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ABSTRACT Implicit discourse relation recognition is a serious challenge in discourse analysis, which
aims to understand and annotate the latent relations between two discourse arguments, such as temporal
and comparison. Most neural network-based models encode linguistic features (such as syntactic parsing
and position information) as embedding vectors, which are prone to error propagation due to unsuitable
pre-processing. Other methods apply different attention or memory mechanisms, mainly considering the
key points in the discourse, yet ignore some valuable clues. In particular, those using convolution neural
networks retain local contexts but lose word order information due to the standard pooling operation. The
methods that use bidirectional long short-term memory network consider the word sequence and retain the
global information, but cannot capture the context with different range sizes. In this paper, we propose a
novel Dynamic Chunk-based Max Pooling BiLSTM-CNN framework (DC-BCNN) to address these issues.
First, we exploit BiLSTMs to capture the semantic representations of discourse arguments. Second, we adopt
the proposed convolutional layer to automatically extract the ‘‘multi-granularity’’ features (just like n-gram)
by setting different convolution filter sizes. Then, we design a dynamic chunk-based max pooling strategy
to obtain the important scaled features of different parts in one discourse argument. This strategy can
dynamically divide each argument into several segments (called chunks) according to the argument length
and the number of current pooling layer in the CNN and then select the maximum value of each chunk to
indicate crucial information. We further utilize a fully connected layer with a softmax function to recognize
discourse relations. The experimental results on two corpora (i.e., PDTB and HIT-CDTB) show that our
proposed model is effective in implicit discourse relation recognition.
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INDEX TERMS Implicit discourse relation recognition, discourse argument representation, dynamic chunk-
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I. INTRODUCTION
Discourse relation describes how two adjacent text units
(e.g., clauses, sentences, and larger sentence groups) are con-
nected logically, which can capture essential structural and
semantic aspects of a discourse. A discourse relation instance
is usually defined as a connective taking two arguments
(as Arg1 and Arg2, respectively). Discourse relation recog-
nition is significant for understanding discourse and
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beneficial to many downstream natural language process-
ing (NLP) applications, e.g., machine translation [1], text
summarization [2], as well as conversation systems [3], [4].

The task of automatically identifying discourse rela-
tions is relatively simple when explicit connectives such as
but and because are given. Recognizing the implicit rela-
tions has been shown to be the performance bottleneck of
discourse parser due to the lack of explicit connectives.
Implicit discourse relations outnumber explicit relations in
naturally occurring text; more than 80% of the words in
Chinese discourse and 52% in English are implicit [5].
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Therefore, this work concentrates on implicit discourse rela-
tion recognition that needs to infer the discourse relations
from the semantic understanding of the specific contexts.

The concerned task can be straightforwardly formalized as
a sentence-pair classification problem, which needs to infer
the relations based on the two arguments. There are two ques-
tions that arise: how can discourse arguments be modelled
properly and how can the interactions between arguments be
captured.

For these issues, considerable researches have been per-
formed for implicit discourse relation recognition with the
use of traditional NLP linguistically informed features and
machine learning algorithms [6]–[9]. They might be sub-
ject to the error propagation introduced by the imperfect
quality of the supervised NLP toolkits. However, implicit
discourse relations are rooted in semantics, which may
make them hard to recover from surface features; thus,
those feature-based methods did not report satisfactory
performance. Recently, various neural network-based mod-
els have shown competitive results on this task, including
convolutional neural networks (CNNs) [10], [11], and recur-
rent neural networks (RNNs) [13]–[15]. More researches
based on basic neural networks exploit attention mecha-
nisms, memory mechanisms and gate mechanisms to capture
more complicated information from discourse arguments
[11], [16]–[19]. Although these studies have improved per-
formance to some extent, they are too complex to reproduce.
A study [20] has shown that simple networks might outper-
form tree LSTM-based models. Meanwhile, many studies of
Chinese discourse [21], [22] focus on macro level discourse
structure analysis and utilize various kinds of features sets to
improve the performance of local models, ignoring the gener-
alization of models. They also claim that the training data for
implicit discourse relation classification is too small to run
powerful neural networks, which motivates us to address this
task by a simple and effective method.

We argue that implicit discourse relation recognition needs
to learn contextual information, which can obtain the seman-
tic understanding of discourse. For example, suppose that we
want to classify the discourse relation of the following pair
(referred to as Arg1 in italics and Arg2 in bold throughout
this paper):

Arg1: You are really lucky.

Arg2: The earthquake came five hours after you left.

If only taking the (lucky, earthquake) pair, it might construe a
Comparison relation due to the contrasting sentiment polarity
of the word pair. It is understood as a Contingency relation
when the entire context of both arguments is considered.
RNN can better capture the contextual information of the text,
and we adopt BiLSTM as a variant of RNN to encode the
semantic representation of discourse arguments.

In addition, the semantic representations of discourse
argument with different granularities have different semantic

understandings. For example, in the sentence ‘‘a sunset stroll
along the South Bank affords an array of stunning vantage
points.’’ When we analyse the word ‘‘Bank’’, we may not
know whether it means a financial institution or the land
beside a river. The phrase ‘‘South Bank’’ may mislead us to
take it as a financial institution. After obtaining the greater
context ‘‘stroll along the South Bank’’, we can easily under-
stand its real meaning. Convolutional neural networks that
can recognize specific classes of n-grams and induce more
abstract representations are a natural combination, which
could obtain more effective representations. We can incorpo-
rate various window sizes for convolutional filters, allowing
the network to capture wider ranges of n-grams to help with
implicit discourse relation classification.

