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ABSTRACT In this paper, a direct computational method is presented which combines optical flow and
structure from motion (SfM) by putting the SfM problem in the framework of optical flow estimation.
In other word, the optical flow is reparametrized in term of the camera’s motion and scene’s depth, resulting
in a similar variation optimization as in optical flow estimation. Meanwhile, three techniques are proposed
to improve the accuracy and robustness of the direct approach, including the fast guided interpolation
(FGI), the left-right consistency constraint and the soft segment constraint. Experimental results on the
Middlebury dataset and KITTI2012 dataset show that the proposed approach can achieve highly-accurate 3D
reconstruction with the dense and smooth surface which results in a state-of-the-art performance in optical
flow.

INDEX TERMS Optical flow, structure from motion, fast guided interpolation, the left-right consistency
constraint, the soft segment constraint.

I. INTRODUCTION
Optical flow [1], [2] has been extensively investigated for
many years. Since Horn and Schunck’s work [1], the estima-
tion of optical flow has been fully extended in several aspects,
including the extension to large-displacement cases by using
a from-coarse-to-fine technique [3], robust techniques to
deal with discontinuity in flow field [4], gradient constancy
assumption [4] and amultigrid framework [5] for speeding up
optical flow’s computation. Contributions on optical flow are
described in the comprehensive reviews in [3]–[8]. Recently,
with the advent of end-to-end deep learning methods, a few
CNN based models have been proposed and achieved state of
the art performance [9]–[12].

Closely related to optical flow, SfM has been extensively
investigated in the past 30+ years, especially in the last
20 years of the 20th century, since Longuet-Higgins [13]
presented the work on 3D scene reconstruction from two cali-
brated images.Most representativework on SfM can be found
in two monographs [14] and [15]. Most work on SfM fol-
lows the pattern used in Longuet-Higgins’s work [13]: sparse
and two-stage, with feature detection (including matching)
in the first stage and 3D estimation of detected features
in the second stage. Another active direction in SfM is
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dense SfM.Much work, for example [16]–[18] has been done
for dense or quasi-dense SfM.

Though optical flow and SfM are closely related and have
already been fully investigated, separately, they were rarely
investigated in an interactively beneficial way, usually uni-
directionally. A typical application is to use the estimated
optical flow to further estimate the depth of the scene [19].
Such an application intrinsically falls into Longuet-Higgins’s
pattern, by regarding estimated optical flow as features.
On the other hand, the knowledge of motion for example
the fundamental matrix, is beneficial to the estimation of
optical flow [20]. Valgaerts [21] built a direct link, in a
bidirectionally beneficial way, between optical flow estima-
tion and SfM problem of fundamental matrix estimation.
However, 3D structure estimated in [21] does not exactly
comply with the estimated fundamental matrix and extra
error would be introduced, as in traditional SfM approaches.
Lately, Becker et al. [22] proposed to jointly estimate camera
motion and dense structure of a static scene in terms of depth
maps from monocular image sequences. But their approach
does not refine the optical flow based on the epipolar geom-
etry. Aubry et al. [23] presented a spatially dense variational
approach which estimated the calibration of multiple cameras
in the context 3D reconstruction. To address the issue that the
resulting depth (and disparity map) is highly dependent on
the correct pose estimation, Roxas and Oishi [24] proposed
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to slightly decouple the correspondence problem and the
depth estimation by imposing the epipolar geometry as a soft
constraint. However, for all approaches above, the optical
flow estimated in such brute ways is two-stages and would
introduce extra error when being used to further estimate 3D
structure.

In this paper, we propose a direct optical-flow-aware com-
putational framework for static 3D reconstruction, 1 in which
optical flow can be calculated from estimated camera motion
and 3D structure. The solution can be obtained by mini-
mizing an optical-flow-alike objective function. In order to
improve the direct approach’s accuracy and robustness, three
techniques are employed, including the fast guided interpo-
lation (FGI), the left-right consistency constraint and the soft
segment constraint. The FGI is used as depth initialization
in the coarse-to-fine interpolation process. FGI is a hier-
archical, cascaded WLS-optimization based technique [26]
that handles low-resolution, noisy depth upsampling and
sparse motion match densification in a unified manner. Con-
sequently, it can validly recover accurate depth estimation
in homogeneous regions and along depth boundaries, while
preserving thin structures by alternating the color image and
an interpolated intermediate depth as the guidance. Mean-
while, the left-rightmotion consistency constraint and the soft
segment constraint are used to deal with occlusion and tex-
tureless problem to estimate the optical flow more accurately
and 3D reconstruction more smoothly.

