
ũUil

)2))ρi,i+1
+ (γ − 1)

k∏
i=1

(
ũUil

)2ρi,i+1 ],

[

√√√√√√√√
k∏
i=1

(
1+ (γ − 1)

(
ṽLil

)2)ρi,i+1
−

k∏
i=1

(
1−

(
ṽLil

)2)ρi,i+1
k∏
i=1

(
1+ (γ − 1)

(
ṽLil

)2)ρi,i+1
+ (γ − 1)

k∏
i=1

(
1−

(
ṽLil

)2)ρi,i+1 ,
√√√√√√√√

k∏
i=1

(
1+ (γ − 1)

(
ṽUil

)2)ρi,i+1
−

k∏
i=1

(
1−

(
ṽUil

)2)ρi,i+1
k∏
i=1

(
1+ (γ − 1)

(
ṽUil

)2)ρi,i+1
+ (γ − 1)

k∏
i=1

(
1−

(
ṽUil

)2)ρi,i+1 ],
k∑
i=1

pil )〉

⊗ 〈([

√
γ
(
ũL(k+1)l

)ρk+1,k+2√(
1+ (γ − 1)

(
1−

(
ũL(k+1)l

)2))ρk+1,k+2
+ (γ − 1)

(
ũL(k+1)l

)2ρk+1,k+2 ,
√
γ
(
ũU(k+1)l

)ρk+1,k+2√(
1+ (γ − 1)

(
1−

(
ũU(k+1)l

)2))ρk+1,k+2
+ (γ − 1)

(
ũU(k+1)l

)2ρk+1,k+2 ],

[

√√√√√√√√
(
1+ (γ − 1)

(
ṽL(k+1)l

)2)ρk+1,k+2
−

(
1−

(
ṽL(k+1)l

)2)ρk+1,k+2
(
1+ (γ − 1)

(
ṽL(k+1)l

)2)ρk+1,k+2
+ (γ − 1)

(
1−

(
ṽL(k+1)l

)2)ρk+1,k+2 ,
√√√√√√√√

(
1+ (γ − 1)

(
ṽU(k+1)l

)2)ρk+1,k+2
−

(
1−

(
ṽU(k+1)l

)2)ρk+1,k+2
(
1+ (γ − 1)

(
ṽU(k+1)l

)2)ρk+1,k+2
+ (γ − 1)

(
1−

(
ṽU(k+1)l

)2)ρk+1,k+2 ],
p(k)(k+1)l )〉
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/(
(
1+ (γ − 1)

(
1−

(
ũUil

)2)) n∑
i=1
ρ(A(i))−ρ(A(i+1))

+ (γ − 1)
(
ũUil

) n∑
i=1

2ρ(A(i))−ρ(A(i+1))
)1/2],

[(
(
1+ (γ − 1)

(
ṽLil

)2) n∑
i=1
ρ(A(i))−ρ(A(i+1))

−

(
1−

(
ṽLil

)2) n∑
i=1
ρ(A(i))−ρ(A(i+1))

)1/2

/(
(
1+ (γ − 1)

(
ṽLil

)2) n∑
i=1
ρ(A(i))−ρ(A(i+1))

+ (γ − 1)
(
1−

(
ṽLil

)2) n∑
i=1
ρ(A(i))−ρ(A(i+1))

)1/2,

(
(
1+ (γ − 1)

(
ṽUil

)2) n∑
i=1
ρ(A(i))−ρ(A(i+1))

−

(
1−

(
ṽUil

)2) n∑
i=1
ρ(A(i))−ρ(A(i+1))

)1/2

/(
(
1+ (γ − 1)

(
ṽUil

)2) n∑
i=1
ρ(A(i))−ρ(A(i+1))

+ (γ − 1)
(
1−

(
ṽUil

)2) n∑
i=1
ρ(A(i))−ρ(A(i+1))

)1/2],∑n

i=1
pil )〉

= P̃

Since,
n∑
i=1
ρ(A(i))− ρ(A(i+1)) = 1,

n∑
i=1

pil =
n∑
i=1

pil/

L(PIVHPFE)∑
l=1

n∑
i=1

pil = p, so PIVHPFHCIGρ
(
P̃1, P̃2, · · · , P̃n

)
= P̃.

(2) (Monotonicity): Let P̄i = [([ūLil , ū
U
il ], [v̄

L
il , v̄

U
il ], p̄il )]

be a collection of PIVHPFEs, where i = 1, 2, l =
1, 2, · · · ,L (PIVHPFE).

if ũLil ≤ ūLil , ũ
U
il ≤ ūUil , ṽ

L
il ≥ v̄Lil , ṽ

U
il ≥ v̄Uil for all i and l,

then

PIVHPFHCIGρ
(
P̃1, P̃2, · · · , P̃n

)
≤ PIVHPFHCIGρ

(
P̄1, P̄2, · · · , P̄n

)
.