The convolutional neural networks typically utilize a stan-
dard max pooling layer that applies a max operation over a
featuremap to capture themost useful information. This oper-
ation may lose valuable facts such as word order information
which is help identify implicit discourse relation. To reserve
more effective information, some studies [12], [13], [23],
[25] design improved pooling operations, such as dynamic
pooling, dynamic k-max pooling,, as well as dynamic multi-
pooling, to take more maximum values to retain information,
but the word order information is still not effectively retained.

However, the word order clues of discourse has a con-
siderable influence on relation understanding, especially in
Chinese. Sentences S1 and S2 have changed the order of argu-
ments, and they have different relations, namely, S1 might be
a Causal relation and S2 construes an Explanation relation.
We devise a dynamic chunk-based max pooling to select the
maximumvalue of each part in the discourse argument, which
preserves the relevant word order of the argument.

Success in speech recognition [54], [55], biomedical engi-
neering [52], [53] and text tasks [40], [51] shows that the
combination of RNN and CNN could obtain more compre-
hensive clues. In our task, both the contextual information of
discourse and the local cues of different discourse units are
significant to identify implicit discourse relation.

Therefore, we address implicit discourse relation
recognition for both English and Chinese, and propose a
novel Dynamic Chunk-based Max Pooling BiLSTM-CNN
(i.e., DC-BCNN) framework. Specifically, we encode two
discourse arguments by bidirectional long short-term mem-
ory networks to reserve the contextual information, and then
adopt convolutional neural network to extract the semantic
features of different n-grams by different sizes of filters. In the
CNN module, the conventional max pooling layer utilizes

169282 VOLUME 7, 2019



F. Guo et al.: Implicit Discourse Relation Recognition via a BiLSTM-CNN Architecture

a max operation over the obtained feature map to select the
most useful information, which may miss the valid informa-
tion in the other parts of one argument, for example, word
order whichmay directly influence the relation identification.
Inspired by previous work [24], [25], we design a dynamic
chunk-based max pooling operation to divide the arguments
into several segments according to the length of arguments
and the structure of the neural network and then select the
maximum value of each segment to retain as much infor-
mation as possible without other manual operations. Finally,
a classifier is trained to identify the discourse relations.1

In summary, our main contributions are as follows:
• We propose a novel DC-BCNN framework for implicit
discourse relation recognition, which can automati-
cally induce the semantic understanding from the wider
ranges of n-grams and reserve more valid information
without complicated NLP pre-processing;

• We design a dynamic chunk-based max pooling oper-
ation to capture more valuable information within two
discourse arguments for the task;

• We conduct a series of experiments on English and
Chinese corpora to evaluate the effectiveness of our
proposed model.

The rest of this paper is organized as follows: Section II
elaborates the main framework and the detailed description
of dynamic chunk-based max pooling operation. The experi-
mental preparation and the compared baselines are shown in
Section III. Section IV provides the details of experimental
results and discussion. Section V describes the related work
towards implicit discourse relation recognition. The conclu-
sion and future work are presented in Section VI.

II. THE PROPOSED APPROACH
In this section, we first give an overview of our DC-BCNN
framework, as shown in Figure 1. Our framework primar-
ily involves the following components: (i) embedding layer,
which contains lexical information for each word and trained
from an external corpus in an unsupervised manner; (ii)
discourse argument representation, which can learn the his-
torical and future abstractive representation by BiLSTMs;
(iii) multi-granularity feature extraction, which proposes a
dynamic chunk-based max pooling CNN to learn the com-
positional semantic features; (iv) a classifier output, which
calculates the confidence scores for the discourse relations.
Next, we will illustrate the details of our proposed model.

A. EMBEDDING LAYER
Unlike the high-dimensional and sparse of one-hot encoded
vector, distributed representation is low-dimensional, learned
continuous vector, which reflects the much more sophisti-
cated relationships between words. The idea of distributed
representation for symbolic data is one of the most important
reasons why the neural network works. Distributed repre-
sentation was proposed by Hinton and has been a popular

1We’ll provide our code on https://github.com/w6688j/ after organizing.

research topic for more than twenty years [26], [27], [30].
Formally, the embedding layer can be a simple project layer
where word embedding is achieved by lookup table operation
according to the indexes.

To model two discourse arguments, we transform the
one-hot representation of argument into a distributed repre-
sentation. We associate each word w in the vocabulary with a
vector representation xw ∈ Rd , where d is the dimension of
the embeddings. Since each argument is viewed as a sequence
of word vectors, let x1i (x

2
i ) be the i-th word vector in Arg1

(Arg2); the arguments in a discourse relation are expressed
as:

Arg1 : [x11, x
1
2, . . . , x

1
n1 ],

Arg2 : [x21, x
2
2, . . . , x

2
n2 ]. (1)

where Arg1 (Arg2) has n1 (n2) words.