The rest of the paper is organized as follows. Section II
presents our variational model. Section III describes the
numerical solution of the proposed model. Section IV shows
the experiment results of our methods on some publicly
available datasets.

II. FRAMEWORK OVERVIEW
Giving image pairs I = {IL , IR} : � → R2 , the forward
optical flow from IL to IR of a pixel x in the image
domain � ∈ R2 is defined as w. Suppose x = (x, y, t)
and w = (u, v, 1) denote the image lattice and flow field.
The 3D point corresponding to each pixel x is denoted as
X ∈ R3 . A basic aim addressed by this paper is to find dense
correspondence between those two images by estimating the
scene structure and the camera matrices. The value constancy
assumption states that the gray value of a ‘‘point’’ in two
views is not changed by the displacement. Then, the gray
constancy assumption is usually expressed as

I (x) = I (x+ w) (1)

Brox et al. [4] introduced the gradient constancy assump-
tion into optical flow estimation:

OI (x)− OI (x+ w) = 0 (2)

1The original method [25] has been patented in China, USA and Japan by
P. Chen.

with O = (∂x, ∂y)T . By including a smoothness constraint,
an energy function as follows is used in [4]:

E (u, v) = Edata (w)+ Esmooth (w)

=

∫
�

dx9
(
|I (x+ w)− I (x)|2

+γ |OI (x+ w)− OI (x)|2
)

+λs9
(
|Ou|2 + |Ov|2

)
(3)

where the modified L1 norm 9
(
s2
)
=
√
s2 + ε with a

small positive constant ε = 0.001 is used to deal with
discontinuities in the flow field and λs, γ are some constants.
Usually, the first part in (3) is referred to as data term fdata,
and smoothness term fsmooth for the second part.
The minimization of the variation problem (3) relies on the

Euler-Lagrange equation. A numerical algorithm was care-
fully designed in [4] to fulfill the Euler-Lagrange equation.

In order to avoid the complicated mathematics with the
Euler-Lagrange equation, a discrete form of the objective
function is used in [27]. In the iteration, a current w has been
iteratively estimated, and the increment δw′ = (δu, δv) needs
to be determined so that the following locally approximation
function achieves the minima at δ̂w′:

E (δu, δv) =
∑

9
(∣∣I (x+ w+ δw′)− I (x)∣∣2

+γ

∣∣∣h I
(
x+ w+ δw′

)
−

h
I (x)

∣∣∣2)
+λs9

(∣∣∣h (u+ δu)
∣∣∣2 + ∣∣∣h (v+ δv)

∣∣∣2) (4)

In [27], an Iterative Reweighted Least Square (IRLS)
approach [28]was utilized tominimize the objective function.

A. PARAMETERIZATION
In an un-calibrated or calibrated setting, suppose that camera
calibration matrix encapsulates the internal camera parame-

ters as K =

fx 0 cx
0 fy cy
0 0 1

 , where f = (fx , fy) is the focal

length and c = (cx , cy) is the offset of the principal point.
Suppose that two camera projection matrices are factored
as P = K

[
I3 0

]
∈ R3,4 and P′ = K

[
R t
]
∈ R3,4 .[

R t
]

describes the pose of the second camera in terms of
a rotation matrix R characterized by three rotation angles
θ =

(
θx θy θz

)
and a translation vector t =

(
tx ty tz

)T
between two cameras, respectively.

R =

cos(θz) −sin (θz) 0sin (θz) cos(θz) 0
0 0 1

 cos(θy) 0 sin
(
θy
)

0 1 0
−sin

(
θy
)
0 cos(θy)


×

1 0 0
0 cos(θx) −sin (θx)
0 sin (θx) cos(θx)

 (5)

For projective reconstruction, the 3D point corresponding
to pixel (x, y) in the first view is determined by its depth dx,y:(

dx,y × x, dx,y × y, dx,y
)

(6)
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and its projection on the second view is
(
x ′x,y, y

′
x,y

)
:

x ′x,y =
P′1
[
dx,y × x dx,y × y dx,y 1

]
P′3
[
dx,y × x dx,y × y dx,y 1

]
y′x,y =

P′2
[
dx,y × x dx,y × y dx,y 1

]
P′3
[
dx,y × x dx,y × y dx,y 1

] (7)

where P′i is the i
th row vector of the second camera projection

matrix P′. The disparity for pixel (x, y) in the first view can
be expressed as

u = x ′x,y − x

v = y′x,y − y (8)

Put simply, the new approach is to estimate two cameras
and a smooth surface that match two views as best as possible.