Proof: Since, A(i+1) ⊆ A(i), then ρ
(
A(i)

)
−ρ

(
A(i+1)

)
≥

0. For all i (i = 1, 2, · · · , n), we have P̃i ≤ P̄i, so

√
γ

n∏
i=1

(
ũLil

)ρ(A(i))−ρ(A(i+1))
/(

n∏
i=1

(
1+ (γ − 1)

(
1−

(
ũLil

)2))ρ(A(i))−ρ(A(i+1))
+ (γ − 1)

n∏
i=1

(
ũLil

)ρ(A(i))−ρ(A(i+1))
)1/2

≤
√
γ

n∏
i=1

(
ūLil

)ρ(A(i))−ρ(A(i+1))

= 〈([

√
γ
k+1∏
i=1

(
ũLil

)ρi,i+1
√
k+1∏
i=1

(
1+ (γ − 1)

(
1−

(
ũLil

)2))ρi,i+1
+ (γ − 1)

k+1∏
i=1

(
ũLil

)2ρi,i+1 ,
√
γ
k+1∏
i=1

(
ũUil

)ρi,i+1
√
k+1∏
i=1

(
1+ (γ − 1)

(
1−

(
ũUil

)2))ρi,i+1
+ (γ − 1)

k+1∏
i=1

(
ũUil

)2ρi,i+1 ],

[

√√√√√√√√
k+1∏
i=1

(
1+ (γ − 1)

(
ṽLil

)2)ρi,i+1
−

k+1∏
i=1

(
1−

(
ṽLil

)2)ρi,i+1
k+1∏
i=1

(
1+ (γ − 1)

(
ṽLil

)2)ρi,i+1
+ (γ − 1)

k+1∏
i=1

(
1−

(
ṽLil

)2)ρi,i+1 ,
√√√√√√√√

k+1∏
i=1

(
1+ (γ − 1)

(
ṽUil

)2)ρi,i+1
−

k+1∏
i=1

(
1−

(
ṽUil

)2)ρi,i+1
k+1∏
i=1

(
1+ (γ − 1)

(
ṽUil

)2)ρi,i+1
+ (γ − 1)

k+1∏
i=1

(
1−

(
ṽUil

)2)ρi,i+1 ],
k+1∑
i=1

pil )〉
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/(
n∏
i=1

(
1+ (γ − 1)

(
1−

(
ūLil

)2))ρ(A(i))−ρ(A(i+1))
+ (γ − 1)

n∏
i=1

(
ūLil

)ρ(A(i))−ρ(A(i+1))
)1/2;

√
γ

n∏
i=1

(
ũUil

)ρ(A(i))−ρ(A(i+1))
/(

n∏
i=1

(
1+ (γ − 1)

(
1−

(
ũUil

)2))ρ(A(i))−ρ(A(i+1))
+ (γ − 1)

n∏
i=1

(
ũUil

)ρ(A(i))−ρ(A(i+1))
)1/2

≤
√
γ

n∏
i=1

(
ūUil

)ρ(A(i))−ρ(A(i+1))
/(

n∏
i=1

(
1+ (γ − 1)

(
1−

(
ūUil

)2))ρ(A(i))−ρ(A(i+1))
+ (γ − 1)

n∏
i=1

(
ūUil

)ρ(A(i))−ρ(A(i+1))
)1/2;

(
n∏
i=1

(1+ (γ − 1)(ṽLil )
2
)
ρ(A(i))−ρ(A(i+1))

−

n∏
i=1

(1− (ṽLil )
2
)
ρ(A(i))−ρ(A(i+1))

)1/2

/(
n∏
i=1

(1+ (γ − 1)(ṽLil )
2
)
ρ(A(i))−ρ(A(i+1))

+ (γ − 1)
n∏
i=1

(1− (ṽLil )
2
)
ρ(A(i))−ρ(A(i+1))

)1/2

≥ (
n∏
i=1

(1+ (γ − 1)(v̄Lil )
2
)
ρ(A(i))−ρ(A(i+1))

−

n∏
i=1

(1− (v̄Lil )
2
)
ρ(A(i))−ρ(A(i+1))

)1/2

/(
n∏
i=1

(1+ (γ − 1)(v̄Lil )
2
)
ρ(A(i))−ρ(A(i+1))

+ (γ − 1)
n∏
i=1

(1− (v̄Lil )
2
)
ρ(A(i))−ρ(A(i+1))

)1/2;

(
n∏
i=1

(1+ (γ − 1)(ṽUil )
2
)
ρ(A(i))−ρ(A(i+1))

−

n∏
i=1

(1− (ṽUil )
2
)
ρ(A(i))−ρ(A(i+1))

)1/2

/(
n∏
i=1

(1+ (γ − 1)(ṽUil )
2
)
ρ(A(i))−ρ(A(i+1))

+ (γ − 1)
n∏
i=1

(1− (ṽUil )
2
)
ρ(A(i))−ρ(A(i+1))