B. DISCOURSE ARGUMENT REPRESENTATION
The Long Short-Term Memory network (LSTM) [28] is
a variant of the recurrent neural network, and specifically
addresses the issue of learning long-term dependencies. Con-
sidering that it is good at modelling a sequence of words with
contextual information, we adopt it to encode two discourse
arguments. Given the word representations of the arguments
as we just described, the LSTM computes the state sequence
for each position t using the following equations:

it = σ (W i[xt ,ht−1]+ bi), (2)

f t = σ (W f [xt ,ht−1]+ bf ), (3)

ot = σ (Wo[xt ,ht−1]+ bo), (4)

c̃t = tanh(W c[xt ,ht−1]+ bc), (5)

ct = it � c̃t + f t � ct−1, (6)

ht = ot � tanh(ct ). (7)

where it , f t , ot , ct , ht denote the input gate, forget gate, output
gate, memory cell and hidden state at position t , respectively.
W i,W f ,Wo,W c, bi, bf , bo, bc are the parameters of the neu-
ral network. Besides, [ ] means the concatenation operation of
xt , ht−1 vectors, and σ denotes the logistic sigmoid function
and � denotes the element-wise product.

Notice that LSTM only considers the context from the
past, but the contextual information from the future can also
be crucial. Referring to the previous work, we implement a
bidirectional LSTM (BiLSTM) neural network to model the
argument sequences. BiLSTM preserves both the historical
and future information by two separate LSTMs in the for-
ward and reverse directions. Therefore, we can obtain two
representations

−→
ht and

←−
ht at each position t of the sequence.

Then, we concatenate them to obtain the intermediate state
ht = [

−→
ht ,
←−
ht ]. As shown in Figure 1, we encode Arg1 and

Arg2 into the contextual representations by two Bi-LSTMs;

namely, h1i = [
−→

h1i ,
←−

h1i ] and h
2
j = [
−→

h2j ,
←−

h2j ] are the intermedi-
ate states of the i-th word in Arg1 and the j-th word in Arg2,

respectively, where
−→

h1i ,
−→

h2j ∈ Rd and
←−

h1i ,
←−

h2j ∈ Rd are the
outputs from two directions.
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FIGURE 1. The dynamic chunk-based max pooling BiLSTM-CNN framework (DC-BCNN).

C. MULTI-GRANULARITY FEATURE EXTRACTION
After obtaining the argument representation with contex-
tual information, we expect to capture the complicated and
various features of two discourse arguments. Therefore,
we devise a new variant of the standard CNN, a dynamic
chunk-based max pooling CNN, to retain more semantics of
the arguments.

1) CONVOLUTION LAYER
Compared to some previous models that apply a single-
window size, we utilize a number of filters W ∈ Rk×d

that summarize the information of the k-word window and
produce a new feature. For the window of k words hi:i+k−1,
a filter f m (1 ≤ m ≤ M , where M denotes the number of
filters) is used to generate the feature cmi corresponding to
a certain n-gram representation. The formula is defined as
follows:

cmi = σ (w · hi:i+k−1 + b). (8)

where σ is a non-linear function (e.g., sigmoid, tanh and
ReLU), b ∈ R is a bias term, and hi:i+k−1 is the higher
semantic representation from the last layer. By setting dif-
ferent filter sizes, we can obtain a feature map with multi-
granularity information. This multi-granularity informa-
tion indicates that the convolutional operation with different
filter sizes can capture the different ranges of n-gram infor-
mation. When a filter traverses each window in the argument
from h1:k−1 to hn−k+1:n, we obtain the output of the feature

map corresponding to the filter f m:

cm = [cm1 , c
m
2 , . . . , c

m
n−k+1]. (9)

Here, cm ∈ Rn−k+1 has different dimensions for different
arguments because the arguments are different from each
other in length n. The pooling operation captures the most
important feature for each feature map, and handles variable
sentence lengths naturally.

2) DYNAMIC CHUNK-BASED MAX POOLING LAYER
In general, we apply a standard max pooling operation over
[30], [31] over cm and choose the maximum value max{cm}
as the most important feature of the filter f m. However, most
of the information of discourse arguments is lost, including
the word order. Kalchbrenner et al. [13] proposed taking
the top-k maximum values over cm to retain more important
information, but the word order was still missing because the
features selected by k-max pooling are likely to be concen-
trated in one part of the argument. Hu et al. [23] designed a
max pooling over every two-unit, but these might have some
redundant information. Chen et al. [25] presented a dynamic
multi-pooling strategy to split each feature map into three
parts by the event triggers and arguments,2 and choose the
maximum of each split part. Zhang et al. [24] argued that
from the perspective of shallow structures, one sentence is

2Notice that ‘‘argument’’ in event extraction is different from ‘‘discourse
argument’’.
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organized by subject-verb-object (English and Chinese word
order), and a sentence can be described as a sequence of a
noun phrase, a verb phrase, and an adjective phrase from the
perspective of deep structures. Therefore, they presented a
chunk-based convolutional neural network to learn sentence
semantic representations that retain the sentence structure to
some extent, but their chunk size was predefined.

Inspired by these studies, we devise a dynamic chunk-
based max pooling operation to divide the argument into
several segments (also called chunks) according to the length
of the argument and structure of our network and then select
the maximum value of each chunk to retain more effective
information such as word order of the arguments. There-
fore, our dynamic chunk represents that the segments of
the feature map obtained by the convolution layer, which
is divided evenly into seg segments. The number of chunks
seg is dynamically calculated by Eq.(10). Notice that if the
feature cmi is not divisible by seg, the last chuck has the size
of the modulus.

seg = max(segtop, b
L − l
L
c · s). (10)

where segtop is the fixed pooling parameter for the topmost
convolution layer, L is the number of total layers in the CNN
module of the framework, l is the number of the current layer,
and s is the length of a sentence. The feature map cm of one
argument is divided into seg parts equally, and we can take
the maximum value from each part. If there are fM filters,
the output of the pooling layer is a vector in the fM × seg
dimension.

cmseg = ChunkMax{[cm1 , c
m
2 , . . . , c

m
n−k+1]}

= [cmseg1, c
m
seg2, . . . , c

m
segn]. (11)

D. CLASSIFIER OUTPUT
After reshaping the output of the pooling layer, the vectors
are fed into a full connection hidden layer with non-linear
activation to obtain the more abstractive representations, and
then connected to the output layer. For the task of classifica-
tion, the outputs are probabilities of different classes, which
are calculated by a softmax function.