If a projective transformation of H =
[
K−1 0
0 1

]
is applied

(i.e., rightâĂ"multiplying both camera projection matrices
with H ) so that the first camera projection matrix is still
the default form

[
I3 0

]
and consequently the second camera

projection matrix is re-parameterised as P′ = K
[
RK−1 t

]
,

according to projective ambiguity in reference [29]. For a
concise representation, suppose the parameters P′ and d
are encapsulated in a vector ϑ which can be written as
ϑ (θ, t,K , d).

Furthermore, when two cameras are calibrated, the binoc-
ular depth estimation is reduced to minimize an objective
function of ϑ (θ, t, d).

Suppose ϑ (θ, t,K , d) is a vector that the parameters P′

and d are encapsulated in. The problem of 3D reconstruction
can be solved by minimizing an objective function in the
framework of optical flow, so that two views fit each other
optimally. By embedding the SfM problem in the framework
of Brox’s optical flow seamlessly, the flow field w is defined
as the function with ϑ as their variables: w (ϑ). The energy
function can be reparametrized in terms of ϑ as

Edata (w (ϑ)) =
∫
�

dx9
(
|I (x+ w (ϑ))− I (x)|2

+γ |OI (x+ w (ϑ))− OI (x)|2
)

(9)

The smooth constraint term is expressed as

Esmooth (w (ϑ)) = λs

∫
�

dx9
(
|Ow (ϑ)|2

)
(10)

Put together, the objective function becomes, with ϑ as its
parameters

E = Edata (w (ϑ))+ Esmooth (w (ϑ)) (11)

B. THE LEFT-RIGHT CONSISTENCY CONSTRAINT
Occlusion handling is a critical issue in optical flow esti-
mation [20], [30]. A reconstruction pipeline that relies on
optical flow needs to be robust to these errors, because it
violates the one-to-one-mapping assumption between two
views. Moreover, depth discontinuity exists wherever there

is occlusion. Then, the reconstruction accuracy around
occlusion/discontinuity is usually unsatisfactory. Therefore,
the display of optical flow will be affected, alternatively.
In order to obtain better optical flow and 3D reconstruction,
more care is need to be taken to specifically deal with occlu-
sion, such as occlusion detection or segmentation. In addition,
for SfM, 3D structure can’t be estimated for occluded parts.
Thus, we adopt the strategy of explicitly handling occlusion.
The left-right consistency constraint based on the left view is
defined as

EL(consistency) (wL (ϑL) ,wR (ϑR)) = λco

∫
�L

9

×

(
|wL (ϑL)− wR (xL + wL (ϑL))|2

)
(12)

The constraint term based on the right view can be defined
as the same way. λco is a weighting factor. Here, we detect the
occlusion regions by set the thresholds TL and TR as follows:

|wL (ϑL)− wR (xL + wL (ϑL))| 6 TL
|wR (ϑR)− wL (xR + wR (ϑR))| 6 TR (13)

TL and TR are two different small values. The left-right con-
sistency constraint makes that pixels are forced to be either
visible and satisfy the bi-directional flow consistency, or are
identified as occlusions [31].

C. SOFT SEGMENT CONSTRAINT
Recently, segmentation-based stereo approaches
(e.g. [32], [33]) have been proposed and demonstrated
that the difficulties and ambiguities caused by textureless-
ness or occlusion can be handled by using groups of pixels
with similar colors. Plane fitting from the initial disparities in
a segment is discussed in details by Tao et al. [34]. Use a plane
that is fitted for each color segment to model the inverse depth
values, and then our soft segmentation term can be defined as

Esegment (d) =
∑
x,y

ρ

∣∣∣∣ 1
dx,y
−
(
ax,yx + bx,yy+ cx,y

)∣∣∣∣2 (14)

where (x, y) is an image pixel, and dx,y is its depth value.
Then ρ controls the strength of segment constraint and ax,y,
bx,y, cx,y are the 3D plane parameters which are the least
square solution of a linear system about inverse depth values.
Segmented 3D plane parameters for each region are estimated
by the RANSAC-based algorithm [35].

