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ABSTRACT The identical parallel processors scheduling problem with no-idle time, release date, and
delivery time is addressed in this paper. The problem considers a family of tasks that has to be processed
by identical parallel processors without idle time. Each task is ready for processing from a release date
(arrival time) in an available processor. After completing the processing, a task is delivered during a delivery
time. There is no-idle time in each processor from the first treated task until the last one. This is the
no-idle processor time constraint, which is faced in real life problems. In these problems, minimizing the
consumed energy during the processing of tasks is a crucial issue. Building a feasible schedule satisfying
all the already mentioned constraints and minimizing the makespan (maximum completion time) is the
objective. The studied scheduling problem is proofed to be NP-Hard in the strong sense. Therefore, a family
of efficient heuristics solving the addressed problem are proposed. These heuristics are composed of two
phases: Phase 1 and Phase 2. The building of a feasible schedule is performed during phase 1, while in
the second phase (phase 2) an improvement procedure is proposed. In order to evaluate the quality of
the proposed heuristics, a tight lower bound is developed. The optimal solution of the parallel processors
scheduling problem with release date and delivery time is the basic used algorithm while developing the
proposed procedures (heuristics and lower bound). In order to assess the performance and the efficiency
of the proposed procedures, an extensive experimental study is carried out. During this experimental study
the relative mean gap is not exceeding 0.7%, which provides strong evidence of the performance of the
developed procedures.

INDEX TERMS Identical parallel processors, makespan, no-idle time, release date, delivery time, lower
bound, heuristics.

I. INTRODUCTION
In scheduling theory, the idle time corresponds to the duration
separating the completion of a task and the beginning of
the next one in the same processor (machine). Generally,
while studying scheduling problems, the idle processor time
is assumed to be without cost. However, in several real life
encountered problems such as in manufacturing and in par-
allel computing [27], this idle time is the source of high
costs. Indeed, a running processor without processing any
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task is a waste of energy such as for a furnace. Even, stop-
ping and restarting a running processor incurs high costs,
indeed this strategy impacts the life cycle of the processors
[31]. Therefore, an additional constraint which is the no-idle
processor time should be considered for such applications.
In this case, the schedules to be taken into account are only
those with no-idle time. In addition, the main concern while
handling problems related to the management of power, is the
elimination of idle times, and schedules without idle times are
required [28]. In this work, the parallel processors scheduling
problem with no-idle time constraint is studied. In addition,
the tasks to be processed are subject to release date and
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delivery time restrictions. The release date might correspond
to the arrival time of the task to the system, and the delivery
time models for example the cooling time of a treated part.
The objective to be minimized is the maximum completion
time (or makespan).

The studied problem models several real life applica-
tions such as the parallel computing. The parallel comput-
ing is the usage of identical parallel processors (more than
two processors) for processing several tasks at the same
time [1], [5]. In parallel computing, small problems result-
ing from dividing large ones are processed simultaneo-
usly [2], [15]. The processing of small problems in parallel
instead of treating the large problem using only one processor,
allows shortening the consumed time while solving complex
problems. However, the utilization of parallel computation
centers is largely recognized as a high electrical energy con-
sumer across the world [29], [30]. In this context, it has been
shown throughout statistics studies that the percentage of
released greenhouse gazes, due to the computing power con-
sumption is 2%, and the increase is expected to reach 6% each
year [18]. Therefore, reducing the consumed electrical energy
is a crucial issue, and one of the proposed solutions is to adopt
the no-idle processors time constraint while scheduling the
tasks.

Parallel computing allows spectacular advances in several
fields such as for optimization, medicine, aerospace engi-
neering, civil engineering, management, biology, chemistry,
mechanical engineering, high performance computing [11],
[12], [16]. The key point in these advances is the simu-
lation of large scale phenomena, which becomes possible
thanks to high performance parallel computing. Balancing
between the positif impacts of parallel computing and the
consumed power triggers the emergence of the high perfor-
mance green computing research field. This research field
focuses in proposing new innovative solutions (hardware
and algorithms) that reduce the parallel computing energy
consumption.

Furthermore, the addressed scheduling problem models
several industrial and manufacturing systems. These systems
are characterized by a high energy consumption. Indeed, 50%
of the total consumed energy in the world is intended to the
industrial sector [32]. Moreover, the manufacturing sector for
example in China consumes 81.32% of the total industrial
energy [33]. Consequently, manufactures are forced to take
some urgent actions in order to save energy. This can be
performed by improving energy efficiency throughout the
production schedule during the manufacturing process. Thus,
energy efficient scheduling [34] attracts a lot of attention,
and allows to save energy without extra cost invested in new
equipments. This can be performed by selecting schedules
with no-idle time.