E. MODEL TRAINING
Given a training corpus which contains n instances
{(x, y)}nr=1, (x, y) denotes an arguments pair and its label.
We employ the cross-entropy error to assess how well the
predicted relation represents the real relations, defined as:

L(ŷ, y) = −
C∑
j=1

yj log(Pr(ŷj)). (12)

where Pr(ŷj) is the predicted probabilities of the j-th label, C
is the class number.

To minimize the objective, we use stochastic gradient
descent with the diagonal variant of AdaGrad with mini-
batches. The parameter update for the i-th parameter θ t,i at

TABLE 1. The statistics of implicit discourse relations in the PDTB.

step t is as follows:

θ t,i = θ t−1,i −
α√∑t
τ=1 g

2
τ,i

gt,i (13)

where α is the initial learning rate and gτ ∈ Rθτ,i is the
gradient at step τ for parameter θ τ,i.

III. EXPERIMENTAL PREPARATION
A. DATASETS
To evaluate our proposed model, we adopt two corpora: the
PDTB and HIT-CDTB datasets are annotated for discourse
relation recognition.

Penn Discourse TreeBank3 (PDTB) [32] is one of the
largest hand-annotated discourse relation corpora. It con-
tains approximately 40,600 relations, which are manually
annotated from 2,312 Wall Street Journal (WSJ) articles.
Discourse relations are organized into a 3-level hierarchy,
i.e., class, type and sub-types. Our experiments are conducted
on the four top-level classes of PDTB as in previous stud-
ies [9], [17], [18], i.e., Comparison (Comp.), Contingency
(Cont.), Expansion (Exp.) and Temporal (Temp.). Following
conventional data splitting, we select Sections 2-20 as the
training set, Sections 21-22 as the testing set, and Sections 0-1
as the development set. Notice that the data preparation of the
Expansion relation follows Rutherford and Xue [33], and it is
different from Ji and Eisenstein [34] in which they merge the
EntRel relation into the Expansion relation. Table 1 presents
the data distribution of top-level discourse relations in the
PDTB.

HIT-CDTB4 is a Chinese discourse relation corpus that
was annotated by the Harbin Institute of Technology in
China [35]. They analysed the differences between Chinese
and English, and proposed a modified approach with the
relevant Chinese linguistics theory. According to the physical
structural units, the discourses were divided into three cate-
gories: sentence group, complex sentence, and sub-clause.

There are six relations, namely, Temporal, Causal,
Conditional, Comparison, Expansion, and Coordinating
in HIT-CDTB, which annotate 1,096 articles from the
OntoNotes4.0. Due to focusing on implicit discourse relation
recognition, we demonstrate the distribution of six implicit
relations in HIT-CDTB, as shown in Figure 2.

In addition, the numbers of temporal and conditional rela-
tions are too low. Therefore, we use the remaining relations
as experimental data in Table 2.

3More details can be found at https://www.seas.upenn.
edu/~pdtb/.

4The details can be found athttp://ir.hit.edu.cn/hit-cdtb/.
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FIGURE 2. The distribution of six Chinese implicit relations.

TABLE 2. The statistics of four implicit discourse relations in HIT-CDTB.

B. EXPERIMENTAL SETTINGS
To evaluate our model and compare it with the previous
work, we adopt two experimental settings: 1) a multi-class
classification, and 2) four separate one-vs-other binary clas-
sifications. The first setting is for observing the overall perfor-
mance on this task, which is more natural in realistic settings.
The second setting is for solving the problem of unbalanced
data to some extent, where each top-level class is against
the other three discourse relation classes. For the second
setting, we use an equal number of positive and negative
instances as training data in each relation because each of the
relations except Expansion is infrequent. Negative instances
are chosen randomly from the training set. The testing set and
development set are kept in the natural state.

C. PARAMETER SETTINGS
We first pre-process the corpora, such as converting the
tokens in PDTB to lowercase and Chinese word segmen-
tation by Jieba5 for HIT-CDTB. We choose the pre-trained
word embeddings for both English and Chinese. We select
GloVe [36] published by the NLP group of Standford Uni-
versity for English word embedding; we utilize word2vec to
train the Chinese word embedding on Wikipedia and ignore
the words that appear less than 5 times in the vocabulary.
If there are any words not in the pre-trained vectors, they are
randomly generated in [−1, 1], and the dimension of these
words is set to 50 as well as the pre-trained word embeddings.
And then we statistic the length of all arguments and set it as
80, and we apply truncating or zero-padding operation when
necessary. We adopt the filters of 3, 4, 5 with 100 feature
maps each for CNNmodule, which can obtain different range
of n-gram features, i.e. ‘‘multi-granularity’’ information.

5https://pypi.org/project/jieba/

TABLE 3. Hyper-parameters for our DC-BCNN model.