In this paper, we employ the commonly-used mean-shift
segmentation algorithm [36] with default parameters. In the
iterative process, the reliable pixels are selected by robust 3D
plan fitting algorithm and subsequently used for 3D plane
estimation. Note that the regions with too small (<500 visible
pixels) are ignored for reliable 3D plane parameter estima-
tion. Segmentation errors are ignored and thus can’t be prop-
agated to the depth processing stage. The inverse depth value
is changed within a reasonable range of the fitted plane and
the 3D plane parameters are updated based on the modified
inverse depths accordingly. Although some depth accuracy
may be lost due to the limitation of the plane approximation,
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the quality of depth estimation still can be improved to some
extent.

D. GUIDED DEPTH INTERPOLATION
As in most optical flow method, the Gaussian pyramid is
used in the proposed method to overcome the difficulty of
large displacement. However, it has amajor drawback of error
propagation. Errors at coarser levels can propagate across
scales especially for large displacements and motion discon-
tinuities. In this paper, we propose a guided coarse-to-fine
strategy. In the proposed coarse-to-fine framework for depths
estimation with a ratio σ < 1 of scaling, we use FGI [37] to
interpolate a parse set of depths of the coarse level to initiate
the depths estimation, then use this estimation to initialize a
one-level energy minimization, and obtain the final depths
estimation at the current level.

As in our model, the interpolation of depths is very impor-
tant to the effect of the scheme. From level n to n − 1,
initial depth can be obtained by the interpolation. For a pro-
gressively densified input data d (n) at a certain level n, two
cascaded WLS are performed by alternating the color image
I (n) and an intermediate interpolated depth d∗ as the guidance.
1st WLS:
Using I (n)as the Guidance. Knowing the sparse input data

d (n) and the guidance color image I (n)at the nth level, mini-
mize the following objective function

ε (d∗) =
(
d∗−d (n)

)T
M (n)

(
d∗ − d (n)

)
+ λ1dT∗ AI (n)d∗ (15)

where AI (n) denotes the spatially varying Laplacian matrix
defined by the guidance image I (n).M (n) is a diagonal matrix
with its elements given by themaskmapm(n).m(n) denotes the
constraint map for the sparse data input whose elements are
1 for pixels with valid data and 0 otherwise. An intermediate
dense output d∗ is computed with

d∗ (x) =

((
E + λAI (n)

)−1 d (n)) (x)((
E + λAI (n)

)−1m(n)
)
(x)

(16)

m(n) denotes the corresponding vectored form of m(n).
2nd WLS:
Using d∗ as the Guidance. Suppose the input data d (0) as

the bicubic interpolated data d (n) and the intermediate inter-
polated data d∗ as the guidance signal. The similar objective
is minimized as

ε
(
d̃ (n)
)
=

(
d̃ (n)−d (0)

)T(
d̃ (n)−d (0)

)
+λ2d̃ (n)

T
Ad∗ d̃ (n) (17)

where Ad∗ denotes the Laplacian matrix defined by d∗. Over
the iterations, both intermediate guidance signal d∗ and the
2nd WLS output d̃ (n) are progressively improved, and the
final output d̃ (0) preserves important depth or motion struc-
tures.

In this paper, the FGI method with default parame-
ters [37] is chosen to deal with depth up sampling which
builts on a WLS formulation with its recent fast solver-
fast global smoothing technique. It densifies the input data

set by efficiently performing the cascaded, global interpola-
tion (or smoothing) with alternating guidance. This scheme
can effectively address the potential structure inconsistency
between the sparse input data and the guidance image, while
preserving depth or motion boundaries.

E. VARITIONAL MODEL
Finally, the left-right consistency constraint (12) and the seg-
ment constraint (14) are incorporated into (11) to obtain the
finial energy function,

E (w (ϑ)) = Edata (w (ϑ))+ Esmooth (w (ϑ))

+Econsistency (w (ϑ))+ Esegment (d) (18)

where Edata, Esmooth, Econsistency and Esegment are denoted as
the corresponding energy function in a single view either
left or right.