The no-idle time constraint is encountered in several man-
ufacturing systems such as ceramic industry, glassmaking,
fiberglass processing, and integrated circuits. The no-idle
time constraint is considered in different types of shops, for
example in [35] the permutation flow shop with no-idle time

is addressed. In addition, the hybrid flow shop scheduling
problem with no-idle time is studied in [36], and the no-idle
mixed shops is presented in [37]. In this work, the parallel
processors with no-idle time is studied. Thus, the literature
reviewwill be restricted to the parallel machine and the single
machine shops, both with no-idle time constraint.

The parallel processors scheduling problem and its vari-
ants attracted a lot of attention during the last years and an
extensive literature was presented [4], [7], [17]. Authors in [5]
provide a detailed literature review. Surprisingly, the parallel
processors scheduling problemwith no-idle time, release date
and delivery time, is not studied in literature, to the best of
our knowledge. Only the particular case with one processor,
no-idle time, release date, and delivery time is addressed in
few works, exactly in four papers. The author in the first
paper [22] proposed several complexity results with no-idle
time constraint. In addition, the author proofed that for some
particular cases, certain algorithms designed originally to
solve the problem with idle time, are also valid for solving
the problem with no-idle time, after adjusting the release
dates. Efficient heuristics are proposed in [14] for the single
processor scheduling problem with no-idle time, release date
and delivery time. In addition, a worst case study is proposed
for all the developed heuristics. Authors in the third paper [3],
proposed the adaptation of the well known Branch and Bound
algorithm of Carlier [23], which is designed for the single
machine without idle time constraint. This adaptation is based
on some interesting results. The single processor scheduling
problem with no-idle time and with release date (without
delivery time) is examined in the fourth paper [13]) for several
regular criterions. In the latter paper, the author proposed a
constraint programming based algorithm to solve the studied
problem. More recently, authors in [38] addressed the prob-
lem of identical parallel processors with homogeneously non-
idling constraint, release date, due date, and unit-time job.
In this work, a polynomial algorithm is proposed for solving
the addressed problem.

The current examined problem is proofed to be NP-Hard in
the strong sense. Indeed, this problem is a generalization of
the well known parallel processor scheduling problem with
release date and delivery time [4], [7], [8], [26]. In this work,
the exact solution of the parallel scheduling problem with
release date and delivery time will be used systematically
in solving the parallel processor problem with no-idle time
constraint. Using exact solution of a well studied problem
(even for an NP-Hard) in solving more complex problems is
encountered in literature and several examples are provided.
Indeed, the Branch and Bound based exact solution of the one
process scheduling problem with release date and delivery
time [23], is embedded in several heuristics and exact solu-
tions for solving more complex problems such as the non-
permutation flow shop [40], job shop [39], and the parallel
processors scheduling problems. In addition, the exact solu-
tion of the parallel processors problem with delivery time and
release date is utilized in solving the two-stage hybrid flow
shop scheduling problem [24], [25]. The exploration of the
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proposed literature for the parallel processors problem allows
to determine the most efficient exact solution for the latter
problem. Indeed, the branch and bound based exact solution
presented in [7] is the most efficient one since it is able to
solve large instance problems within a short CPU time. For
this reason, this exact solution will be adopted within this
work.

Within this research work, a family of heuristics are pro-
posed. These heuristics are composed of two phases. The
first one is intended to build an initial feasible solution, while
the second one is an improvement phase. The two phases are
developed using the provided Branch and Bound algorithm
in [7]. In the first phase, this Branch and Bound is used
to generate a feasible solution for the parallel processors
scheduling problem with release date and delivery time. For
this generated solution, each task in each processor is right
shifted such that all the idle times are omitted. In the improve-
ment phase different algorithms are used to solve iteratively
a two processors scheduling problem. These two processors
are the most and the least loaded ones. In order to assess the
proposed heuristics, a new lower bound is developed.

The organisation of this paper is as follows: The addressed
problem is introduced and defined in Section 2. A family
of heuristics and a lower bound are presented in section 3.
In section 4, an extensive experimental study is carried out
and the performance of the proposed procedures is assessed.
Finally, the summary of the performed work in this paper, and
the future directions are presented in the conclusion.

II. PROBLEM DEFINITION
The parallel processors problem with no-idle time, release
date, and delivery time is formally defined as follows. A set
M = {M1,M2, . . . ,Mm} of m identical parallel processors,
has to process a set J = {1, 2, . . . , n} of n tasks (n > m).
Each task j ∈ J is ready to be processed from time rj, this
is the release date. Task j ∈ J has to be processed in a
processor during pj units of time, this is the processing time.
The duration separating the completing of processing of task
j ∈ J and the exiting of the system is qj, this is the delivery
time (it corresponds for example to a cooling period).

