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ABSTRACT Energy consumption has overtaken equipment costs given the growth of computing power,
thereby becoming the dominant cost to data centers. Constrained by ensuring that peak resource requirements
of VMs are met, the effective use of resource fragments is an effective means of energy conservation.
We apply resource reservation to the resource-utilization-aware energy efficient server consolidation
algorithm (RUAEE), and propose a server consolidation energy-saving algorithm (SCES). We adjust the
allocations of VMs by computing the resource reservation and resource allocation ratio dynamically.
This technique maintains the host resource utilization to within a reasonable range, reduces resource
fragmentation and reserves resources to satisfy the peak resource requests simultaneously. Compared with
the RUAEE algorithm, our algorithm can reduce the risk of system overload and improve the stability of the
system. The experimental results based on the actual workload of the Google cluster show that the algorithm
is effective at reducing resource waste, improving system stability, and achieving energy savings.

INDEX TERMS Cloud computing, resource fragmentation, resource allocation, online migration, resource

reservation.

I. INTRODUCTION

The “pay-as-you-go” model provided by cloud computing
provides users with convenient computing services. Many
types of services provided by cloud providers, such as IaaS,
PaaS, and SaaS, provide high scalability and flexibility. Users
can use cloud services without being restricted by hardware
and software systems. The cloud is a convenient service
mode whereby users can choose to pay based on a calculated
amount or by time.

Power consumption is a large portion of cloud computing
operating costs [1]. Researchers speculate that US data center
energy consumption will exceed 100 billion kWh by 2020 [2].
If the current trend continues, the energy cost of data centers
will exceed the cost of the equipment [3]. Thus, saving energy
and reducing the waste of resources are gaining attention in
cloud computing.

Green computing is primarily geared toward data
centers and concerns reducing energy consumption.
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Green computing proposes an energy-saving strategy to opti-
mize data centers from software and hardware perspectives
to reduce energy consumption [4]. The number of hosts in
the data center can be effectively reduced by adjusting the
virtual machine (VM) placement policy. However excessively
concentrated VMs can cause system overload, reduce sys-
tem stability and violate the service level agreement (SLA).
Excessive VM migration can also incur additional overhead
and reduce system availability. Therefore, reducing energy
consumption cannot be at the expense of system stability or
availability.

Another notable problem is resource fragmentation caused
by server consolidation. Different VMs have different mem-
ory and CPU requirements. If we do not fully consider the
balance of resources when placing a VM, resource frag-
mentation will occur, where one resource becomes depleted
while another has a large surplus [5], [6]. As shown in
Fig.1 (a), CPU utilization remains at 50%, and memory uti-
lization remains at 15%. Fig.1 (b) shows that, CPU utilization
remains at 10%, memory utilization remains at 40%. Both
figures show that one utilization is much higher than another.
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FIGURE 1. Resource fragmentation.

The resource fragmentation will not be alleviated until the
VM is migrated or deleted.

In addition, excessively concentrated VMs can cause
system overload when faced with workload bursts of the
VMs [7]. System availability and stability will be reduced.
Therefore, some resources should be reserved to address peak
resource demands. However, excessive resource reservation
will also waste resources and increase operating costs. It is
a huge challenge to design a reasonable resource reservation
policy to meet resource requirements of the peak tasks and
avoid the waste of resources.

In this paper, we propose a server consolidation energy-
saving algorithm based on resource reservation to reduce
resource fragmentation. We reserve a certain amount of
resources for the host to ensure that peak resource demands
are satisfied, while avoiding excessive reservation. The main
contributions of this paper can be summarized as follows.

« Resource reservation by the host is performed during the
VM allocation process to prevent server overload caused
by workload bursts.

o The execution mode of the resource-utilization-
aware energy efficient server consolidation algo-
rithm (RUAEE) is redesigned, and the VM is allocated
given the resource reservation as the upper limit to
reduce the risk of overload.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 gives the
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algorithm model. Section 4 gives the algorithm flow. The
experiments and results are discussed in Section 5, and the
Section 6 summarizes our work.

Il. RELATED WORK

In recent years, many researchers have conducted research
on energy conservation. Many studies are improving energy
efficiency while reducing energy usage [8]. Researchers have
proposed solutions at both the hardware and software levels.
At the hardware level, some researchers have used dynamic
voltage regulation to reduce energy consumption at data cen-
ters [9]. At the software level, Han et al. [10] adopted a
VM management approach. In that paper, the author used
a VM management method that approximates a large-scale
Markov decision process to obtain an optimal solution to the
problem.