)1/2

≥ (
n∏
i=1

(1+ (γ − 1)(v̄Uil )
2
)
ρ(A(i))−ρ(A(i+1))

−

n∏
i=1

(1− (v̄Uil )
2
)
ρ(A(i))−ρ(A(i+1))

)1/2

/(
n∏
i=1

(1+ (γ − 1)(v̄Uil )
2
)
ρ(A(i))−ρ(A(i+1))

+(γ − 1)
n∏
i=1

(1− (v̄Uil )
2
)
ρ(A(i))−ρ(A(i+1))

)1/2;

Thus by Theorem 3 and Definition 7 we have,

PIVHPFHCIGρ
(
P̃1, P̃2, · · · , P̃n

)
≤ PIVHPFHCIGρ

(
P̄1, P̄2, · · · , P̄3

)
.

(3) (Boundedness): Let P̃− and P̃+ be two PIVH-
PFEs, and P̃− = [([ũLil

−
, ũUil

−
], [ṽLil

+
, ṽUil
+
]), pil ], P̃

+
=

[([ũLil
+
, ũUil

+
], [ṽLil

−
, ṽUil
−
), pil ], where i = 1, 2, · · · , n, l =

1, 2, · · · ,L (PIVHPFE), if ũLil
−
= min

i

{
ũLil

}
, ũUil

−
=

min
i

{
ũUil

}
, ṽLil
+
= max

i

{
ṽLil

}
, ṽUil

+
= max

i

{
ṽUil

}
, ũLil
+
=

max
i

{
ũLil

}
, ũUil

+
= max

i

{
ũUil

}
, ṽLil
−
= min

i

{
ṽLil

}
and ṽUil

−
=

min
i

{
ṽUil

}
, then

P̃− ≤ PIVHPFHCIGρ
(
P̃1, P̃2, · · · , P̃n

)
≤ P̃+.

Proof: Since A(i+1) ⊆ A(i), ρ
(
A(i)

)
− ρ

(
A(i+1)

)
≥ 0.

For any P̃i (i = 1, 2, · · · , n) and
n∑
i=1
ρ(A(i))− ρ(A(i+1)) = 1.

Let f (x) = 1+(r−1)(1−x)
x , x ∈ [0, 1], then f ′ (x) =(

1+(r−1)(1−x)
x

)′
=
−r
x2

< 0. Then f (x) is an decreasing

function. Since for all i, ũLil
−
≤ ũLil ≤ ũLil

+, then f
(
ũLil
+
)
≤

f
(
ũLil

)
≤ f

(
ũLil
−
)
, i.e.,

1+ (r − 1)
(
1−

(
ũLil
+
)2)

(
ũLil
+
)2 ≤

1+ (r − 1)
(
1−

(
ũLil

)2)
(
ũLil

)2
≤

1+(r − 1)
(
1−

(
ũLil
−
)2)

(
ũLil
−
)2 .

We have,1+ (r − 1)
(
1−

(
ũLil
+
)2)

(
ũLil
+
)2


ρ(A(i))−ρ(A(i+1))

≤

1+ (r − 1)
(
1−

(
ũLil

)2)
(
ũLil

)2

ρ(A(i))−ρ(A(i+1))
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≤

1+ (r − 1)
(
1−

(
ũLil
−
)2)

(
ũLil
−
)2


ρ(A(i))−ρ(A(i+1))

⇔

n∏
i=1

1+ (r − 1)
(
1−

(
ũLil
+
)2)

(
ũLil
+
)2


ρ(A(i))−ρ(A(i+1))

≤

n∏
i=1

1+ (r − 1)
(
1−

(
ũLil

)2)
(
ũLil

)2

ρ(A(i))−ρ(A(i+1))

≤

n∏
i=1

1+ (r − 1)
(
1−

(
ũLil
−
)2)

(
ũLil
−
)2


ρ(A(i))−ρ(A(i+1))

⇔
r(

ũLil
+
)2 − (r − 1)

≤

n∏
i=1

1+ (r − 1)
(
1−

(
ũLil

)2)
(
ũLil

)2

ρ(A(i))−ρ(A(i+1))

≤
r(

ũLil
−
)2 − (r − 1)

⇔
r(

ũLil
+
)2

≤

n∏
i=1

1+(r−1)
(
1−

(
ũLil

)2)
(
ũLil

)2

ρ(A(i))−ρ(A(i+1))

+(r−1)

≤
r(

ũLil
−
)2

⇔

(
ũLil
−
)2

r

≤
1

n∏
i=1

 1+(r−1)
(
1−
(
ũLil

)2)
(
ũLil

)2
ρ(A(i))−ρ(A(i+1)) + (r − 1)

≤

(
ũLil
+
)2

r

⇔

(
ũLil
−
)2

r
≤

n∏
i=1

(
ũLil

)2ρ(A(i))−ρ(A(i+1))
/(

n∏
i=1

(
1+ (r − 1)