The processing of all tasks on the identical parallel proces-
sors is performed under the following assumptions:

• Processors are available for treating tasks from time 0.
• Preemption is not allowed during the processing of a
task. In other term, the interruption of processing before
finishing totally the task underway, is forbidden.

• A task is processed entirely by one processor (no split-
ting of tasks).

• At the same time, a processor treats at most one task.
• The release dates rj, the processing times pj, and the
delivery times qj are assumed to be deterministic and
integral.

In addition, between the finishing and the starting of two
consecutive tasks there is no idle time, this is the no-idle
time constraint. A feasible schedule is an assignment of

TABLE 1. Data of example 1.

tasks to processors without violating the above mentioned
assumptions. Let cj be the finishing processing date of task
j relatively to a feasible schedule σ , then Cj = cj + qj
denotes the completion time of task j. The purpose is to
determine a feasible schedule that minimizes the maximum
completion time (or makespan) Cmax = max

1≤j≤n

(
Cj
)
. Based

on Graham’s notation [10], the studied problem is denoted
Pm,NI/rj, qj/Cmax . The no-idle constraint is indicated by NI
(No Idle) notation in the processors field.

In the sequel, an example illustrating a feasible schedule
for the studied problem, is presented.
Example 1: For this example: n = 5 and m = 2, release

dates, processing times, and delivery times are displayed
in Table 1.

A feasible schedule, corresponding to the data presented
in Example 1, is displayed in Figure 1. This feasible schedule
has a makespan Cmax = 23.
Proposition 1: The problem Pm,NI/rj, qj/Cmax is NP-

Hard in the strong sense.
Proof: When relaxing the no-idle time constraint for

the problem Pm,NI/rj, qj/Cmax , then the obtained prob-
lem is Pm/rj, qj/Cmax , which is NP-Hard in the strong
sense [7], [9].

III. LOWER BOUND AND HEURISTICS
A. LOWER BOUND
This subsection is reserved to the development of a
new lower bound for the addressed scheduling problem
(Pm,NI/rj, qj/Cmax). This lower bound as well as other pro-
cedures, are based on the optimal solution of the problem
Pm/rj, qj/Cmax . The lower bound is presented over the fol-
lowing lemma 1.
Lemma 1: Assume that C∗max is the optimal value of an

optimal schedule for Pm/rj, qj/Cmax , then C∗max is a lower
bound for the problem Pm,NI/rj, qj/Cmax .

Proof: Let CNI
max be the optimal value of an optimal

schedule σNI for the problem Pm,NI/rj, qj/Cmax . The opti-
mal schedule σNI (for Pm,NI/rj, qj/Cmax) is also a feasible
schedule for the problem Pm/rj, qj/Cmax . Therefore, C∗max ≤
CNI
max . This means that C∗max is a valid lower bound for the

studied scheduling problem.
This lower bound is denoted LB, in other term LB = C∗max .
Since the problem Pm/rj, qj/Cmax is NP-Hard, then it

may happen that the optimal solution is not obtained using
the exact procedure [7]. In this case the following remark
(Remark 1) is useful.
Remark 1: If L is a lower bound for the problem

Pm/rj, qj/Cmax , then it is also a lower bound for the problem
Pm,NI/rj, qj/Cmax .
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FIGURE 1. Gantt chart of a feasible schedule having a makespan equal
to 23.

Proof: Since L is a lower bound for the problem
Pm/rj, qj/Cmax then L ≤ C∗max . According to the latter lemma
C∗max ≤ C

NI
max . Thus, L ≤ C

NI
max and consequently L is a lower

bound for the problem Pm,NI/rj, qj/Cmax .
It is worth noting that in case where the exact procedure

fails to solve the problem Pm/rj, qj/Cmax within a fixed time
limit, then it returns the best obtained lower bound (the reader
is referred to [7]).

For Example 1, the lower bound LB = 22, which is at the
same time the optimal solution of the problemPm/rj, qj/Cmax
for the presented data. The corresponding schedule is dis-
played in Figure 2.

B. HEURISTICS
This section is dedicated to the development of a family of
heuristics. These heuristics are composed of two consecu-
tive phases. The first phase is intended to the development
of an initial feasible schedule, while the second phase is
an improvement one. During the two phases, the optimal
solution of the problem Pm/rj, qj/Cmax as well as the well
known Schrage’s algorithm (will be introduced later) are
used. The combination of the two latter procedures (exact

FIGURE 2. Gantt chart of an optimal schedule of Pm/rj , qj /Cmax having
C∗max = LB = 22.

solution and Schrage’s algorithm) results into four heuristics
that will be detailed in the sequel. It is worth noting that the
exact procedure presented in [7] may fail solving optimally
the problem Pm/rj, qj/Cmax within a time limit. In this case,
the best reached feasible schedule is returned by the proposed
procedure in [7].