Reducing resource fragmentation is also an energy-saving
solution. Han et al. [11] used a resource utilization-aware
energy efficiency service integration algorithm (RUAEE) in
their paper. They considered resource fragmentation when
assigning VMs, and controlled host resource utilization
within a range, so that the combination of VMs could fully
utilize host resources and reduce the generation of resource
fragments. Similarly, Li et al. [5] also discussed the problem
of resource fragmentation. They built a multi-dimensional
spatial partitioning model to describe resource usage in
the host. Based on the model, a VM placement algorithm
EAGLE was proposed to balance the multi-dimensional
resource usage status and effectively reduce energy
consumption.

The online migration of VMs is an important technology
for server consolidation. However, migration can have many
negative effects, such as service disruptions, network conges-
tion, and additional migration costs [12]. However, it is also
important to increase resource utilization and reduce energy
consumption by migrating VMs.

Optimization of a single target often results in performance
loss in other aspects of the system. Malekloo et al. [13] used
a multi-objective ant colony algorithm in their paper. They
considered energy consumption, resource waste and commu-
nication cost in the algorithm. The objective function was
designed by the pheromone volatilization mechanism unique
to the ant colony algorithm. They achieved a balance between
system performance and SLA compliance. Compared with
typical algorithms that only consider energy consumption, the
number of SLA violations was reduced, and the stability of
the system was improved.

Workload bursts in VMs are widespread in the data
centers [14]-[17]. Workload bursts will cause not only
SLA violations, but also insufficient VM resources while
also reducing task execution efficiency. Some previous
work have studied the modeling and dynamic configu-
ration of workload bursts in cloud computing [18]-[20].
Huang and Tsang [21] proposed to reserving certain
resources in each host to address the fluctuation of work
responsibility, but did not specify how much resources should
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be reserved. Jiang and Chen [22] proposed an online resource
allocation algorithm. That algorithm took the topology of the
data center as input, and then obtained the migration cost of
the VMs, and resources were reserved for the host to prevent
SLA violations. In this way, the energy consumption and
migration times of the cloud data center and the migration
path length were effectively reduced. Zhang et al. [23] used
a two-state Markov chain-based switching method to predict
the workload and reserved resources in a predictive manner
to reduce the risk of server overload. Hussain and Aleem [24]
used a predictive-based approach to predict workload growth
and migrate VMs to meet peak resource requirements.

llIl. PROBLEM DESCRIPTION

A. RESOURCE UTILIZATION MODEL

The one-dimensional resource model can only describe the
usage status of a single resource [25]-[28], [28]-[36]; it can-
not accurately determine the resources required for VM allo-
cation. To describe the usage of host resources in more
detail, this paper takes two-dimensional resources to describe
the usage of host resources [37]-[45]. As shown in Fig. 2,
the abscissa indicates the usage of the CPU, and the ordinate
indicates the usage of the memory.

Memory
T
ol s 3 D(LD)
| .
i %
i ——> RRA
IA F Gyl . C
H
dist(P)
A
A Il
0(0,0) B 1,0 CPU

FIGURE 2. Resource utilization description model.

Resource reservation area (RRA): We define the area
CDEFGH as the resource reservation area. The resources
in this area are reserved to address any sudden growth of
workloads and avoid SLA violations. CD and ED are the
reserved memory and CPU resource sizes.

Equilibrium tolerance area (ETA) [11]: We define the area
AOBHGEF as an equilibrium tolerance area. The resources
in this area have a reasonable utilization. The algorithm
designed in this paper aims to dispatch hosts outside this
area through VMs. The method of dispatching to the ETA
makes the resource utilization more reasonable, while avoid-
ing excessive use of resources and causing SLA violations.

Areas I and II (IA and IIA) [11]: The resource utilization
in these regions is unbalanced, and resource waste is prone
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to occur. The memory utilization rate of the host in the area
IA is too high, and the CPU utilization rate in the area ITA
is too high. The migration algorithm performs adjustments to
reduce resource fragmentation.

Suppose that point P represents the resource usage of a
host, and the function f of the host resource usage can be
expressed as follows:

RRA, 1-—x)<r&(l—y)<r
V2
ETA di < =
f @y = HA sip) = )
&l —x)>r&(l—y)>r
IA or IIA, otherwise

where dist(p) represents the distance from point P to line x=y,
x represents the CPU utilization, and y represents the memory
utilization. The resource usage of the host is determined by
the function f used to facilitate VM scheduling.