III. NUMERICAL SOLUTION
A. A NEW INTERPRETATION IN NONLINEAR LS
Here, we reformulate the minimization problem (3) as a
general nonlinear least squares problem. Specifically here,
the Gauss-Newton technique [38] is utilized for minimiza-
tion. First, consider the data term:

Edata ≈
∑

9
((
Ixδu+ Iyδv+ Iz

)2
+ γ

(
Ixxδu+ Ixyδv

+Ixz)2 + γ
(
Ixyδu+ Iyyδv+ Iyz

)2) (19)

where the following first-order Taylor expansions have been
used

I
(
x+ w+ δw′

)
− I (x) ≈ Ixδu+ Iyδv+ Iz

Ix
(
x+ w+ δw′

)
− Ix (x) ≈ Ixxδu+ Ixyδv+ Ixz

Iy
(
x+ w+ δw′

)
− Iy (x) ≈ Ixyδu+ Iyyδv+ Iyz

Iz = I (x+ w)− I (x)

Ixz = Ix (x+ w)− Ix (x)

Iyz = Iy (x+ w)− Iy (x) (20)

Ix , Iy and their second-order partial derivatives are calculated
at (x + w).
Note that the first order Taylor expansion in (19) is just the

technique in used Guess-Newton approximation [38].
Taking partial derivatives of data over δw,

∂Edata
∂δw

= 2
∑

9̇d ×

([
I2x IxIy
IxIy I2y

]
+ γ

[
I2xx IxxIxy
IxxIxy I2xy

]
+γ

[
I2xy IxyIyy
IxyIyy I2yy

])
+ 2

∑
9̇d ×

(
Iz

[
Ix
Iy

]
+γ Ixz

[
Ixx
Ixy

]
+ γ Iyz

[
Ixy
Iyy

])
= Hdataδw+ bdata (21)

where 9 ′d (similarly 9 ′s for the smoothness term) takes the

simplified form of 9 ′d = �
′

(
I2z + γ

(
I2xz + I

2
yz

))
. The Hdata

and bdata in (21) act the Gauss-Newton Hessian matrix and
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gradient vector with the data term, in Gauss-Newton algo-
rithm [38]. (Similarly for Hsmooth and bsmooth in (23).)

Similarly, due to the involvement of its neighbors in each
pixel, the smoothness term is,.

Esmooth ≈ α
∑

9

((
ui,j + δui,j − ui,j−1 − δui,j−1

)2
+

(
ui,j + δui,j − ui−1,j − δui−1,j

)2
+

(
vi,j + δvi,j − vi,j−1 − δvi,j−1

)2
+

(
vi,j + δvi,j − vi−1,j − δvi−1,j

)2)
(22)

where the gradient vector Ou in (22) is replaced by the
difference of between its value at (i, j) and two neighbors
at (i− 1, j) and (i, j− 1) :

(
ui,j − ui−1,j, ui,j − ui,j−1

)
and

similarly for v. Note that the superscript here denotes the
image lattice system.

Taking partial derivatives of fsmooth over δw, we have

∂Esmooth
∂δw

= 2α
∑

9 ′s ×
(
Hi,jδi,j + bi,j

)
= Hsmoothδw+ bsmooth (23)

where δi,j =
[
δui−1,j, δui,j, δui,j−1, δvi−1,j, δvi,j, δvi,j−1

]T
,

Hi,j
=

[
C 0
0 C

]
with C =

 1 −1 0
−1 2 −1
0 −1 1

 and b =[
ui,jx + u

i,j
y ,−u

i,j
x ,−u

i,j
y , v

i,j
x + v

i,j
y ,−v

i,j
x ,−v

i,j
y

]T
with ui,jx =

ui,j−ui−1,j and ui,jy = ui,j−ui,j−1 as the first order differences
of u along x and y coordinates, respectively (similar for v).
Putting (21) and (23) together, conceptually, we have

∂E
∂δw
= Hδw+ b (24)

where H and b do not have a simple and compact form due
to the Laplacian operator. (In [27], an explicit formula of
H and b is given by introudcing a few extra symbols.) The
incremental estimate of δw in each iteration is solved as

δ̂w = −H−1b (25)

From the above equation, the solution of (25) is reformu-
lated in the framework of Gauss-Newton approximation [38].
Though ending with a same solution as in [27], the reformula-
tion in non LS has the following advantages. First, the exten-
sion to a new reparameterization can be easily obtained,
in the framework of Gauss-Newton approximation, as will
be seen in the next section. Second, the new interpretations
help understanding the implementation of the Euler-Lagrange
equation in optical flow. In the algorithms for nonlinear LS,
such as Newton and Guess-Newton algorithms, the Hessian
matrix (or Guess-Newton matrix) and the gradient vector are
updated around the current estimate of w, in each iteration.
This incremental method is just the essence of the warping
technique in optical flow.