1) HEURISTIC HEP−EP
Phase 1: The first phase in the development of heuristic
HEP−EP is performed firstly by solving exactly the problem
Pm/rj, qj/Cmax using the procedure presented in [7]. In the
sequel, this procedure will be denoted EP (Exact Procedure).
Let S be the optimal obtained schedule and C∗max the optimal
corresponding value. This schedule S satisfies only one of the
following three conditions:

• Within the schedule S there is no idle time, in this case
the obtained schedule S is also an optimal schedule for
the problem Pm,NI/rj, qj/Cmax and the procedure is
halted (LB = C∗max).

• The schedule S presents idle times, in this case the first
action to be taken is to right shift all the tasks in order
to eliminate the idle times. The obtained schedule after
right shifting the tasks is denoted SR. If the schedules S
and SR have the same makespan’s value C∗max , then the
optimal solution for the problem Pm,NI/rj, qj/Cmax is
reached and the procedure is stopped (LB = C∗max).

• The schedule S contains idle times and the right shifting
results into the schedule SR with a makespan satisfying:
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TABLE 2. Data of example 2.

Cmax > C∗max . In this case, the obtained schedule is
denoted SR1 and the second phase is triggered.

Phase 2: The schedule SR1 is the input of the second phase
and some useful notations in the second phase are presented
as follows.

• The set of the scheduled tasks on processor Mk (k =
1, . . . ,m), relatively to schedule SR1 is denoted Jk .

• The maximum completion time in processor Mk (k =
1, . . . ,m), relatively to schedule SR1 is denoted Ck with
Ck = max

{
Cj, j ∈ Jk

}
, where Cj is the completion time

of task j relatively to SR1 .

In the sequel, the main procedure used in the second phase
for each heuristic is presented. In this procedure, first and
without loss of generality, the completion times in each pro-
cessor are assumed to satisfy: C1 ≤ C2 ≤ . . . ≤ Cm. Phase 2
selects at the beginning the most and the least loaded proces-
sors (M1,Mm) and the scheduled tasks on them (J1

⋃
Jm).

This allows to setup a two parallel processors scheduling
problem P2/rj, qj/Cmax . This problem is solved using the
procedure presented in [7] and a right shifting operation is
performed whenever an idle time appears in the obtained
schedule. The resulting schedule after the right shifting has
a makespan C1

max which satisfies: C
1
max ≤ Cm. If C

1
max < Cm

then an improvement is detected and the maximum com-
pletion times in the processors are sorted in the increasing
order. In the case where C1

max = Cm, the current schedule on
(M1,Mm) is maintained.
Following the first step, an iterative procedure selecting at

each iteration two processors (Mm,Mk ), k = 2, . . . ,m − 1
and the scheduled tasks (Jm

⋃
Jk ) results into a two paral-

lel processors scheduling problem P2/rj, qj/Cmax which is
solved and right shifted. The obtained schedule’s makespan
is denoted Ck

max . For each iteration an update is performed if
an improvement is detected: Ck

max < Cm. This procedure is
repeated until no improvement is detected.

The current heuristic is denoted HEP−EP mentioning that
the optimal solution is used during the two phases. The
obtained maximum completion time (upper bound) at the end
of HEP−EP is denoted UBEP−EP.

To illustrate the two phases for heuristic HEP−EP, the fol-
lowing example (Example 2) is presented.
Example 2: For this example: n = 10 and m = 3, release

dates, processing times, and delivery times are presented
in Table 2.

During the first phase (Phase 1), the problem Pm/rj, qj/
Cmax is solved using the exact procedure in [7] and the
obtained schedule is presented in Figure 3. This schedule has
a maximum completion time C∗max = 28.

The schedule displayed in Figure 3 presents three idle
times distributed as follows.
• On processorM2, the time interval [5, 7], separating the
two consecutive tasks 9 and 10,

• On processorM3, the time interval [4, 5], separating the
two consecutive tasks 2 and 3,

• On processorM3, the time interval [9, 11], separating the
two consecutive tasks 3 and 1.

According to phase 1 procedure, a right shifting is per-
formed in order to eliminate all the idle times, and the
obtained schedule is presented in Figure 4. The maximum
completion time (makespan) of this schedule is Cmax = 29.
Therefore, the condition three is satisfied and phase 2 is
activated.

At the beginning of Phase 2, the subsets of tasks as well
as the maximum completion times on each processor are
identified and presented as follows.
• For processor M1: C1 = 26 and J1 = {6, 9, 8},
• For processor M2: C2 = 28 and J2 = {10, 5, 7}
• For processor M3: C3 = 29 and J3 = {2, 3, 1, 4}.
The iterative procedure in phase 2 starts by selecting the

most and the least loaded processors as well as the sched-
uled jobs in these two processors. In our case, the requested
processors are M1 and M3, and the related subset of tasks is
J1
⋃
J3 = {1, 2, 3, 4, 6, 9, 8}. The resulted two processors

scheduling problem P2/rj, qj/Cmax is solved using EP (the
exact procedure provided in [7]). The obtained schedule is
depicted in Figure 5.