B. RESOURCE RESERVATION MODEL
Reserving resources for hosts helps prevent SLA viola-
tions due to workload bursts. In this paper, we apply
Jiang’s [22] VM resource reservation model. The burst state
and non-burst state resource requirements of VM i are
denoted as rf and rl.b, The difference between the two values
rf and rl.h is denoted as A;:

Ar=1"—r). )

1

Apay denotes the maximum resource spike of the VMs in
the host:
Apgx = max Aj. 3)
Ogj=<i
A4 represent the average resource spike of the remaining
VMs in the same host:

Ag = ZMS, Aj/i. “4)

The reserved resources of host j can be computed as
follows:

only one VM

Amax»

Ri(t) =
]() Apax + nAavgy

. 5
otherwise

where 7 is an experimental parameter. The obtained resource
reservation value is used as the boundary value of the resource
reservation area described in the previous section, which
can effectively reduce SLA violations caused by the sud-
den growth of the workload while simultaneously ensuring
the rationality of resource utilization and reducing resource
fragmentation.

IV. ALGORITHM DESCRIPTION

The RUAEE algorithm periodically performs VM merge
operations to reduce power consumption and uses a
predictive-based approach to determine if the host is over-
loaded. The LR algorithm is used to estimate whether the
CPU utilization of the host will exceed the host resource limit
in the next cycle.
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The MMT algorithm migrates the VM from the overloaded
host. For the unbalanced host, the algorithm migrates the
VM from the host to make the host utilization reach the ETA
or HA area. For low-utilization hosts, the LR algorithm is
used to predict the host CPU utilization of the next cycle. If it
is lower than a preset threshold, the VM is migrated and the
host is shut down. Finally, the VM placement module is the
target host for migrating the VM identity.

This paper improves the RUAEE algorithm and redesigns
the algorithm steps. The improved algorithm is divided into
four parts: adjustment of the overloaded host, adjustment of
the unbalanced host, adjustment of under-loaded host, and
placement of the VM.

When the algorithm is executed, the resource reservation
of the host is first calculated. The host is classified according
to the resource usage. The VM in the overloaded host are
reallocated, the unbalanced host are adjusted, the VM in the
low-utilization host is migrated, and the host changes to a
shutdown state. Finally, VM is migrated to the appropriate
target host. These four modules work together to improve
the resource utilization and reduce energy consumption in the
data center.

The low-utilization host and the balanced host are used as
candidate host sets, and the VMs in the overloaded host and
unbalanced host are migrated to the candidate host set. After
completing the adjustment of the overloaded and unbalanced
hosts, we adjust for low-utilization hosts, migrate them to
the appropriate host, and shut down the current host to bring
the system to equilibrium, improve resource utilization, and
reduce both resource fragmentation and data center energy
consumption. The execution process is shown in Fig. 3.

Calculate resource

Put into
Yes»{ candidate host 0 set is empty
set
No
. Migrate Wis andidate host sty Start new
No Yes Yes
out empty host
No No
Put into
Yes»{ candidate host
set
No
Put into Low-
Yes»{ utilization host
set

)
:

Migrate WM
in

Yes

i
i

No

Migrate W
in

Yes

i

No

Migrate WM into low—

utilization host

FIGURE 3. Algorithm flowchart.

A. ADJUSTMENT OF OVERLOADED HOST

Dynamic changes in VM resource requests from overloaded
hosts can cause total resource demand to exceed the host
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capacity, which severely degrades the quality of service
(QoS). To prevent an overload and minimize SLA violations,
we should migrate the VM from the overloaded host to an
appropriate host.

First, we calculate the resource reservation value R;(t) of
each host. We let p be the current resource utilization of the
host and calculate dist(p) of each host. We select the host
in the RRA area and sort the VMs in descending order by
their resource requirements. We add the VMs to the migration
queue until the host falls into the ETA area, and invoke the
VM placement module to migrate the VMs. The pseudo-code
of the algorithm is given below.

Algorithm 1 Adjustment of Overloaded Host
1: Input: PM set Output: migrateVmList
2: for each host in PM set do
3: if f(host) = RRA then

4: migrateVmList = selectVm(host)

5

6

7

: end if
: end for
: return migrateVmList

B. ADJUSTMENT OF UNBALANCED HOST

To make the resource utilization more balanced and prevent
resource fragmentation, we attempt to move the hosts in the
IA and ITA area to the ETA area by migrating VMs. We calcu-
late the resource reservation of each host and place the hosts
from the IA and IIA areas into the host set to be adjusted.
For the host set to be adjusted, the resource utilization falls
into the ETA area when adding or removing the VM. The
pseudo-code of the algorithm is given below.