B. DIRECT FORM OF SOLUTION
The Newton algorithm, Gauss-Newton algorithm and their
alike solve the optimization problem by iteratively minimiz-
ing the second order Taylor expansion or a modified one [38]:

−
1
2
δwHδw+ δwTb (26)

In an optical flow problem, the flow field u and v are encap-
sulated in w. Now, in the optical flow based on SfM problem,
u and v are functions of ϑ . By using the first order difference,
δw can be represented as, with a general matrix J as the
Jacobian matrix

δw = Jδϑ (27)

Substituting (27) into (26), we have

−
1
2
δϑT JTHJδϑ + δϑT JTb (28)

Then, the flow field w and ϑ can be explicitly present
themselves by minimizing the objective function within the
framework nonlinear LS. The Gauss-Newton technique [38]
is utilized for minimization. Thus, the incremental estimate
of δϑ is as

δ̂ϑ = −
(
JTHJ

)−1
JTb (29)

where J = ∂w
∂ϑ

, H and b act as the Gauss-Newton Hessian
matrix and gradient vector for optical flow. Within the frame-
work of optical flow, only the extra computation of the two
Jacobian matrices are needed, so that this jointly estimation
of optical flow and SfM algorithm can be solved.

C. THE MULTI-RESOLUTION FRAMEWORK
An iterative optimization algorithm is adopted to minimize
the energy of objective function (18) with optical flow and
occlusions iteratively. It is difficult to minimize the energy of
parameters ϑ and occlusions O in (18) simultaneously. The
Euler-Lagrange equation according to the objective function
will have multiple solutions. In general, we adopt a multi-
resolution framework to reduce the risk of being tracked in
local minima. The solution computed from the coarse scale
is considered as initialization for fine scale.

The optimization process can be summarized as: starting
from an initial solution

(
ϑ0
L , ϑ

0
R

)
at each level, the energy

function is minimized based on alternating the Euler-
Lagrange partial differential equations corresponding to the
energies EL and ER, then

(
ϑ l+1L , ϑ l+1R

)
is obtained from(

ϑ lL , ϑ
l
R

)
as

E
((
ϑ l+1L , ϑ l+1R

))
= EL

((
ϑ l+1L , ϑ lR

))
+ER

((
ϑ lL , ϑ

l+1
R

))
(30)

l is the iterations per resolution level. Notice that the optical
flow is estimated at the same time with the camera projection
matrixes and depths.

As shown in Algorithm 1, all optimization scheme is ini-
tialized with the solution of function (11) at the coarse level
and refined with the solution of the function (18) at the
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Algorithm 1 Our Iterative Optimization Algorithm
At the coarse level:
Estimate ϑ lL and ϑ lR (the inner-product wlL and wlR, simulta-
neously ) independently using the function of (11);
At the finest level:
Estimate OL and OR respectively from computed ϑ lL and ϑ lR
using the function (13);
Estimate ϑ l+1L one iteration of the process of minimizing
EL
(
ϑ lL , ϑ

l
R

)
with respect to ϑ lL to obtain ϑ l+1L using the

function (18);
Estimate ϑ l+1R one iteration of the process of minimizing
ER
(
ϑ lL , ϑ

l
R

)
with respect to ϑ lR to obtain ϑ l+1R using the

function (18).

finest level. Applying the extension to the new reparametrized
framework of Gauss-Newton approximation, the incremen-
tal estimation of parameterizations in each iteration can be
obtained.

IV. EXPERIMENTS
In this section, we will show the performance and results
of our method and compare with existing state-of-the-art
methods for optical flow, variational depth estimation and
camera pose estimation. To evaluate the performance of our
algorithm in the un-calibrated settings, we use the Middle-
bury dataset [7], which contains ground truth optical flow. For
the calibrated settings, we use the KITTI2012 dataset [39],
which contains both ground truth optical flow and depth
map, and the official KITTI visual odometry split, which
contains 11 driving sequences with ground truth odometry.
For all the experiments, we choose the same parameter set:
{γ, λs, λco, ρ} = {1, 1/25, 2/255, 1/255}. The maximum
errors TL and TR are respectively 0.7 and 1.3. The truncations
TL and TR are set to relatively small values to increase the
robustness in occlusion. In addition, the from-coarse-to-fine
technique with a scale factor of

√
3 is employed in our

implementation to overcome the difficulty of being trapped
in local minima. The iteration number is set as 15 at each res-
olution level. With these techniques, the algorithm is strictly
implemented in the sense of nonlinear LS.