(
1−

(
ũLil

)2))ρ(A(i))−ρ(A(i+1))

+ (r − 1)
n∏
i=1

(
ũLil

)ρ(A(i))−ρ(A(i+1))
) ≤

(
ũLil
+
)2

r

⇔

(
ũLil
−
)2
≤ r

n∏
i=1

(
ũLil

)2ρ(A(i))−ρ(A(i+1))
/(

n∏
i=1

(
1+ (r − 1)

(
1−

(
ũLil

)2))ρ(A(i))−ρ(A(i+1))
+ (r − 1)

n∏
i=1

(
ũLil

)ρ(A(i))−ρ(A(i+1))
) ≤

(
ũLil
+
)2

⇔ ũLil
−
≤
√
r

n∏
i=1

(
ũLil

)ρ(A(i))−ρ(A(i+1))
/(

n∏
i=1

(
1+ (r − 1)

(
1−

(
ũLil

)2))ρ(A(i))−ρ(A(i+1))
+ (r − 1)

n∏
i=1

(
ũLil

)ρ(A(i))−ρ(A(i+1))
)1/2 ≤ ũLil

+

The same as above, we have,

ũUil
−
≤
√
r

n∏
i=1

(
ũUil

)ρ(A(i))−ρ(A(i+1))
/(

n∏
i=1

(
1+ (r − 1)

(
1−

(
ũUil

)2))ρ(A(i))−ρ(A(i+1))
+ (r − 1)

n∏
i=1

(
ũUil

)ρ(A(i))−ρ(A(i+1))
)1/2 ≤ ũUil

+
.

Let g (y) = 1+(r−1)y
1−y , y ∈ [0, 1], then g (y) =(

1+(r−1)y
1−y

)′
=

r
(1−y)2

> 0, thus g (y) is an increasing

function. Since for all i, g
(
ṽLil
+
)
≤ g

(
ṽLil

)
≤ g

(
ṽLil
−
)
, i.e.,

1+ (r − 1)
(
ṽLil
+
)2

1−
(
ṽLil
+
)2 ≤

1+ (r − 1)
(
ṽLil

)2
1−

(
ṽLil

)2
≤

1+ (r − 1)
(
ṽLil
−
)2

1−
(
ṽLil
−
)2 ,

We have,1+ (r − 1)
(
ṽLil
+
)2

1−
(
ṽLil
+
)2


ρ(A(i))−ρ(A(i+1))

≤

1+ (r − 1)
(
ṽLil

)2
1−

(
ṽLil

)2

ρ(A(i))−ρ(A(i+1))

≤

1+ (r − 1)
(
ṽLil
−
)2

1−
(
ṽLil
−
)2


ρ(A(i))−ρ(A(i+1))
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⇔

1+
r
(
ṽLil
+
)2

1−
(
ṽLil
+
)2

ρ(A(i))−ρ(A(i+1))

≤

1+ (r − 1)
(
ṽLil

)2
1−

(
ṽLil

)2

ρ(A(i))−ρ(A(i+1))

≤

1+
r
(
ṽLil
−
)2

1−
(
ṽLil
−
)2

ρ(A(i))−ρ(A(i+1))

⇔

n∏
i=1

1+
r
(
ṽLil
+
)2

1−
(
ṽLil
+
)2

ρ(A(i))−ρ(A(i+1))

≤

n∏
i=1

1+ (r − 1)
(
ṽLil

)2
1−

(
ṽLil

)2

ρ(A(i))−ρ(A(i+1))

≤

n∏
i=1

1+
r
(
ṽLil
−
)2

1−
(
ṽLil
−
)2

ρ(A(i))−ρ(A(i+1))

⇔ 1+
r
(
ṽLil
+
)2

1−
(
ṽLil
+
)2

≤

n∏
i=1

1+ (r − 1)
(
ṽLil

)2
1−

(
ṽLil

)2

ρ(A(i))−ρ(A(i+1))

≤ 1+
r
(
ṽLil
−
)2

1−
(
ṽLil
−
)2

⇔ r +
r
(
ṽLil
+
)2

1−
(
ṽLil
+
)2

≤

n∏
i=1

1+ (r − 1)
(
ṽLil

)2
1−

(
ṽLil

)2

ρ(A(i))−ρ(A(i+1))

+ (r − 1)

≤ r +
r
(
ṽLil
−
)2

1−
(
ṽLil
−
)2

⇔
1

r +
r
(
ṽLil
−
)2

1−
(
ṽLil
−
)2

≤
1

n∏
i=1

(
1+(r−1)

(
ṽLil

)2
1−
(
ṽLil

)2
)ρ(A(i))−ρ(A(i+1))

+ (r − 1)

≤
1

r +
r
(
ṽLil
+
)2

1−
(
ṽLil
+
)2

⇔

1−
(
ṽLil
−
)2

r
≤

n∏
i=1

(
1−

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))