Algorithm 2 Adjustment of Unbalanced Host

1: Input: PM set, migrateVmList Qutput: migrateVmList
2: for each host in PM set do
3: if f(host) = IA or IIA then
4: destinationHostList.add(host)
5: end if
6
7
8

: end for
: if migrateVmList = null then
: for each host in PM set do

9: if f(host) = IA or IIA then

10: migrateVmList = selectVm(host)
11: end if

12: end for

13: end if

14: return migrateVmList

C. ADJUSTMENT OF LOW-UTILIZATION HOST

This module is designed to select hosts with lower utilization
and turn them off after the VMs are migrated to other hosts
to save power. The host is marked as a low-utilization host
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when the host resource usage is lower than a certain thresh-
old, and the low-utilization host is first used as a candidate
host with low priority. If the candidate host fails to meet
the conditions, the VM is moved to the low-utilization host.
When VM set is empty, if there is still a low-utilization host,
the low-utilization host set is sorted in descending order of
resource utilization, and the VMs are migrated out in order
until there is no suitable host in the candidate host set or
the low-utilization host set, which is empty. Considering the
heterogeneity of the server and after many experiments, we
chose 10% as the low utilization threshold. The pseudo-code
of the algorithm is given below.

Algorithm 3 Adjustment of Low-Utilization Host
1: Input: low-utilizedHostList Output: migrateVmList
2: sort low-utilizedHostList in decreasing order by
utilization
3: for each host in low-utilizedHostList do
4: destinationLowHostList.add(host)
5: end for
6: if migrateVmList = null then
7: if low-utilizedHostList # null then
8: for each host in low-utilizedHostList do
9:  migrateVmList = selectAllVm(host)
10: end for
11: end if
12: end if
13: return migrateVmList

D. VM PLACEMENT STRATEGY

Excessive VM migration can degrade system performance
and lead to SLA violations. Therefore it is necessary to
minimize the number of VM migrations.

When the migration module finds that there are VMs that
need to be migrated, it is preferable to balance the host for
migration and make the host utilization enter the ETA area.
We select the host with the smallest dist(p) after the VM is
placed from the candidate host set. Finally, if the algorithm
still cannot find a suitable host, then a high utilization migra-
tion is chosen from low-utilization hosts. The pseudo-code of
the algorithm is given below.

V. EXPERIMENTS AND RESULTS

This chapter will introduce the simulation results of the
algorithm and analyze it. Since it is extremely difficult to
implement algorithms on large-scale cloud computing infras-
tructure, this experiment uses simulation experiments to eval-
uate the performance of the algorithm.

The experiment used Amazon EC2 instances as VMs. The
data set uses the Google Cloud Task Dataset (GoCj) [25],
which is the real dataset collected from Google servers. The
experimental conclusion is based on the actual workload
of the real server running in the simulation environment to
ensure the credibility of the conclusions.
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Algorithm 4 VM Placement Strategy
1: Input: migrateVmList, PM set Output: migrationList
2: for each host in PM set do
3: if f(host) = ETA then
4: destinationHostList.add(host)
5: end if
6: end for
7: for each vm in migrateVmList do
8: flag < 0
8: for each host in destinationHostList do
9: if f(allocatedHost(vm. host)) = ETA then
10: migrationList(vm, host)
11: migrateVmList.remove(vm)

12: flag « 1
13: break
14: end if
15: end for

16: if flag = 0 then

17:  for each host in destinationHostList do

18: calculate smallest dist(allocatedHost(vm. host))
19: if f (allocatedHost(vm. host)) # RRA then

20: migrationList(vm, host)

21: migrateVmList.remove(vm)
22: flag < 1

23: end if

24:  end for

25: end if

26: if flag = 0 then

27: for each host in destinationLowHostList do
28:  migrationList(vm, host)

29:  migrateVmList.remove(vm)

30: destinationLowHostList.remove(host)

31: end for

32: endif

33: return migrationList

A. EXPERIMENTAL SETUP

We set up 800 heterogeneous hosts in the data center includ-
ing four types of hosts: IBM server x 3250 (4 cores x
2933 MHz, 8 GB), IBM server x 3250 (4 coresx3067 MHz,
8 GB,IBM server x 3550(6 cores x 2933 MHz, 12 GB), IBM
server x 3550(6 cores x 3067 MHz, 12 GB). Table 1 shows
the servers energy consumption data.

We set up five types of Amazon EC2 instances: micro
instances (500 MIPS, 613 MB), small instances (1000 MIPS,
1.7 GB), medium instances (2000 MIPS, 3.75 GB), high
CPU medium instance (2500 MIPS, 0.85 GB), large instances
(3000MIPS, 5.5GB). The cloud task uses 1000 tasks in GoCj.
GoCj is the Google Cloud Task Dataset, which is extracted
from Google server logs.

B. RESULTS AND ANALYSIS

This section will discuss the implementation of the algorithm
in the simulation environment compared with first fit (FF),
EAGLE and RUAE. FF is a traditional greedy algorithm that
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TABLE 1. Server energy consumption and resource utilization.