As for calibrated or uncalibrated cameras with a small
baseline, the depth for all pixels is initially set as 1 in the
coarsest level of the pyramid framework. For other levels, it is
obtained by using the FGI interpolation. The rotation matrix
is initially set as the identity matrix, i.e., the rotation angles
are set as 0. The translation vector is set as 0. For uncalibrated
cameras, the offset of the calibration matrix is initially set
as 0. The focal length is initially set as 10 in all experiments.

For the KITTI dataset with a large baseline, the algorithm 2
below is used to initialize the depths and the camera pose
of our method. To estimation the initialize camera matrix P′,
we use the SIFT features as input to the fundamental matrix
estimation. With the given intrinsic camera parameters K ,
we solve the essential matrix and decompose it to get the
relative pose.

Algorithm 2 The Initialization of Our Algorithm on
KITTI2012 Dataset [39]
1. Extracting SIFT features from images and matching;
2. Estimating three-dimensional information of feature points
and camera projection matrices of the cameras based on the
extracted features;
3. Realizing dense depth information by utilizing interpola-
tion based on the first step and the second step.

A. RECONSTRUCTION
In the un-calibrated setting, for the Middlebury dataset [7],
we mainly evaluate the performance in terms of optical flow
and present the visual quality of the reconstruction. In the
calibrated setting, we are mainly concerned about the depth
estimation and optical flow on the KITTI2012 dataset [39],
while presenting the visual quality of the reconstruction.

The Middlebury dataset [7] contains complex motion, but
displacements are limited to a few pixels. When the inter-
nal camera parameters are supposed unknown on Middle-
bury dataset [7], it is impossible to evaluate the quality
of computed camera matrix and estimated depth. To con-
clude, we just obtain a so-called range image [21] which is
associated with each pixel of the image for sample pairs.
Figure 4 presents the visual quality of the recovered 3D
points using COLMAP [18] 2 and our method. COLMAP
is a general-purpose Structure-from-Motion and Multi-View
Stereo pipeline and produces a sparse and dense point cloud
of the scene from multiple images. However, due to a
small baseline, COLMAP does not work in two consecutive
frames. Instead, an image sequence up to 8 frames is used in
COLMAP. We can see that the scene reconstruction from our
method is very smooth and accurate, and even more dense
than that from COLMAP with more images.

KITTI2012 dataset [39] was created from a driving
platform and contains images of city streets. It contains
complex lighting conditions and large displacements. The
internal camera parameters are supposed known on the
KITTI2012 dataset [39]. To evaluate the depth estimation,
we show the qualitative depth results in Figure 1 for sam-
ple pairs as far as the estimated pose is concerned. More
specifically, the effect of the FGI and soft segment constraint
is shown in Figure 3. Table 1 gives detailed numbers for
sample pairs with the error metric measuring the percentage
of erroneous pixels τ > 3 units in non-occluded areas (Out-
Noc). The color coding visualizes outliers (>3 px EPE) in
red and inliers (<3 px EPE) in blue on a logarithmic color
scale. Pixels without ground truth value are shown in black.
The depth results in Table 1 show that our method outper-
forms [24] and [41]. The result is still good even without
FGI initialization or soft segment constraint. Our approach
is significantly superior in all sample pairs. FGI as depth
initialization can effectively address the potential structure
inconsistency and preserve depth boundaries to improve the

2 https://github.com/colmap/colmap
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FIGURE 1. Qualitative results of depth (normalized color) and Out-Noc (percentage of erroneous pixels in non-occluded areas) results for our
method using estimated pose on sample pairs of KITTI2012.

FIGURE 2. Sample frames of KITTI2012 and their reconstructed 3D point (Point Cloud). (a) COLMAP (b) FlowNet2-CSS [40] (c) our
method.

accuracy of the estimated depths. Soft segment constaint
can effectively handle error propagate problem in the depth
processing stage and improve the performance of our model.