An improvement is detected, and the new distribution of
tasks as well as the new maximum completion times for the
processors are presented as follows.
• For processor M1: C1 = 28 and J1 = {6, 1, 4},
• For processor M2: C2 = 28 and J2 = {10, 5, 7}
• For processor M3: C3 = 27 and J3 = {2, 3, 1, 4}.
Recall that for the considered data, and according to

phase 1, the problem Pm,NI/rj, qj/Cmax has a lower bound
LB = 28. Since, the feasible schedule presented in Figure 5,
has a maximum completion time UBEP−EP = 28 = LB, then
this schedule is an optimal one forPm,NI/rj, qj/Cmax and the
whole procedure is halted.

The heuristic HEP−EP is totally based on an exact pro-
cedure solving the Pm/rj, qj/Cmax . The latter problem is
NP-Hard and the exact procedure is a time consuming one for
certain data. Thus, including other simple heuristics, return-
ing a near optimal solution for Pm/rj, qj/Cmax within a short
time, are required to have an accurate assessment. In this
context, the Schrage’s heuristic, which is a dispatching rule,
is adopted. This heuristic is selected due to its time com-
plexity which is inO(nlogn) time. Combinations of Schrage’s
algorithm with the exact procedure are performed, for exam-
ple Schrage in phase 1 and exact solution in phase 2, and three
other heuristics are developed. These heuristics have the same
logic as for HEP−EP, in terms of phases and the content of
these phases. More details for these heuristics are presented
in the sequel.
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FIGURE 3. Gantt chart of an optimal schedule of Pm/rj , qj /Cmax for example 2.

2) HEURISTIC HMS−MS
The Schrage’s algorithm is an iterative procedure, intended
to provide a near optimal solution for the problem
Pm/rj, qj/Cmax . At each iteration, the task with the largest
delivery time (qj) is scheduled in the first available proces-
sor. Therefore, the main effort for this algorithm is sort-
ing the delivery time (qj) in the decreasing order. Thus
the Schrage’s algorithm time complexity is in O(nlogn)
time.

The Schrage’s algorithm is illustrated over the following
example (Example 3).
Example 3: The number of processors and tasks are

respectively n = 5 and m = 2. The release dates, processing
times, and delivery times are presented in Table 3.

Applying Schrage’s algorithm yields the schedule dis-
played in Figure 6. The maximum completion time of this
feasible schedule is Cmax = 18.
Since the no-idle time is a mandatory constraint for the

studied problem Pm,NI/rj, qj/Cmax , then a modified version

TABLE 3. Data of example 3.

of Schrage’s algorithm is proposed in this section. ThisModi-
fied version of Shcrage’s algorithm (MS) consists on schedul-
ing among the unscheduled tasks the one with the largest
delivery time (qj), on one of the first available processors.
The selection of the processor is performed according to the
following procedure.

In iteration i(i = 1, . . . , n), consider:

1) Task i with the ith largest delivery time among the
unscheduled tasks (without loss of generality).

2) MAi the set of available processors for treating task i.
3) ski is the earliest starting time of task i on processor

Mk ∈ MAi.
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FIGURE 4. Feasible schedule obtained after the Right shifting procedure.

4) The completion time of i in processorMk is Ck
i = ski +

pi + qi.
5) if jk is the last scheduled task onMk , then ak = ski +qjk .

The new completion time of jk after eliminating idle
time (if it exists) is ak .

6) the selected processor is the one with smallest ak .

Indeed, si + qk represents the completion time of task jk
right shifted until the stating time of task i. Therefore, MS
aims to minimize the increasing of the completion time when
right shifting the tasks with idle time.

For Example 3, the iterations of Modified Shrage’s algo-
rithm MS are as follows.

1) iteration 1: Task 1 is the candidate and it is scheduled
on M1, with starting time s1 = 1 and completion time
C1 = 18.

2) iteration 2: Task 2 is the candidate and it is scheduled
on M2, with starting time s2 = 2 and completion time
C2 = 16.

3) iteration 3: Task 3 is the candidate and it can be sched-
uled in either M1 or M2. The two processors have one
scheduled task. The earliest starting time for task 3 is 6.
Comparison s3 + q1 = 6 + 15 = 21 and s3 + q2 =
6 + 11 = 17 yields an advantage for processor M2
and task 3 is scheduled on M2 instead of M1 as for the
previous feasible schedule.