Host 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
x3250(2933) 41.6 46.7 523 57.9 65.4 73 80.7 89.5 99.6 105 113
x3250(3067) 423 46.7 59.7 55.4 61.8 69.3 76.1 87 96.1 106 113
x3550(2933) 66 107 120 131 143 156 173 191 211 229 247
x3550(3067) 58.4 98 109 118 128 140 153 170 189 205 222

applies the least expensive selection every time it is executed 25000

however it does not necessarily achieve the global optimal

choice. EAGLE [5] was an early algorithm in resource frag- 20000

mentation research. EAGLE uses two-dimensional modeling § T

of resources to integrate VMs. RUAEE [11] uses predictive S 2 g 15000

methods to reduce SLA violations while considering resource g -% B

fragmentation issues. € w3 10000
Resource fragmentation within the server is an important Z E 2

factor affecting server usage. Excessive resource fragmenta- é 2 5000

tion wastes server resources and incurs additional power con-

sumption. The algorithm proposed in this paper models the

resource fragmentation problem and fully considers resource 0

EAGLE RUAEE SCES

fragmentation when allocating VMs; thus, it can effectively
reduce the additional energy consumption caused by resource
fragmentation. The result is shown in Fig. 4.

18000
16000
14000
12000
10000
8000
6000
4000
2000
0

Energy Consumption(KWh)

FF EAGLE  RUAEE SCES

FIGURE 4. Energy consumption.

Fig. 4 shows the energy consumption of FF, EAGLE,
RUAEE, and SECE in the data center. FF does not con-
sider the problem of resource utilization. When assigning a
VM, the VM is assigned to the first host that can satisfy
the resource request, resulting in an imbalance of resource
usage, which requires more hosts for placing of the VM and
consumes more energy. EAGLE improves the allocation of
resources and integrates resource fragments to reduce the
number of active hosts and thus reduce energy consump-
tion. Compared with EAGLE, RUAEE controls the resource
allocation model in a smaller area when the resource alloca-
tion model is established, and the resource utilization rate is
higher, thereby reducing the number of active hosts as well as
the energy consumption. Compared with RUAEE, SCES uses
reserved resources to reduce the number of host overloads and
further reduce energy consumption.

Fig. 5 shows the number of VM migrations for the three
algorithms under different workload burst frequencies. Since
FF is a static algorithm that does not consider the migration
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(a) The number of VM migrations (low burst time)

25000

s 7'8720000
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£ £ 5000
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EAGLE RUAEE SCES

(b) The number of VM migrations (medium burst time)
25000

20000
15000

10000

migrations
(high burst time)

5000

The Number of VM

0

EAGLE RUAEE SCES
(c) The number of VM migrations (high burst time)

FIGURE 5. Number of VM migrations.

of VM, it is not considered in this section. The acceptable
resource area of EAGLE is the largest; thus, the number
of VM migrations is the lowest. Compared with RUAEE,
SCES has greater VM migration times since the VM needs
to be moved out and redistributed when resource reservation
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(b) SLAYV (medium burst time)
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FIGURE 6. SLAV.

is performed. RUAEE is based on the predictive migration of
VMs to address workload bursts. Therefore, as the workload
burst frequency increases, the gap with the SCES will become
increasingly small. More accurate partitioning can better
reduce resource fragmentation; however, this also means
more VM migrations. We have minimized the number of
VM migrations when designing algorithms, and the number
of VM migrations continues increasing. This is inevitable, but
the cost is acceptable compared to the increase in stability and
the reduction in energy consumption.

Reference [13] noted that SLAV is used to indicate the
number of times that the host reaches 100% utilization,
thereby describing the host’s ability to respond to workload
bursts.
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Fig. 6 shows the number of SLA violations of four algo-
rithms when experiencing workload bursts with different fre-
quencies. FF and EAGLE do not consider the workload burst
problem. The accuracy of the RUAEE based on the prediction
method is also considered. SECS also degrades at higher burst
frequencies because the algorithm cannot address different
burst frequencies using the same reserved resources.

To measure the fragmentation of resources within the host,
the following formula is introduced:

N 4
Zl |U6PU — U/l\/lEMl
v :

RAD = (©6)

where N represents the number of active hosts, UéPU repre-
sents the CPU utilization, and U}, represents the memory
utilization. Equation (6) can be used to characterize resource
allocation in the host. The larger the RAD value is, the more
unbalanced the resource allocation in the host, and the more
resource fragments that exist. In contrast, the smaller the
RAD value is, the more balanced the host resource allocation
and fewer resource fragments exist. The experimental results
are shown in Fig. 7.