The length of the intermediate representation is also set to 50.
The other parameters are initialized by random sampling
from a uniform distribution in [−0.1, 0.1]. Here, we also
employ a simple grid search to set the hyper-parameters and
give some final settings as shown in Table 3.

D. EVALUATION MEASURES
Furthermore, we follow the criteria of previous works for
evaluation with several different metrics, including precision
(P), recall (R), and their harmonic mean (F1). We also report
accuracy for a direct comparison with the state-of-the-art
models.

E. THE COMPARATIVE SYSTEMS
On the PDTB. We compare against the published results of
the following competitive systems, which are from traditional
feature-based approaches to various neural network-based
models.

1) FEATURE-BASED MODELS
• Rutherford2014 [9] employed Brown cluster pairs to
represent discourse relations and incorporated corefer-
ence patterns to identify senses of implicit discourse
relations in naturally occurring text.

• Ji2015 [34] utilized two recursive neural networks
on the syntactic parse tree to induce argument
representation and entity spans.

2) CONVOLUTIONAL NEURAL NETWORKS
• Zhang2015 [10] proposed a simplified neural network
containing only one hidden layer and three different
pooling operations (max, min, average) for the task.

• Qin2016a [16] integrated a CNN for sentence modeling
and a Collaborative Gated Neural Network (CGNN) for
feature transformation into the classification task.

• Zhang2016 [38] employed semantic memory to encode
semantic knowledge of words in arguments, and used
an attention model to retrieve the relevant information
of argument representations.

3) RECURRENT NEURAL NETWORKS
• Liu2016 [17] designed neural networks with multi-level
attention (NNMA) and selected the important words
for recognizing discourse relations. Here, we select
the models with two and three levels of attention as
baselines.

• Lan2017 [39] presented two types of representation
learning at the same time: 1) an attention-based

169286 VOLUME 7, 2019
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neural network, which conducted the representation
with interactions; 2) multi-task learning, which lever-
aged knowledge from the auxiliary task to enhance the
performance.

On the HIT-CDTB. Due to little research on Chinese
implicit discourse relation recognition, we only choose the
following three models as baselines to evaluate the perfor-
mance of our model on the Chinese corpus. Notice that we
reimplemented these models on the Chinese corpus we used.

• Zhang2013 [35] combined lexical, syntactic and
semantic features in a supervised model to classify
implicit discourse relations. They trained the maximum
entropy (ME) and support vector machine (SVM) mod-
els to classify the relations. We only utilize the SVM
model as a baseline with their linguistic features.

• Qin2016b [40] utilized a convolutional neural network
model to determine the senses for both English and
Chinese tasks.

• Rönnqvist2017 [41] proposed the first attention-based
recurrent neural sense classifier, specifically developed
for Chinese implicit discourse relations.

In addition, we utilize the following ablation models to
verify the effectiveness of each component on both English
and Chinese datasets.

• SVM: A support vector machine classifier for discourse
relation recognition by using the human-designed lex-
ical and syntactic features. We adopt the pre-trained
word embeddings as inputs of a conventional multi-class
SVM [35], [35].

• CNN: Adopting pre-trained word embeddings to replace
the original words in discourse arguments, we utilize
convolutional operation to extract the semantic features
of different aspects in arguments by different filter
sizes [43].

• LSTM:We encode two discourse arguments by LSTMs.
Then, we concatenate the two representations and feed
them to the full connection hidden layer as the input of
the softmax classifier.

• BiLSTM: Based on LSTM, we consider the bidirec-
tional context information and use BiLSTMs to encode
two discourse arguments.

• BiLSTM + CNN with max pooling (BCM): Based on
the BiLSTMmodel, we obtain the semantic representa-
tions of the arguments with the contextual information,
and then we adopt the convolutional neural network to
capture different granularity features with a standard
max pooling operation.

• BiLSTM + CNN with k-max pooling (BCKM):
Different fromBCM approach, we apply k-max pooling
instead of the general max pooling to avoid losing more
information.

IV. RESULTS AND DISCUSSION
To verify the effectiveness of our proposed model, we con-
duct a series of comparison experiments on state-of-the-art

TABLE 4. Performance of multiple binary classification on PDTB in terms
of F1 score.

TABLE 5. Performance of multi-class classification on PDTB in terms of
accuracy (Acc.) and F1 score.

systems and the ablation models from different aspects, and
then we present an in-depth analysis of different parameters.

A. COMPARISON WITH STATE-OF-THE-ART SYSTEMS
On the PDTB. Tables 4 and 5 show the overall performance
in detail. For binary classification, the F1 score is adopted to
evaluate the performance on each class. For multi-class clas-
sification, the F1 score and accuracy are used as evaluation
metrics. We make the following observations with respect to
the binary classification:

• Overall, the performance based on neural net-
work models is significantly better than that of
feature-based models, which indicates that the arti-
ficially well-designed features are not sufficient for
implicit discourse relation classification, and auto-
matically extracting features based on neural net-
works can capture richer semantic clues. Among
them, the BiLSTM-based approaches outperform the
CNN-based models because the two BiLSTM-based
models leverage other complicated strategies to cap-
ture more information, such as multi-level attention in
Liu2016 and multi-task learning in Lan2017.

• For each relation, the F1 scores of the Temporal relation
are the lowest in all models, which is reasonable since
it accounts for the smallest number of instances (only
5%) in the corpus. With the increase in the number of
instances in different relations, the F1 scores also rise.
This proves that the corpus is also crucial to implicit
discourse relation recognition.