/(
n∏
i=1

(
1+ (r − 1)

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))

+ (r − 1)
n∏
i=1

(
1−

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
)

≤

1−
(
ṽLil
+
)2

r

⇔ 1−
(
ṽLil
−
)2
≤ r

n∏
i=1

(
1−

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))

/(
n∏
i=1

(
1+ (r − 1)

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))

+ (r − 1)
n∏
i=1

(
1−

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
)

≤ 1−
(
ṽLil
+
)2

⇔

(
ṽLil
+
)2
≤ 1− r

n∏
i=1

(
1−

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))

/(
n∏
i=1

(
1+ (r − 1)

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
+ (r − 1)

n∏
i=1

(
1−

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
) ≤

(
ṽLil
−
)2

⇔

(
ṽLil
+
)2
≤ (

n∏
i=1

(
1+ (r − 1)

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
−

n∏
i=1

(
1−

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
)

/(
n∏
i=1

(
1+ (r − 1)

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
+ (r − 1)

n∏
i=1

(
1−

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
) ≤

(
ṽLil
−
)2

⇔ ṽLil
+
≤ (

n∏
i=1

(
1+ (r − 1)

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
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−

n∏
i=1

(
1−

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
)1/2

/(
n∏
i=1

(
1+ (r − 1)

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
+ (r − 1)

n∏
i=1

(
1−

(
ṽLil

)2)ρ(A(i))−ρ(A(i+1))
)1/2 ≤ ṽLil

−
.

The same as above, we have,

⇔ ṽUil
+
≤ (

n∏
i=1

(
1+ (r − 1)

(
ṽUil

)2)ρ(A(i))−ρ(A(i+1))
−

n∏
i=1

(
1−

(
ṽUil

)2)ρ(A(i))−ρ(A(i+1))
)1/2

/(
n∏
i=1

(
1+ (r − 1)

(
ṽUil

)2)ρ(A(i))−ρ(A(i+1))
+ (r − 1)

n∏
i=1

(
1−

(
ṽUil

)2)ρ(A(i))−ρ(A(i+1))
)1/2 ≤ ṽLil

−

Thus according to Theorem 3 and Definition 7 we have,

P̃− ≤ PIVHPFHCIGρ
(
P̃1, P̃2, · · · , P̃n

)
≤ P̃+.

(4) (Permutation invariance): Let Q̃i be a any substitution
on P̃i (i = 1, 2, · · · , n), then

PIVHPFHCIGρ
(
P̃1, P̃2, · · · , P̃n

)
= PIVHPFHCIGρ

(
Q̃1, Q̃2, · · · , Q̃n

)
.

Proof: Thus, according to Idempotency in Theorem 4,
we have

PIVHPFHCIGρ
(
P̃1, P̃2, · · · , P̃n

)
=

n
⊗
i=1

P̃
ρ(A(i))−ρ(A(i+1))
i =

n
⊗
i=1

Q̃
ρ(A(i))−ρ(A(i+1))
i

= PIVHPFHCIGρ
(
Q̃1, Q̃2, · · · , Q̃n

)
Hence,

PIVHPFHCIGρ
(
P̃1, P̃2, · · · , P̃n

)
= PIVHPFHCIGρ

(
Q̃1, Q̃2, · · · , Q̃n

)
.

Theorem 4 are well proved according to the probabilis-
tic interval-valued hesitant Pythagorean Hamacher fuzzy
(PIVHPHF) operation which have been identified in Defini-
tion 10, which ensures the scientific and effective operation
of the algorithm.

V. THE MULTI-ATTRIBUTE DECISION MAKING BASED ON
PIVHPFHCIG OPERATOR
In this section, a aggregation operator method is established
based on the previous algorithm and also the Choquet integral
is applied to solve the problem of the correlation between

characteristics. This provide a possibility of solve MADM
problems under PIVHPFS environment.

For a MADM problem, let A = {A1,A2, · · · ,Am} be a
set of alternatives, and C = {C1,C2, . . . ,Cn} be a set of
attributes. The alternatives Ai under finite attributes set Cj
will be evaluated by PIVHPFS value Pij(i = 1, 2, · · · ,m, j =
1, 2, · · · , n) and then the PIVHPFS decision making matrix
will be estimated to select the best strategy.
For the sake of select the best alternative, an algorithm

based on PIVHPFHCIG operator is provided and the key
steps of the algorithm are given as follows:
Step 1:Basing on the evaluation information, the PIVHPFS

decision making matrix M =
(
Pij
)
m×n is established.

Step 2: The decision making matrix will be standardized
unless all the characteristics are interest type.

Pij =

{
Pij, Cj is benefit type;
Pcij, Cj is cos t type.