Fig. 7 shows the case of host resource fragmentation,
RAD represents the average of the difference in CPU and
memory resource usage in the host. We would like that the
ratios of CPU resources to memory resource allocation in the
host to be as similar as possible. Both EAGLE and RUAEE
optimize the resource fragmentation. EAGLE has a larger
acceptable area; thus, the RAD is larger and has fewest VM
migrations. RUAEE improves the utilization of the host as
much as possible, and the acceptable domain is smaller;
thus, a smaller RAD than the EAGLE algorithm is obtained.
SCES does not pursue the highest resource utilization ratio
with respect to RUAEE. Resources reserves make the host
resource allocation more flexible, and the adjustment module
for the unbalanced host also adjusts the host resources toward
a more balanced target, thus obtaining the minimum RAD.
The SECS algorithm can significantly reduce host resource
fragmentation.

Fig. 8 shows the resource distribution status of the host
after the execution of the four algorithms. Each point
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FIGURE 8. Host resource utilization distribution.

represents a host. The abscissa represents CPU utilization,
and the ordinate represents memory utilization. FF does not
consider the resource fragmentation problem; thus, the host
distribution is very discrete. EAGLE uses a circular arc
boundary when building the resource usage model; therefore
the host distribution also has an arc shape. The host of the
RUAEE is distributed around the high utilization rate of the
line x=y. The host of the SCES algorithm is distributed
near the line x=y, and reserves certain resources to address
workload bursts. Compared with RUAEE, SECS can bet-
ter address the fluctuation of resources demands since host
resources have certain reservations and are not concentrated
at approximately 100%.

VI. CONCLUSION

This paper proposes a server integration algorithm and
resource allocation strategy based on resource reservation.
Resource utilization by a host is usually characterized by
the CPU utilization. However insufficient memory also
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affects the system performance. Therefore, this paper uses
a 2D resource model to describe the utilization of host
resources, and fully considers the resource fragmentation
problem when assigning VMs toward ensuring host resource
utilization balance. Workload bursts are another problem
solved in this paper. This paper uses reserved resources
to address workload bursts, and reserves some resources
according to the current resource usage of the host. This
reduces SLA violations effectively when experiencing work-
load bursts. Finally, we use the Google Cloud task dataset and
Amazon EC2 instances as VMs to verify the effectiveness of
the algorithm.

To further categorize the different intervals to improve the
utilization of resources, we inevitably increase the number
of VM migrations. In future work, we will consider adding
more factors such as migration costs, communication costs
and other more detailed energy consumption models. More-
over, it is necessary to further optimize the algorithm from
the perspective of reducing VM migration, e.g. by adjusting
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the size of the tolerance area and adjusting the algorithm
operation period.

REFERENCES

(1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Lin, R. Chen, J. Xiong, X. Li, and Z. Yao, “Efficient sequential data
migration scheme considering dying data for HDD/SSD hybrid storage
systems,” IEEE Access, vol. 5, pp. 23366-23373, 2017.

W. Josh and P. Delforge, “Data center efficiency assessment: Scaling up
energy efficiency across the data center industry: Evaluating key drivers
and barriers,” NRDC Anthesis, Tech. Rep., 2014.

R. Brown, “Report to congress on server and data center energy efficiency:
Public law 109-431,” Tech. Rep., 2008.

R. Buyya, A. Beloglazov, and J. Abawajy, ‘“‘Energy-efficient management
of data center resources for cloud computing: A vision, architectural ele-
ments, and open challenges,” 2010, arXiv:1006.0308. [Online]. Available:
https://arxiv.org/abs/1006.0308

X. Li, Z. Qian, S. Lu, and J. Wu, “Energy efficient virtual machine
placement algorithm with balanced and improved resource utilization in a
data center,” Math. Comput. Model., vol. 58, no. 5, pp. 1222-1235, 2013.
W. Wei, X. Fan, H. Song, and X. Fan, and J. Yang, “Imperfect infor-
mation dynamic stackelberg game based resource allocation using hidden
Markov for cloud computing,” IEEE Trans. Serv. Comput., vol. 11, no. 1,
pp. 78-89, Jan./Feb. 2016.

W. Vogels, “Beyond server consolidation,” ACM Queue, vol. 6, no. 1,
pp. 20-26, 2008.

K. Bilal, S. U. R. Malik, S. U. Khan, and A. Y. Zomaya, “Trends and
challenges in cloud datacenters,” IEEE Cloud Comput., vol. 1, no. 1,
pp. 10-20, May 2014.

T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu, “Dynamic voltage
scaling in multitier Web servers with end-to-end delay control,” IEEE
Trans. Comput., vol. 56, no. 4, pp. 444-458, Apr. 2007.