4) iteration 4: Task 4 is the candidate and it is scheduled
on M1, with starting time s4 = 4 and completion time
C2 = 15.

5) iteration 5: Task 5 is the candidate and it is scheduled
on M1, with starting time s4 = 7 and completion time
C2 = 17.

The obtained schedule is presented in Figure 7.
Observing that the two last feasible schedules(depicted

in Figure 6 and Figure 7) have the same maximum com-
pletion time Cmax = 18. However, when the right shifting
procedure is applied for both of them, then for the first
one (Schrage’s algorithm): Cmax = 21 and for the second
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FIGURE 5. Gantt chart of a feasible schedule having LB = C∗max = 28.

one (Modified Schrage’s algorithm): Cmax = 19. This
is the main reason for developing the Modified Schrage’s
algorithm (MS).

The Modified Schrage’s algorithm (MS) is used in the
development of the second heuristic in the sameway as for the
heuristic HEP−EP. In other terms, in Phase 1 and Phase 2 the
MS procedure is used instead of the exact procedure EP. The
resulting heuristic and the corresponding maximum comple-
tion time are denoted respectively, HMS−MS and UBMS−MS .

3) HEURISTICS HMS−EP AND HEP−MS
The combination of the Modified Schrage’s algorithm (MS)
and the exact procedures EP yields two other variants which
are presented below.

1) (MS) used in phase 1 and exact procedure used in Phase
2 results into the heuristicHMS−EP and the correspond-
ing maximum completion time is denoted UBMS−EP.

2) The usage of exact procedure EP used in phase 1 and
(MS) used in Phase 2, products the heuristic HEP−MS
with maximum completion time denoted UBEP−MS .

IV. COMPUTATIONAL EXPERIMENTS
A. TEST PROBLEMS
The performances of the four proposed heuristics HEP−EP,
HMS−MS , HEP−MS , HMS−EP, and the lower bound LB are
assessed over an extensive experimental study. This experi-
mental study is carried out using test problems as introduced
in [4] and in [8]. Three classes of instances are generated and
denoted respectively: Class A, Class B andClass C. It is worth
noting that the combination of several different problem sizes
(n and m), processing times, delivery times, and release date
distributions, yields a highly diversified test problems. In so
doing, we propose a method for an unbiased experimental
analysis of the performance and efficiency of the proposed
procedures (heuristics and lower bound).
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FIGURE 6. Feasible schedule produced by Schrage’s algorithm.

FIGURE 7. Enhanced feasible schedule produced by Modified Schrage’s
algorithm.

1) CLASS A
For Class A the number of tasks n and processors m are
generated as follows.
• n ∈ {10, 20, 40, 50, 200}
• m ∈ {2, 3, 5, 8}

The release dates ri, processing times pi, and delivery times
qi are generated as follows.

• pi uniformly generated in [1, pmax], with pmax = 10.
• ri uniformly generated in [1, rmax],
• qi uniformly generated in [1, qmax], where rmax and qmax
depend on n, m, and a parameter K as: rmax = qmax =⌈
nK
m

⌉
,

• with K ∈ {1, 3, 5, 7, 10, 13, 17, 22, 27, 33}
For each combination of n, m, and K several instances

are generated (as in [4]) and 2000 instances are obtained for
class A.

2) CLASS B
The generation of instances for Class B is similar to class A
except for pi, ri, which are generated as follows ( [8]).
• pi uniformly generated in [1, n].
• ri uniformly generated in [1, n],
The number of generated instance for Class B is

2000 instances by considering different combinations.

3) CLASS C
The test problems in Class C are generated as follows.
• n ∈ {10, 20, 40, 50, 200}
• m ∈ {2, 3, 5, 8}
• pi uniformly generated in [1, 50].
The generation of release date ri and delivery time qi are

uniformly generated. This generation is performed according
to three following sub-classes:
• Small-Large(SL):ri ∈ [1, 20] and qi ∈ [1, 50].
• Medium-Medium(MM ): ri ∈ [1, 50] and qi ∈ [1, 50].
• Large-Small(LS): ri ∈ [1, 50] and qi ∈ [1, 20].
Each subclass (SL, MM , LL) contains 2000 instances

which results into 6000 instances for Class C.
The lower bound LB as well as the heuristics HEP−EP,

HMS−MS , HEP−MS , HMS−EP, are coded in C language over a
quad-core (1.8 GHz) Personal Computer with 16 GB RAM.
The results are assessed throughout the following perfor-
mance measures (metrics).
• TLB: required average time to compute LB.
• RG = 100(UB− LB)/LB: the relative gap.
• Gap: the average relative gap.
• Time: required average time for the heuristics.
• NIt: The Phase 2 average number of iterations.
The relative gap RG is measuring the maximum relative

deviation of the studied heuristic’s value UB relatively to the
optimal solution (which is not available). Indeed, if C∗max is
the optimal value, then C∗max ≥ LB and RG = 100(UB −
LB)/LB ≥ 100(UB − C∗max)/LB. The more RG is close to 0,
the more the heuristic is efficient.

