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ABSTRACT Envelope analysis is a commonly used technique in fault diagnosis of rolling element bearings.
The selection of a suitable frequency band for demodulation in envelope analysis has traditionally relied on
the expertise of diagnosis technicians. The manual selection does not always give the best possible results in
revealing the defect frequencies. To overcome this problem, a new demodulation band optimization approach
is proposed which is based on a real-coded genetic algorithm with a novel fitness function and crossover
selection process. The fitness function uses the ratio between fault frequency peaks and the maximum peak
not corresponding to defects in the envelope spectrum. The crossover selection process uses the triangle series
method to divide the probability of individuals in the population based on the fitness score obtained. The
proposed method is assessed using vibration signals from two different rotor-bearing systems, i.e., a bearing
testrig with seeded defects and the Case Western Reserve University bearing dataset. For all the cases, the
method can find the optimized demodulation bands successfully for bearing fault detection. The method is
further benchmarked with a well-established fast kurtogram approach which proves the effectiveness and
superior capability of the developed algorithm, though the computational complexity needs improvement in

future work.

INDEX TERMS Condition monitoring, fault diagnosis, genetic algorithms, ball bearings.

I. INTRODUCTION

Rolling element bearings (REB) are widely used in rotating
machinery which are essential for the operation of many
industries [1]. Bearing defects may occur due to inadequate
lubrication, external contaminants, incorrect operating condi-
tions, etc. Damage of bearing components account for about
45% of rotating machinery failures [2]. This damage could
lead to the halt of production in an industrial setting causing
significant economic losses. The operation of machinery with
damaged bearings may also pose a risk to those present in
the immediate vicinity. It is vital for the rotor-bearing system
to be in good condition to ensure proper functioning of the
machine.

There has been extensive research in the development of
condition monitoring technologies for the detection of bear-
ing defects. The most widely used condition monitoring tech-
nique is based on vibration analysis where accelerometers are
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used to monitor bearing vibrational behavior. This has been
preferred by many industries due to the ability of applying
various signal processing techniques to extract fault informa-
tion and also for its immediate reaction to sudden fluctua-
tions [3]. Of the many signal processing techniques, envelope
analysis or High Frequency Resonance Technique (HFRT)
has been used prominently for several decades [4]. The peri-
odic contact of the defective component with other surfaces
during operation typically generates impulses at a higher
frequency compared to other machine vibrations. Envelope
analysis allows for the separation of these vibration compo-
nents from the rest of the signal by demodulating a band or
range of frequencies that correspond to the impulse [5]. The
spectrum generated through this process will indicate a spike
in amplitude in the frequencies corresponding to the periodic
impulse.

Selection of the optimal demodulation frequency band is
considered as a significant and challenging step in bear-
ing fault diagnosis [6]. Technical expertise is traditionally
required for the appropriate selection. This is because the
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parameters can greatly influence the envelope spectrum’s
indication of the fault and can even produce misleading
results if wrongly selected [7]. McFadden and Smith [5] pre-
sented several common methods that were used in selecting
these parameters. One involved the selection of a resonance
of interest as the central frequency and +5% of this was
set as the bandwidth. Another method involved adjusting the
bandwidth to cover an entire dominant resonance of interest.
It is stated however, that despite the widespread use of these
methods, there was no indication that the parameter selection
was ideal [5].

Many attempts have been reported to find an optimal
demodulation band selection technique for envelope analysis.
Bechhoefer and Menon [8] studied an incident involving the
oil cooler fan bearing of a helicopter and manually tested
different envelope windows in the frequency domain. The
search for an optimal envelope window was conducted by
modifying the lower frequency and the bandwidth, within a
specified range and increment. Boskoski and Urevc [9] pre-
sented a fault detection methodology where healthy bearing
data was not available. Spectral kurtosis was first used to
find the likelihood of a fault, then envelope analysis was
performed in the bandpass filter maximizing spectral kurtosis
value to isolate the fault. Bechhoefer et al. [10] used spectral
kurtosis for the window parameter selection and an average
energy algorithm to measure the performance of the envelope
window selected. Nevertheless, these methods were usually
time consuming and still required knowledge and experience
in condition monitoring and fault diagnosis. The popularity of
the use of spectral kurtosis led to the development of the kur-
togram which allowed for its visual representation in terms
of frequency and frequency resolution [11]. This method,
however, was seen as time consuming due to all the possible
combinations of frequency resolutions and center frequencies
that could be used. This was accounted for through the use of
the fast kurtogram technique proposed by Antoni [12] which
has since been used as a common benchmarking tool by many
researchers in bearing fault detection. The autogram method
was also used for further enhancement of the kurtogram for
bearing diagnosis [13]. Instead of the filtered time signal
kurtosis, the squared envelope of demodulated signal is taken
and the unbiased autocorrelation is calculated from which
kurtosis is found for a visual representation. Another recent
method for the selection of an optimal frequency band is
the Distcsgram which is not as influenced by interferences
as the fast kurtogram [14]. A downside however is that as
defect locations are not known, it could be computation-
ally taxing for a trial and error process determining fault
location.