Z. Han, H. Tan, G. Chen, R. Wang, Y. Chen, and F. C. Lau, “Dynamic
virtual machine management via approximate Markov decision process,”
in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM),
Apr. 2016, pp. 1-9.

G. Han, W. Que, G. Jia, and W. Zhang, “‘Resource-utilization-aware energy
efficient server consolidation algorithm for green computing in IIOT,”
J. Netw. Comput. Appl., vol. 103, pp. 205-214, Feb. 2018.

M. F. Bari, M. F. Zhani, Q. Zhang, R. Ahmed, and R. Boutaba, “CQNCR:
Optimal VM migration planning in cloud data centers,” in Proc. IEEE IFIP
Netw. Conf., Jun. 2014, pp. 1-9.

M.-H. Malekloo, N. Kara, and M. El Barachi, “An energy efficient and
SLA compliant approach for resource allocation and consolidation in
cloud computing environments,” Sustain. Comput., Inform. Syst., vol. 17,
pp. 9-24, Mar. 2018.

S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: Measurements & analysis,” in Proc.
9th ACM SIGCOMM Conf. Internet Meas., 2009, pp. 202-208.

N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Injecting realistic
burstiness to a traditional client-server benchmark,” in Proc. 6th Int. Conf.
Autonom. Comput., 2009, pp. 149-158.

D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant is change:
Incorporating time-varying network reservations in data centers,” ACM
SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp. 199-210, 2012.

S. Zhang, Z. Qian, J. Wu, S. Lu, and L. Epstein, *“Virtual network embed-
ding with opportunistic resource sharing,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 3, pp. 816-827, Mar. 2014.

N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual
machines for managing sla violations,” in Proc. 10th IFIP/IEEE Int. Symp.
Integr. Netw. Manage., May 2007, pp. 119-128.

G. Casale, N. Mi, and E. Smirni, “Model-driven system capacity plan-
ning under workload burstiness,” IEEE Trans. Comput., vol. 59, no. 1,
pp. 66-80, Sep. 2009.

G. Casale, N. Mi, L. Cherkasova, and E. Smirni, “Dealing with burstiness
in multi-tier applications: Models and their parameterization,” IEEE Trans.
Softw. Eng., vol. 38, no. 5, pp. 1040-1053, Sep. 2012.

Z. Huang and D. H. Tsang, “SLA guaranteed virtual machine consoli-
dation for computing clouds,” in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2012, pp. 1314-1319.

H.-P. Jiang and W.-M. Chen, ““Self-adaptive resource allocation for energy-
aware virtual machine placement in dynamic computing cloud,” J. Netw.
Comput. Appl., vol. 120, pp. 119-129, Oct. 2018.

171460

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(34]

(35]

[36]

(371

(38]

(391

[40]

[41]

[42]

(43]

(44]

(45]

S. Zhang, Z. Qian, Z. Luo, J. Wu, and S. Lu, “Burstiness-aware resource
reservation for server consolidation in computing clouds,” IEEE Trans.
Farallel Distrib. Syst., vol. 27, no. 4, pp. 964-977, Apr. 2015.

A. Hussain and M. Aleem, “GoCJ: Google cloud jobs dataset for dis-
tributed and cloud computing infrastructures,” Data, vol. 3, no. 4, p. 38,
2018.

W. Li, K. Liao, Q. He, and Y. Xia, “Performance-aware cost-effective
resource provisioning for future grid IotT-cloud system,” J. Energy Eng.,
vol. 145, no. 5, 2019, Art. no. 04019016.

J. Zhang, X. Wang, Y. Yuan, and L. Ni, “RcDT: Privacy preservation
based on r-constrained dummy trajectory in mobile social networks,” IEEE
Access, vol. 7, pp. 90476-90486, 2019.

X. Xiao, W. Zheng, Y. Xia, X. Sun, Q. Peng, and Y. Guo, “A workload-
aware VM consolidation method based on coalitional game for energy-
saving in cloud,” IEEE Access, vol. 7, pp. 80421-80430, 2019.

Y. Xia, M. Zhou, X. Luo, Q. Zhu, J. Li, and Y. Huang, “Stochastic
modeling and quality evaluation of infrastructure-as-a-service clouds,”
IEEE Trans. Autom. Sci. Eng., vol. 12, no. 1, pp. 162-170, Jan. 2015.

S. Pang, H. Chen, H. Liu, J. Yao, and M. Wang, “A deadlock resolution
strategy based on spiking neural P systems,” J. Ambient Intell. Hum.
Comput., pp. 1-12, 2019.