The obtained results (detailed and average) are presented
as follows.
• For Class A: in Tables 4, 5,6.
• For Class B: in Tables 7, 8,9.
• For Class C: seeking clarity, for this class only the
average results are presented in Table 10. The detailed
results are displayed in the Appendix V, as below.
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TABLE 4. Class A: detailed results for HEP−EP and HMS−MS .

TABLE 5. Class A: detailed results for HEP−MS and HMS−EP .

TABLE 6. Global results for Class A.

– For subclass SL: in Tables 11,12.
– For subclass MM : in Tables 13,14.
– For subclass LS: in Tables 15,16.

B. NUMERICAL RESULTS
For class A and according to Tables 4-6, the average con-
sumed time TLB while computing LB is not exceeding 1.47s,
which is a very short time. Recall that LB is computed using
an exact procedure EP ( [7]). Despite using exact procedures

TABLE 7. Class B: detailed results for HEP−EP and HMS−MS .

to generate LB, the consumed time is short and acceptable.
This is an additional justification for the usage of exact proce-
dures to solve more complex problems. In addition, for each
number of processorm, the TLB average time is increasing as
the number of tasks n increases, and the maximum is reached
for n = 200. For each number of tasks n, TLB is almost
insensitive to the variation of the number of processors m
(for n = 40: TLB varies from 0s to 0.11s). Remarkably,
the maximum TLB is reached for the smallest number of
processors: m = 2. This is due to the relative weakness of
the EP while treating small number of processors.

Based on Tables 4-5, the average time Time while running
the four heuristics is increasing as the number of tasks n
increases. The maximum Time = 3.28s is obtained for
n = 200, m = 2, and HMS−EP. As remarked previously,
when using EP the largest consumed time Time is reached
for m = 2. For each one of the proposed heuristics, the distri-
bution of Time is as follows.

• For HEP−EP, Time ∈ [0.01, 1.6] and the average is
0.3855s.

• For HMS−MS , Time ∈ [0.01, 0.43] and the average is
0.0875s.

• For HEP−MS , Time ∈ [0.01, 2.26] and the average is
0.3785s.

• For HMS−EP, Time ∈ [0.01, 3.28] and the average is
0.4075s.

Which indicates that the heuristics using partially (in one
phase) or totally (in both phases) the EP procedure, are the
most time consuming heuristics. Although EP is and exact
procedure, the consumed time while running the heuristics
still short.

According to Table 6, the respective averages Time, for
the heuristics HEP−EP, HMS−MS , HEP−MS , and HMS−EP are
0.3855s, 0.0875s, 0.3785s, and 0.4075s. These times are
short and are not exceeding 0.4075s despite the usage of
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TABLE 8. Class B: detailed results for HEP−MS and HMS−EP .

TABLE 9. Global results for Class B.

the exact procedure EP for three of the proposed heuristics.
The least average time Time (0.0875s) is reached as expected
for HMS−MS , since the MS is a polynomial procedure (time
complexity isOnln(n)). The maximum average time which is
reached for HMS−EP is 0.4075s. This is signify that the initial
provided schedule from phase 1, when using the MS is far
from the optimal solution and the EP has to provide more
effort to enhance the latter one.

Based on Tables 4-5, the average relative gap Gap is
ranging:

• For HEP−EP, from 0 to 2.22,
• For HMS−MS , from 0.3 to 11.06,
• For HEP−MS , from 0 to 0.47,
• For HMS−EP, from 0 to 3.69.

The heuristic HEP−MS is presenting the minimum Gap while
HMS−MS is providing the maximum one. The two remaining
ones (HEP−EP and HMS−EP) are quite similar in term of Gap.
Thus, when the EP is involved then relative gapGap becomes
small. In addition, the average gap Gap for each class (n,m)
is significantly more important for the heuristics where the
first phase is performed via MS procedure.
According to Table 6, the minimum average relative gap

Gap = 0.1775 is reached for HEP−MS , while the maximum
Gap = 5.203 is obtained when using HMS−MS , which is
far from the other heuristics (5.203 � 0.823 > 0.7385 >
0.1775). The heuristic HEP−MS is outperforming the two
other ones (HEP−EP and HMS−EP) in terms of average time
Time and average gap Gap. Therefore, the obtained relative

TABLE 10. Average results for Class C.

TABLE 11. Class C, subclass SL: detailed results for HEP−EP and HMS−MS .

gap Gap is very small for the three heuristics using the EP
procedure. This is a proof of the efficiency of the proposed
heuristics (except HMS−MS ) and the proposed lower bound
LB, since Gap is involving both the heuristics and the lower
bound.