• Although our DC-BCNN model does not improve the
F1 score compared with Lan2017, our model obtains
the comparable scores. Especially, Lan2017 achieves
the state-of-the-art performance in recognizing the
Contingency relation for the following reasons: (1) some
discourse arguments may have confusing information,
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TABLE 6. Comparisons with the state-of-the-art models on HIT-CDTB.

which could require more in-depth analysis by different
strategies; (2) our DC-BCNN framework integrates the
advantages of BiLSTM and CNN models, but some
implicit discourse argument pairs need more extensive
knowledge for inference. Similar results are obtained in
the Comparison relation.

With respect to the multi-class classification, we make the
following observations:

• Ji2015 achieves the worst performance on both F1
score and accuracy. Because it is mainly dependent
on integrating a syntactic parse tree, which may cre-
ate some error propagation problems and ignores the
deeper semantic features of discourse arguments.

• Both the Liu2016 and Lan2017 models are based
on a recurrent neural network for the task. Although
Lan2017 achieves 1.51% more than Liu2016 (two
levels) and 1.41% more than our DC-BCNN on the F1
score, we all achieve the comparable performance on
accuracy. However, Lan2017 adopts an attention-based
approach to obtain the representation with important
information and utilizes multi-task learning to leverage
knowledge from the auxiliary task. It integrates consid-
erable information to enhance the performance, which
could be complicated and computationally intensive.
In addition, the F1 score of the Liu2016 (two levels)
model is higher than that of three levels of attention
(1.34%). It indicates that the attention mechanism is
useful, but more attention may create the over-fitting
problem due to more parameters.

• Despite the fact that the performance of our DC-BCNN
model does not improve the F1 score compared with
Lan2017, our model neither utilizes more mechanisms
to capture the significant information nor extends the
extend knowledge by multi-task learning from the auxil-
iary task. It illustrates that our model utilizes the advan-
tages of both BiLSTM and CNN to reserve more seman-
tic features; additionally, the convolution operation in
our model extracts multi-granularity features from the
perspective of n-gram, and the chunk-based max pool-
ing strategy avoids losing the location information by
preserving the maximums in pooling windows.

On the HIT-CDTB. We choose the following systems as
our baselines to validate the performance of our proposed
model in Chinese. Table 6 demonstrates the precision, recall
and F1 score of multi-class classification. The observations
we make are as follows:

• As shown in Table 6, we find that all the neural network-
based models outperform Zhang2013 obviously.

TABLE 7. Comparisons with the ablation models on PDTB.

Because Zhang2013 only adopts the following features
to train SVM: core verbs, polarity feature, dependent
syntax feature, unigram and bigram. These features have
limitations that are not enough to represent the semantics
of discourse arguments. It is worth mentioning that
Zhang2013 has high precision values and low recall
values in the relation classifications except for Expan-
sion. It illustrates that the unbalanced instances make the
model tend to divide the test instances as the Expansion
relation, which leads to the recall increasing.

• Referring to the previous studies [40], [41], we simply
reproduce the Qin2016b and Rönnqvist2017 models
that adopted CNN-based and RNN-base approaches.
Particularly, they gain improvements over Zhang2013 by
11.30%, 12.27%, 11.65% and 12.49%, 14.53%, 13.24%
on precision, recall, and F1, respectively. The results
strongly demonstrate that the neural network-based
models not only address the data sparsity problem to
some extent, but also capture deeper semantic informa-
tion to infer the implicit discourse relations.

• Our DC-BCNN model obtains slightly better results
over Rönnqvist2017 by 3.45%, 2.64% on precision and
F1, respectively. We conjecture that the main reason
for this lies in the advantages of both BiLSTM and
CNN, which may provide more evidence for discourse
relation recognition. Among them, CNN with different
sizes of filters tends to retain more multi-granularity
information. In addition, a dynamic chunk-based max
pooling operation we designed fixes an issue where the
standard pooling operation lost the word order infor-
mation. Therefore, our proposed model could be well
adapted to the HIT-CDTB, which has three categories:
sentence group, complex sentence, and sub-clause. The
word order information is crucial to these three dis-
course units. Notice that we perform the significance test
for these improvements, and they are significant under
one-tailed t-test (p < 0.05).

B. COMPARISON WITH THE ABLATION MODELS
To evaluate the effectiveness of each part in our proposed
model, we take six ablation models to compare with our
DC-BCNN.

On the PDTB. Seen from Table 7, we make the following
observations:

• Overall, the performance of the conventional SVM
method is lower than that of other neural network-based
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TABLE 8. Comparisons with the ablation models on HIT-CDTB.

approaches in the first four rows. It indicates that the
latter type of model can automatically capture more
semantic features and address the data sparsity prob-
lem to some extent. We can see that BiLSTM achieves
slightly better performance than LSTM, which is con-
sistent with previous work, as BiLSTM considers the
forward and backward direction contextual information,
while LSTM only considers the forward information.
Additionally, the F1 score of the CNN is 7.05% better
than that of the BiLSTM on Contingency, which may
be because this relation requires inference from mul-
tiple local information, and CNN provides the capac-
ity to model local word sequences (via convolution
operations) which is effective for Contingency.