Y. Yin, L. Chen, Y. Xu, J. Wan, H. Zhang, and Z. Mai, “Qos prediction
for service recommendation with deep feature learning in edge computing
environment,” Mobile Netw. Appl., pp. 1-11, Apr. 2019.

Y. Yin, L. Chen, and J. Wan, “Location-aware service recommendation
with enhanced probabilistic matrix factorization,” IEEE Access, vol. 6,
pp. 62815-62825, 2018.

H. Gao, H. Miao, L. Liu, J. Kai, and K. Zhao, “Automated quantita-
tive verification for service-based system design: A visualization trans-
form tool perspective,” Int. J. Softw. Eng. Knowl. Eng., vol. 28, no. 10,
pp. 1369-1397, 2018.

T. Song, S. Pang, S. Hao, A. Rodriguez-Patén, and P. Zheng, “A parallel
image skeletonizing method using spiking neural P systems with weights,”
Neural Process. Lett., vol. 50, no. 2, pp. 1485-1502, 2018.

S. Wang, S. He, F. Yuan, and X. Zhu, “Tagging SNP-set selection
with maximum information based on linkage disequilibrium structure
in genome-wide association studies,” Bioinformatics, vol. 33, no. 14,
pp. 2078-2081, 2017.

H. Gao, D. Chu, Y. Duan, and Y. Yin, “Probabilistic model checking-based
service selection method for business process modeling,” Int. J. Softw. Eng.
Knowl. Eng., vol. 27, no. 6, pp. 897-923, Feb. 2017.

Y. Yin, Y. Xu, W. Xu, M. Gao, L. Yu, and Y. Pei, “Collaborative service
selection via ensemble learning in mixed mobile network environments,”
Entropy, vol. 19, no. 7, p. 358, 2017.

S. Pang, T. Ding, S. Qiao, F. Meng, S. Wang, P. Li, and X. Wang, “A novel
YOLOV3-arch model for identifying cholelithiasis and classifying gall-
stones on CT images,” PLoS ONE, vol. 14, no. 6,2019, Art. no. e0217647.
Y. Yin, W. Xu, Y. Xu, H. Li, and L. Yu, “Collaborative QoS prediction for
mobile service with data filtering and SlopeOne model,” Mobile Inf. Syst.,
vol. 2017, Jun. 2017, Art. no. 7356213.

H. Gao, Y. Duan, H. Miao, and Y. Yin, “An approach to data consistency
checking for the dynamic replacement of service process,” IEEE Access,
vol. 5, pp. 11700-11711, 2017.

S. Pang, S. Qiao, T. Song, J. Zhao, and P. Zheng, “An improved
convolutional network architecture based on residual modeling for
person re-identification in edge computing,” IEEE Access, vol. 7,
pp. 106749-106760, 2019.

Y. Yin, F. Yu, Y. Xu, L. Yu, and J. Mu, “Network location-aware service
recommendation with random walk in cyber-physical systems,” Sensors,
vol. 17, no. 9, p. 2059, 2017.

H. Gao, W. Huang, and X. Yang, “Applying probabilistic model checking
to path planning in an intelligent transportation system using mobility tra-
jectories and their statistical data,” Intell. Automat. Soft Comput., vol. 25,
no. 3, pp. 547-559, Jan. 2019.

S. Pang, Q. Gao, T. Liu, H. He, G. Xu, and K. Liang, “‘A behavior based
trustworthy service composition discovery approach in cloud environ-
ment,” IEEE Access, vol. 7, pp. 56492-56503, 2019.

Y. Yin, S. Aihua, G. Min, X. Yueshen, and W. Shuoping, “QoS prediction
for Web service recommendation with network location-aware neighbor
selection,” Int. J. Softw. Eng. Knowl. Eng., vol. 26, no. 4, pp. 611-632,
2016.

H. Gao, W. Huang, Y. Duan, X. Yang, and Q. Zou, ‘“‘Research on cost-
driven services composition in an uncertain environment,” J. Internet
Technol., vol. 20, no. 3, pp. 755-769, 2019.

VOLUME 7, 2019



	INTRODUCTION
	RELATED WORK
	PROBLEM DESCRIPTION
	RESOURCE UTILIZATION MODEL
	RESOURCE RESERVATION MODEL

	ALGORITHM DESCRIPTION
	ADJUSTMENT OF OVERLOADED HOST
	ADJUSTMENT OF UNBALANCED HOST
	ADJUSTMENT OF LOW-UTILIZATION HOST
	VM PLACEMENT STRATEGY

	EXPERIMENTS AND RESULTS
	EXPERIMENTAL SETUP
	RESULTS AND ANALYSIS

	CONCLUSION
	REFERENCES