To further evaluate the visual 3D structure quality of our
approach, the actual reconstruction results for some sam-
ple pairs are shown in Figure 2. We compare our method
with reconstruction from the dense correspondences obtained
from the-state-of-the-art optical flow algorithm FlowNet2-
CSS [40] and COLMAP. The FlowNet2-CSS [40] as a dense
correspondence can be used to estimate the foundamental
matrix using LeastMedian Square (LMeS)method [42].With
the given intrinsic camera parameters K , we can estimate the

camera matrix P′ and the 3D points. Figure 6 gives 3D points
for some sample pairs of COLMAP, FlowNet2-CSS [40] and
our algorithm, respectively. The 3D points reconstructed from
COLMAP are very sparse and disordered, and 3D structure
estimated from FlowNet2-CSS is even distorted on some
samples. Compared with two methods above, the surface
of the 3D reconstruction of our method is more dense and
smooth.

B. OPTICAL FLOW
The Middlebury dataset [7] has been extensively used for
evaluating optical flow methods. On this benchmark, we can
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TABLE 1. Comparison of depth results from [24], [41] and our method on
selected KITTI2012 showing Out-Noc metric τ > 3.

FIGURE 3. Comparison of depth estimation between our method, our
method without FGI (No FGI) and our method without soft segment
constraint (No soft).

FIGURE 4. Sample frames and the reconstructed 3D points (Point Cloud)
from (a) COLMAP and (b) our method.

TABLE 2. Middlebury dataset: Accuracy in terms of endpoint error (EPE)
on Grove2, Grove3, Urban2 compared to some traditional algorithms.

see that our algorithm based on the un-calibrated setting
has good performance. It outperforms Brox’s HS method
on all three example datasets. We compare our result with
some traditional optical flow algorithms and present a subset
in Table 2. Figure 5 shows qualitative results. To evaluate
the optical flow based on the calibrated setting, our simu-
lation results on KITTI2012 dataset [39] will be compared
with some top ranked start-of-the-art optical flow algorithms.

FIGURE 5. Qualitative results (from left to right) on some sample pairs of
Middlebury dataset. From top to bottom, the initial first frame, GT-flow,
HS-flow and Our-Flow, respectively.

TABLE 3. Endpoint error (EPE) on KITTI2012 comparison of the optical
flow results among some top ranked methods.

TABLE 4. Absolute Trajectory Error (ATE) on the KITTI odometry dataset
averaged over all multi-frame snippets (lower is better). Our method
significantly outperforms the baselines, but falls short of ORB-SLAM
(full).

We evaluate the computed optical flow by means of EPE
in Table 3. The result shows that our method has supe-
rior performance in both accuracy and efficiency. Figure 6
depicts qualitative results of our method on a subset of
KITTI2012 with the error metric (Out-Noc) measuring the
percentage of erroneous pixels (> 3). The same color coding
is used as with reconstruction.

C. CAMERA POSE ESTIMATION
To evaluate the performance of our camera pose estimation,
the official KITTI odometry split 09-10 sequences are used
for test in the experiment. The length of image frames is
fixed to two frames in our system. We compare our pose
estimation with a traditional representative SLAM frame-
work: ORB-SLAM [43]. For the ORB-SLAM, it is a well-
established SLAM system. Here we present two versions:
1) ORG-SLAM (full), which recovers odometry using all
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FIGURE 6. Qualitative results of Optical flow and Out-Noc (percentage of erroneous pixels in non-occluded areas) results on some sample pairs of
KITTI2012 for our method and HS algorithm.

frames of the driving sequence (i.e. allowing loop closure and
re-localization), and 2) ORB-SLAM (short), which runs on
5-frame snippets. Table 4 reports the estimated pose accuracy
of our model over two sample sequences from the KITTI
odometry dataset. It shows that our method significantly out-
performs both baselines (mean odometry) and ORB-SLAM
(short), but falls short of ORB-SLAM (full) across the entire
spectrum.

V. CONCLUSION
In this paper, a direct optical-flow-aware computational
framework for 3D reconstruction is presented, by jointly
employing the theory of multi-view geometry initialized by
Longuet-Higgins. It has the following characteristics: mark-
less, dense and direct. It is achieved by putting the SfM
problem in the framework of optical flow estimation. Because
the reconstruction process is implemented in a direct opti-
mization way, the solution is optimal if not falling into a local
minimum. In addition, FGI approach is utilized in our from-
coarse-to-fine process for depth initialization, and new regu-
larization strategies about the left-right consistency constraint
and soft segment strategy are used to deal with disparity
discontinuity and outlier. The experimental results not also
show good performance of the algorithm in estimation of
optical flow, but also result in prefect depth estimation and
a rather dense and smooth 3D reconstruction.
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