To get more insight on phase 2, the average number of
iteration NIt during phase 2 is presented. Based on Table 6,
NIt is almost 3 iterations for all the heuristics exceptHEP−EP,
where NIt ≈ 1. Thus, phase 2 is increasing the performance
of the proposed procedures.

170402 VOLUME 7, 2019



L. Hidri et al.: Bounding Strategies for the Parallel Processors Scheduling Problem

TABLE 12. Class C, subclass SL: detailed results for HEP−MS and HMS−EP .

TABLE 13. Class C, subclass MM: detailed results for HEP−EP and
HMS−MS .

For class B and based to Tables 7-8, one can observe easily
that the consumed time TLB running LB is much higher than
class A. Indeed, TLB reaches a maximum of 100s for n = 200
andm = 8. This is explained by the hardness of test problems
of the Class B to be handled by the EP procedure. Compared
to Class A, the average time TLB is presenting the same
behavior for class B. Indeed, TLB increases as n increases for
each fixed m. Contrary to Class A, for each n, an increasing
of TLB is observed whenm increases. This increasing is more
important for large value of n.

Furthermore, the average time Time is becoming much
important compared to test problems of Class A, and Time
reaches a maximum of 142.64s for n = 200 and m = 8.
Average time Time is increasing when the number of tasks
n increases for class B. In addition, Time is not presenting a

TABLE 14. Class C, subclass MM: detailed results for HEP−MS and
HMS−EP .

TABLE 15. Class C, subclass LS: detailed results for HEP−EP and HMS−MS .

regular variation (increases or decreases) against m for fixed
value of n. A comparative study of the behavior of each
one of the developed heuristics according to Time, yields the
following distributions.
• For HEP−EP, Time ∈ [0.01, 142.64] and the average is
25.868s.

• For HMS−MS , Time ∈ [0.01, 1.41] and the average is
0.255s.

• For HEP−MS , Time ∈ [0.01, 101.17] and the average is
22.594s.

• For HMS−EP, Time ∈ [0.01, 125.34] and the average is
13.2615s.

Based on the latter distributions, one can conclude that
the maximum time running the heuristics using the EP dose
not exceed 1.5 minute and the average consumed time is not
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TABLE 16. Class C, subclass LS: detailed results for HEP−MS and HMS−EP .

exceeding 0.5minute. This is an additional justification of the
usage of the EP procedure while developing the heuristics.

According to Table 9, the average relative gap Gap is
similar for the heuristics HEP−EP and HEP−EP is reached for
HEP−MS , with respective values 0.076 and 0.0935. These two
values are quite small and proofed that two heuristicsHEP−EP
and HEP−MS as well as the lower bound LB, are performant.
The effect of the second phase (phase 2) is assessed over

the average number of iterationsNIt presented in Table 9. The
NIt values range from 1 to 5 according to the used heuristic.
This shows the impact of the second phase in improving the
quality of the proposed heuristics.

For Class C and based on Table 10, the heuristics HEP−EP
and HEP−MS outperform the remaining ones. These two
heuristics are presenting a very small relative gapGap = 0.07
and an average time Time = 13.02s. For more details, about
Class C the reader is referred to the Appendix.

As a general conclusion, the heuristics HEP−EP and
HEP−MS are performing well in term of makespan value
(measured throughout the relative gapGap)withGap ≤ 0.07,
and in term of short consumed time.

V. CONCLUSION AND FUTURE DIRECTIONS
The parallel processors scheduling problem with no-idle time
constraint, release date, and with delivery time, is studied in
this paper. This problem is an interesting one from theoretical
and practical point of views. Indeed, this problem is proofed
to be NP-Hard in strong sense in addition tomodeling real life
problems. An exact procedure solving the parallel machine
scheduling problem with release date and delivery time is
used to derive new lower bound and several heuristics for the
studied problem. The proposed heuristics are of two phases,
where the first phase is constructive and the second one is
an improvement phase. An extensive experimental survey is
carried out over three classes of instances(10000 instances)

with up to 200 tasks and 8 processors. This computational
study shows the efficiency of the proposed procedures since
the maximum mean relative gap dose not exceed 0.7%. The
average consumed time while running the proposed pro-
cedures remains satisfactory. As a future directions, evolu-
tionary meta-heuristics will be considered and developed to
reduce the consumed time while running the heuristics as
well as the lower bound. In addition, a low complexity lower
bounds will be proposed. The presented procedures will be
integrated to an exact Branch and Bound algorithm, in order
to solve optimally the studied scheduling problem.

APPENDIX
DETAILED NUMERICAL RESULTS OF CLASS C
See Table 11–16.
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