Step 3: The fuzzy measure of C = {C1,C2, . . . ,Cn}
should be identified by satisfy the parameter τ .
Step 4: Based on M =

(
Pij
)
m×n every alternative

Ai (i = 1, 2, · · · ,m) can be integrated by PIVHPFHCIG
operator shown in Eq. (19) and then the comprehensive
attributes value Pi (i = 1, 2, · · · ,m) of alternatives Ai can be
estimated.
Step 5: Utilize Eqs. (13) and (14) to obtain the score

function and accuracy function for each alternative Ai.
Step 6: The candidate strategy will be ranked by PIVHPFE

comparison rules shown in Definition 8, and the best alterna-
tive will be selected.
In the actual decision making, the individual decision-

maker is the main concern, therefore, the geometric operator
is selected.

VI. AN APPLICATION EXAMPLE
In the previous hesitant Pythagorean fuzzy information
aggregation analysis, it is always assuming that the attributes
are independent from each other. Based on this assumption,
combined with probabilistic and interval-valued to form up
the new fuzzy set and applying Hamacher algorithm to aggre-
gating operator, the decision-makingmethod is more accurate
and rational than before. In this section, the example data
(cited from Wang et al. [36]) is provided to illustrate the
application of the proposed approach in Section VI.

A. THE DECISION PROCEDURE OF THE PROPOSED
MADM METHOD
The Mulan Avenue and Loess Highway Upgrade Project,
with a total length of 25.32 km, will be expanded according
to the standard of Class I Highway and Urban Main Road,
with a pavement width of 50 to 64 meters, six lanes in both
directions and a design speed of 60 km/h. The whole project
consists of two medium bridges and two small bridges, with
supporting the construction of traffic engineering, power and
telecommunication engineering and greening engineering,
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TABLE 1. The decision matrix given by PIVHPFS.

with a total investment of 1.498 billion yuan. The project is
planned to be a cooperation model. The government chooses
social capital through public bidding. Four enterprises have
submitted bidding plans for the project.

In order to select the best project private partner, four
experts are organized to evaluate the indicators of the four
enterprises respectively. We assume that the four private part-
ners Ai (i = 1, 2, 3, 4), there are four attributes need to be
considered: C1 is the quality, C2 is the return rate, C3 is the
delivery rate, C4 is the service and technique. Based on the
acknowledge and experience of the experts, the evaluation
information p̃ij (i, j = 1, 2, · · · , 4) under the probabilistic
interval-valued hesitant Pythagorean fuzzy environment are
given. Decision-making matrix M =

(
P̃ij
)
4×4

is established
as:
Step 1: Establish the PIVHPFS decision matrix shown

in Table 1.
Step 2: All the attributes are benefit type, therefore there is

no need to standardize the decision matrix M =
(
P̃ij
)
4×4

.
Step 3: Identify the fuzzy measures of all the attributes are

ρ (c1) = 0.4, ρ (c2) = 0.25, ρ (c3) = 0.37, ρ (c4) = 0.2.
Use Eq. (4), we have,

τ =
∏n

i=1
(1+ τρ (ci))− 1

= (1+ 0.4τ) (1+ 0.25τ) (1+ 0.37τ) (1+ 0.2τ)− 1

Use MATLAB to solve for τ , we get τ = −0.44. Utilize
Eq. (3), we obtain,

ρ (c1, c2) =
1
τ

(∏n

i=1
(1+ τρ (ci))− 1

)
=

1
−0.44

[(1−0.44×0.4) (1−0.44×0.25)− 1]

= 0.6,

The same as above, ρ (c1, c3) = 0.7, ρ (c1, c4) = 0.56,
ρ (c2, c3) = 0.58, ρ (c2, c4) = 0.43, ρ (c3, c4) = 0.54,
ρ (c1, c2, c3) = 0.88, ρ (c1, c2, c4) = 0.75, ρ (c1, c3, c4) =
0.84, ρ (c2, c3, c4) = 0.73, ρ (c1, c2, c3, c4) = 1.
Then utilize the Eq. (5) to calculate the Choquet integral:

ρ (A1)− ρ (A2) = ρ (c1, c2, c3, c4)− ρ (c2, c3, c4)

= 1− 0.73 = 0.27,

ρ (A2)− ρ (A3) = ρ (c2, c3, c4)− ρ (c3, c4)

= 0.73− 0.54 = 0.19,

ρ (A3)− ρ (A4) = ρ (c3, c4)− ρ (c4)

= 0.54− 0.2 = 0.34,

ρ (A4)− ρ (A5) = ρ (c4) = 0.2.

Step 4:Utilize the PIVHPFHCIG operator(where γ = 0.5)
shown in Eq. (20) to get the comprehensive value of Ai.