• Compared with LSTM and BiLSTM, BCM and BCKM
models achieve much better performance. The perfor-
mance of BCKM is slightly better than that of BCM
overall, probably because k-max pooling in BCKM
obtains more effective information. In particular, the F1
score of BCKM is higher than that of BiLSTM on Com-
parison, which gains a 5.31% improvement. BCKM also
gains 2.35% improvement compared with the best CNN
in the last group on Expansion. It proves that (1) the con-
textual clues and local information are both important
for our task; and (2) more selected features (via k-max
pooling operation) are obviously useful, especially Con-
tingency relation and Expansion relation, which could
need to understand sufficiently.

• Our DC-BCNNmodel achieves the best performance on
the F1 score. This illustrates that our model acquires
the sentence-level (via BiLSTM preserving history
and future information) and multi-granularity combined
information (via setting the sizes of the filters), which
are good for recognizing implicit discourse relations.
Different from BCKM which utilizes the subsequence
of the original features to obtain the relevant location,
we devise a dynamic chunk-based max pooling strategy
to retain the location information of the whole argument.

On the HIT-CDTB: Seen from Table 8, we obtain the
following observations:
• Similarly, all ablation models have the worst perfor-
mance in Comparison relation due to the lack of data
in HIT-CDTB, which is also consistent with the previ-
ous experiment in English. It illustrates that the more
instances there are, the better the performance the
models will obtain, as with our DC-BCNN model.

• Additionally, similar to the results of ablation
experiments on the PDTB, we find that the performance

on the F1 score of neural network-based methods is bet-
ter than that of the traditional SVM model. The reasons
are as follows: on the one hand, the lexical and syntax
features used in SVM are mostly separate words or
phrases, which may lead to the data sparsity problem; on
the other hand, although the feature could be represented
by word embedding, the manually annotated features are
not enough to represent the discourse arguments.

• Although LSTM and BiLSTM achieve better perfor-
mance than CNN overall, CNN achieves comparable
performance on Expansion and Coordinating relations.
It indicates that these two relations require deeper
features from the aspect of multi-granularity, which
is extracted by convolution operations with different
filters.

• BCM and BCKM have better experimental results than
simple neural networks. Specifically, they are 3.26%
and 3.61% better than BiLSTM on the F1 score of
Coordinating. The performance of BCKM is higher than
that of BiLSTM on the other relations, which improves
2.08%, 1.65% and 3.98% in F1 score, respectively. This
demonstrates that the semantic information of different
units in discourse arguments is useful for recognizing
relations, and it is also beneficial for choosing more
features by k-max pooling.

• In addition, our DC-BCNN model outperforms the
above approaches. Specifically, DC-BCNN improves
1.68%, 3.79%, and 1.25% compared with the BCKM
model on F1 score of Comparison, Expansion and Coor-
dinating relations, respectively. This not only illustrates
that the location (spatial) information, which is captured
by our dynamic chunk-based max pooling operation,
is an important clue in Chinese for identifying the rela-
tions, but also proves the effectiveness of our proposed
model. The performance of our model in Causal is not
effectively improved, which may be because the Causal
relation contains some identifiable patterns (e.g., word
pairs with polarity), and the location information has
little effect on it. Here, the improvements are significant
under one-tailed t-test (p < 0.05).

V. RELATED WORK
Along with the increasing requirement, many approaches
have been explored for implicit discourse relation recogni-
tion. Traditional feature-based methods rely on artificial and
shallow features, such as polarity tags, Levin verb classes,
verb phrases and word position, which require considerable
human effort and are prone to error propagation and data spar-
sity problems. Recent neural network-based models achieve
better performance, and can be roughly divided into the
following aspects:

A. CONVOLUTIONAL NEURAL NETWORKS
1) GENERAL POOLING OPERATION
More recently, neural network-based approaches have
attracted much attention in the field of NLP.
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The convolutional neural networks have demonstrated suc-
cess in implicit discourse relation recognition.
Zhang et al. [10] adopted a pure neural network with three
different pooling operations for learning shallow represen-
tations in the task. In Qin et al. [16] (2016a), a CNN with
max pooling strategy was used for sentence modelling and
a collaborative gated neural network (GCNN) was proposed
for feature transformation. These models detect the semantic
features by different convolutional operations as local infor-
mation but are not effective for the long-term dependency of
discourse arguments.

Meanwhile, the general pooling operations also have short-
ages. For example, the conventional max pooling operation
loses the location information by preserving the maximum in
pooling window; and only with the maximum feature could
miss the other useful clues for implicit discourse relation
recognition.

2) IMPROVED POOLING OPERATION
CNN rises from the field of image recognition, which also
faces the problem of preserving spatial information. There
are many relevant studies that bring us new inspiration.
Malinowski and Fritz [48] proposed a flexible parameteriza-
tion of the spatial pooling strategy and learned the pooling
regions together with the classifier, which could work with
both sum-pooling andmax-pooling. Zhai et al. [49] presented
a novel pooling strategy with stochastic spatial sampling
(S3Pool), where the regular downsampling is replaced by a
more general stochastic version. And the general stochasticity
as a strong regularizer could be seen as doing implicit data
augmentation by introducing distortions in the feature maps.
Zheng et al. [50] extracted displacement information that
recorded the location of the maximal values in the max pool-
ing operation, and combined them with the features resulting
from max-pooling, which tackled the issues with structural
deformations of max pooling in handwritten text recognition.
However, the pooling operations in the fields of image and
natural text have essential differences. We could not employ
these pooling operations directly in natural language tasks.