P̃1 =
〈
([0.2349, 0.3956] , [0.3490, 0.4701] , 0.4500) ,
([0.2174, 0.3360] , [0.2397, 0.3767] , 0.5500)

〉
,

P̃2 =
〈
([0.1132, 0.3404] , [0.2520, 0.4701] , 0.4805) ,
([0.3106, 0.4468] , [0.2921, 0.5241] , 0.5195)

〉
,

P̃3 =
〈
([0.2450, 0.3996] , [0.2906, 0.5543] , 0.4430) ,
([0.2276, 0.3726] , [0.2664, 0.5000] , 0.5570)

〉
,

P̃4 =
〈
([0.3025, 0.4440] , [0.2908, 0.5169] , 0.5250) ,
([0.3025, 0.4440] , [0.2908, 0.5169] , 0.4750)

〉
.

Step 5: Utilize the Eq. (13) to calculate the score func-
tion,we obtain the value of Si (i = 1, 2, 3, 4):

S1 = −0.0597, S2 = −0.0798,

S3 = −0.0907, S4 = −0.0306.

Step 6: From the score function it is can be found that
−0.0306 > −0.0597 > −0.0798 > −0.0907, therefore the
ranking of strategies is A4 � A1 � A2 � A3, which means
A4 is the best alternative that should be selected through
analyzing the Choquet integral-based method of PIVHPFS
in selecting processes of project private partner.

B. THE INFLUENCE OF γ IN PIVHPFHCIG OPERATOR
AGGREGATING
In order to test the influence of attitudinal character parameter
γ in PIVHPFHCIG operator aggregating, different values of
γ = 0.5, 0.8, 1, 2, 5, 8, 10, 20 are given by decision-makers.
With MATLAB, the ranking of the strategies can be calcu-
lated fast, with the ranking based on different γ , the inner
rules can be observed and analyzed. All the comprehensive
value, score function, and rankings will be listed in Table 2.

From Table 2, when γ = 0.5, 0.8, 1, 2, the ranking of
the strategies is A4 � A1 � A2 � A3. However, when
parameter γ = 5, 8, 10, 20, the ranking of strategies changed
to A4 � A2 � A1 � A3. It illustrates that parameter γ
has significant influence in the score function and ranking.
Although the ranking will be changed with γ , in a certain
value scope, the best strategy will not change and keep being
A4 it proved that PIVHPFHCIG operator is stable. It is easy
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TABLE 2. The score function and ranking under different γ .

TABLE 3. The decision matrix given by PHPFS.

FIGURE 1. The influence of a collect of γ in score function based on
PIVHPFHCLG operator.

to see in Figure 1 that score values obtained by the PIVH-
PFHCIG operator are almost in the trend of increase as the
parameter γ increase. There is no influence on the best project
private partner for parameter γ = 5, 8, 10, 20.
It can be ground-based on the above discussion, although

the change of parameter γ has a certain influence in selecting
the best project private partner, the result is well stability.
If consider the simplicity of the calculation, the alter γ may be
reduced by a small positive integer such as 1 or 2. Due to the
use of MATLAB, we can easily calculate the ranking under
different alter values, which we can research the dynamic
changes of the best project private partner and find its internal
variation law.

C. COMPARISON WITH THE EXITING OPERATOR
To illustrate the rationality and reliability of the method under
PIVHPFS environment, two methods with the PHPFS and

IVHPFS are compared with the proposed method. In order to
ensure the accuracy and the effectiveness of the comparison,
basing on the same original data, the Choquet geometric
operator is applied to estimate the decision making models
under different fuzzy sets situation.

The PIVHPFS are replaced by PHPFS, the way is to
use the medium value of the interval-valued to replace the
interval-valued of membership degree (non-membership).
Then the new decision matrix is established by PHPFS shown
in Table 3.

The comprehensive value of Ai can be calculated by
PHPFHCIG operator (with γ = 0.5):

P̃1 = 〈 (0.3242, 0.3979) , 0.450, (0.2793, 0.3839) , 0.550〉 ,

P̃2 = 〈 (0.2330, 0.3599) , 0.481, (0.3932, 0.4129) , 0.519〉 ,

P̃3 = 〈 (0.3227, 0.4185) , 0.443, (0.3034, 0.3817) , 0.557〉 ,

P̃4 = 〈 (0.2942, 0.3024) , 0.525, (0.3770, 0.4018) , 0.475〉 .

The score function for each strategy is S1 = −0.0907, S2 =
−0.0712, S3 = −0.0860, S4 = −0.0161.
From the score function it is can be found that
−0.0161 > −0.0712 > −0.0860 > −0.0907, which means
that A4 � A2 � A3 � A1, A4 will be selected as the best
alternative. It is the same choice as PIVHPFS.

Similarly, PIVHPFS will be replaced with IVPFS by
instead the membership (non-membership) degrees of
interval-valued that is formed up by the maximum and
minimum degrees of membership (non-membership) shown
in Table 4.

The comprehensive value of Ai can be calculated by
IVPFHCIG operator (with γ = 0.5):

P̃1 = 〈[0.2063, 0.4472] , [0.2274, 0.4086]〉,

P̃2 = 〈[0.1756, 0.3579] , [0.2921, 0.5603]〉,

P̃3 = 〈[0.2147, 0.3996] , [0.2397, 0.4701]〉,
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TABLE 4. The decision matrix given by IVPFS.

FIGURE 2. The scores of the alternatives based on PIVHPFS, PHPFS, and
IVPFS.

P̃4 = 〈[0.1756, 0.3807] , [0.2908, 0.5087]〉.

Utilize the Definition 2 to calculate the score function for
each strategy is S1 = 0.0119, S2 = −0.1202, S3 = −0.0363,
S4 = −0.0838.
From the score function it is can be found that

0.0119 > −0.0363 > −0.0838 > −0.1202, which means
that A1 � A3 � A4 � A2, A1 will be selected as the
best alternative. It is obviously different with PIVHPFS and
PHPFS.

According to compared with the existing mentioned com-
parison, the result of rankings of the alternatives is shown
in Figure 2. Although the best project private partner is the
same A4 for both PIVHPFHCIG and PHPFHCIG, the ranking
of the alternatives is different from the A1 based on IVPFH-
CIG. we choose the same value of parameter γ , the decision-
makers have the same optimistic attitude or pessimistic
attitude in the face of MADM information. PHPFHCIG
has considered probabilistic hesitant fuzzy information, but
has depicted the value of membership and non-membership
degree with real numbers, which still can’t adapt well to the
uncertainty in decision-making process. IVPFHCIG hasn’t
combined probabilistic in the decision process, which ignored
the risk of information loss from aggregation operators.
In comparison, PIVHPFHCIG has an advantage in dealing
with these issues.

D. COMPARATIVE ANALYSIS
This result illustrated that the MADM method based on
PIVHPFS environment is accurate and rational. Compared

with the existing Pythagorean hesitant fuzzyMCDMmethod,
the advantages of PIVHPFHCIG operator are present as
follows:
(1) Considering the correlation between characteristics,

and Choquet integral satisfies the multi-attribute deci-
sion making better.

(2) Our proposed approach is more flexible and dynamic
since the Hamacher aggregation operator is more gen-
eralized in parameter γ application. Decision-makers
are able to select the parameters γ themselves, which
reflect the risk attitude preference of decision-makers.
Comparing with existing hesitant fuzzy aggregation to
obtain static fixed evaluation resulted, it may reflect the
inner rules.

(3) With considering the probabilistic in the MADM pro-
cess, the approach under PIVHPFS and PHPFS envi-
ronment may avoid the information loss, and reflect the
significance of each attribute.

Although they have selected the same project private part-
ner A4, in a way, PIVHPFS is more effective than PHPFS
in complex uncertain decision making for the real number
value is replaced by interval-valued. The shortcoming of the
technique under IVPFS environment which selects A1 as a
partner is obvious, it has a quite wide gap with PIVHPFS and
PHPFS. The effectiveness also improved by PIVHPFS and
the interval-valued make the complex decision more rational.
Those shortages will be improved in the future.

VII. CONCLUSION
In this paper, we extend Pythagorean fuzzy set (PFS) to
probabilistic interval-valued hesitant Pythagorean fuzzy set
(PIVHPFS). As a new operational law, it considers the infor-
mation loss, hesitant and uncertainty for aggregating dif-
ferent preference opinions of decision-makers during the
MADM process. Furthermore, we develop the probabilis-
tic interval-valued hesitant Pythagorean fuzzy Hamacher
Choquet integral geometric (PIVHPFHCIG) operator, which
reflects the risk attitude preference of decision-makers and
consider the phenomenon of the interaction among the
MADM. Based on the PIVHPFHCIG operator, we extend the
Choquet integral-based method to solve the MADM prob-
lem. we performed some comparisons with similar existing
research, which illustrates the rationality and effectiveness of
the proposed techniques and provides a good complement
to the existing work on PFS. The proposed techniques
differ from existing approaches for MADM problems,
which not only develop the method under probabilistic
interval-valued hesitant Pythagorean fuzzy set (PIVHPFS)
environment rather than interval-valued Pythagorean fuzzy
set (IVPFS) or hesitant Pythagorean fuzzy set (HPFS)
but also consider the correlations among the elements in
MADM process. Nevertheless, the probabilistic informa-
tion combine with different fuzzy sets should be attached
great attention. In the future, we will extend probabilistic
to other fuzzy sets. For instance, dual hesitant sets [39],
linguistic dual hesitant fuzzy sets [40], Neutrosophic
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Hesitant Fuzzy sets [41], Mixed-discrete Z-numbers [42],
Pythagorean fuzzy Hamacher Prioritized operators [43], dual
hesitant Pythagorean fuzzy sets [44], generalized Dice sim-
ilarity measures of PFS [45], Pythagorean Fuzzy Hamacher
Power Aggregation Operators [46], etc.
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