Inspired by more pooling operations in image field, many
researches focused on the pooling issues of natural text. For
modelling sentence task, Kalchbrenner et al. [13] designed a
dynamic k-max pooling to select the top-k maximum values
from each feature map, which could retain more valuable
information. They claimed that the top-k maximum values is
actually a subsequence of the original features, which could
obtain the relevant location cues. Chen et al. [25] split each
feature map into three parts according to event triggers and
arguments. They kept the max value of each split part to cap-
ture more valuable information. Zhang et al. [24] proposed
a bilingually-constrained chunk-based convolutional neural
network for event extraction task.

Although these improved pooling operations solved the
issues of location clues to some extend, the dynamic
k-max pooling only kept the sequence information of
‘‘subsequence’’ without the entire features; the chunk-based

pooling layer could retain considerable information,
the chunk size was predefined, which may cause some crucial
features to be lost;considered the characteristic of specific
task, the dynamic multi-pooling [25] could not be directly
applied to other tasks.

B. RECURRENT NEURAL NETWORKS
Another popular choice of network is the recurrent neural
network including its variants (e.g., LSTM, BiLSTM and
GRU) [17], [18], [44]–[46]. Liu et al. [17] imitated the
repeated reading strategy, and further proposed the neural
networks with multi-level attention. This model encoded
discourse argument by BiLSTM, combining the attention
mechanism and external memories to gradually fix the atten-
tion on some specific words for identifying discourse rela-
tions. Chen et al. [18] encoded the discourse argument to
its positional representation via BiLSTM, and employed a
gated relevance network to capture the semantic interaction
between the arguments, which overcomes the semantic gap.
Lan et al. [39] analysed the discourse argument from LSTM
to attention neural network, and further proposed multi-task
learning framework to address the implicit discourse relation
recognition with the aid of large amount of unlabelled data.

The RNN and its variants could solve the long-term
dependency to some extent. Although the ones using attention
or memory mechanisms captured more specific impor-
tant information, they are poor at dealing with the local
features.

C. HYBRID NEURAL NETWORK
Different recurrent neural networks and convolutional neural
networks have won tremendous success in our task, where
either RNN or CNN has its advantages and disadvantages.
For instances, RNN is good at capturing sequence feature,
particularly the long-distance dependency, but could not
obtain the local features; the capability of CNN is extracting
local information of different linguistic units, but it is poor
at the long-term dependencies of sentences. Considering the
merits of both, many researchers tend to integrate RNN and
CNN into one architecture to obtain the global and local
features. Qin et al.(2016b) [40] presented a combination of a
BiLSTM and CNNs. They constructed character-based word
representations by transforming character embeddings with
CNN and BiLSTM layers. Another CNN layer was used
to extract an argument representation from a sequence of
words. Zhang et al. [51] combined BiLSTM-CNN to extract
series of higher-level phrase representations for relation clas-
sification. In addition, Guo et al. [52] extracted the dis-
criminative local interactions between amino-acid residues
by 2D CNNs, and further capture long-distance interactions
between amino-acid residues by bidirectional gated recurrent
units or BiLSTM, which improved the protein secondary
structure prediction. They [53] also proposed a novel Deep-
ACLSTM model, which applied asymmetric convolutional
neural networks combined with BiLSTM to predict protein
secondary structure.
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In summary, there are two ways of combining RNN
and CNN. One is CNN-RNN framework which is suitable
for speech recognition [54], [55], biomedical engineering
[52], [53] and other fields. Generally, these studies first
extract the local features and then construct the long-term
dependencies, due to the characteristics of their inputs (i.e.,
images). Another is RNN-CNN architecture for natural text
tasks [40], [51]. It utilizes RNN to encode the contextual
information of text and then captures local clues from consec-
utive context, which is also in line with the process of people’s
cognitive understanding.

As mentioned above, various methods have been proposed
for English (PDTB), while the Chinese task has received
little attention in the literature. Liu et al. [47] utilized an
attention-based neural network to represent arguments and
employed an external memory network to preserve crucial
information for Chinese task. We argue that Chinese needs
word segmentation and other pre-processing, which is more
sensitive to multi-granularity information.

Inspired by the relevant work, we integrate BiLSTM
models that represent discourse arguments with contextual
information and CNNs that capture the semantic features
from thewider ranges of n-gram.We devise a dynamic chunk-
based max pooling operation, which dynamically divides the
argument into several segments to capture more maximum
values for retaining as much information as possible. Our
entire framework can address the mentioned disadvantages
to some extent.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel Dynamic Chunk based
Max Pooling BiLSTM-CNNmodel (DC-BCNN) for implicit
discourse relation recognition. We integrate the merits of
BiLSTM and CNN and further design dynamic chunk-based
max pooling to capture crucial information in different gran-
ularity feature maps. Essentially, we are inspired by the read-
ing experience, and people can capture different semantic
information from different granularity representations during
reading. Thus, they can understand the argument meanings
and determine their relation by combining that information.
Therefore, after obtaining the semantic representations of two
discourse arguments by BiLSTMs, we utilize convolutional
operation with different sizes of filters to extract different
aspects of semantic features, which captures more informa-
tion from a wider range of n-grams. Meanwhile, we also
devise a dynamic chunk-based max pooling operation to
maintain theword order, which can obtain crucial information
about each part of the arguments. The experimental results on
PDTB and HIT-CDTB corpora both show that our model is
effective.

However, we only focus on capturing the inter-sentence
information and ignore the wider contexts beyond two
arguments. In the future, we plan to not only establish inter-
dependencies between higher hierarchical discourse units,
but also exploit external knowledge to effectively improve
implicit discourse relation recognition.
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