The trend of using some form of metric to measure perfor-
mance gained popularity and may have been an inspiration
for the use of metaheuristic optimization algorithms in fault
detection. This includes genetic algorithm (GA) in which
the functioning is largely inspired by nature. GAs generate
a population of solutions which are assessed based on a
criterion set to determine the best in that generation. The
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algorithm will then continue searching for better solutions in
following generations by exchanging parameter information
from the most successful solutions to obtain better result
while also introducing mutations occasionally to maintain
diversity among the population. This process could poten-
tially select better frequency ranges than what is obtained
through a brute force method using a multilevel filterbank
as a combination of consecutive bands can also be analyzed.
Zhang and Randall [15] proposed a method in which fast
kurtogram was used to obtain a rough estimate of parameters
which were then further optimized by a genetic algorithm
for the selection of an ideal bandpass filter. Kang et al. [16]
also used a genetic algorithm for the selection of an opti-
mal demodulation band, however, real numbers from O to 1
were used for the parameters instead of binary values. The
defect severity was measured as a ratio of residual-to-defect
frequency components and therefore was used as the fit-
ness score in the algorithm [16]. A majority of studies
using genetic algorithm for demodulation band selection pro-
grammed their genes as binary components as opposed to
real numbers. Gaffney et al. [17] compared a binary to real-
coded genetic algorithm and stated that real-coded genetic
algorithms were generally preferred in applications where the
parameter space variables are continuous. With real coding,
less storage is needed and a more accurate representation
of the optimized solution can be obtained [18]. In order
to implement a genetic algorithm which uses real-coding,
some adjustments will have to be made to the crossover and
mutation process from the more canonical approach.

This paper presents a study to utilize a real-coded genetic
algorithm in the fully automated optimization of the demod-
ulation band for fault detection in REB using envelope anal-
ysis. A novel fitness function and crossover selection process
is introduced. The proposed method is tested on vibration sig-
nals from two different rotor-bearing systems under different
conditions in order to assess its capability for fault detec-
tion. The computational burden of the algorithm is inspected
through assessing the time taken to determine the optimal
frequency band in each case. The proposed approach is also
benchmarked by comparing with the results obtained using
the fast kurtogram method.

Il. METHODOLOGY

A. BEARING DIAGNOSIS USING ENVELOPE ANALYSIS
Envelope analysis generally allows for periodic impulses in
REB to be better visualized [19]. It works by first obtaining
the frequency spectrum for the raw signal using a method
like FFT. The frequencies of impact of the bearing defect,
noise generated, and structural resonance are all shown for the
portion of the raw signal analyzed in the frequency domain.
From this, a frequency range is chosen for the amplitude
demodulation process by using a bandpass filter. Envelope
analysis demodulation has been achieved using various tech-
niques with Hilbert transform being the most widely adopted
approach. The Hilbert transform of a signal as seen in (1) is
the representation of phase shifting Fourier components on its
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frequency spectrum by £7/2 [20]. The technique is generally
better than other filters such as analogue and real-time digital
filters [4].
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The band selected for demodulation is typically of a
higher frequency where the structural resonance amplifies the
impulses of the defect present [21]. Once the analytic time
signal is obtained, the modulus is calculated. The envelope
spectrum can then be obtained for analysis of diagnostic
information by performing Fourier transform on the signal
once again. HFRT is now considered a common benchmark-
ing method in the fault diagnosis of REB. Depending on the
selection of the demodulation band, the envelope spectrum
indicates a high amplitude relative to the rest of the spectrum
in certain frequencies. The type of defect is usually deter-
mined by checking for a correlation of the prominent peaks
with theoretical defect frequencies (TDF) and its harmonics
in the spectrum. Equations (2)-(5) can be used to calculate
the TDF using the geometry of the bearing and its rotational
frequency where n is the number of rolling elements, d is the
rolling element diameter, D is the pitch diameter of bearing,
0 is the contact angle, and f; is the shaft frequency [4].
For special cases where both inner race and outer race are
rotating, f; is the relative speed difference between the inner
and outer race.

Ball pass frequency, outer race (BPFO):

d
BPFO = @ <1 - —= cos@) 2
2 D
Ball pass frequency, inner race (BPFI):
d
BPFI = %fr <l + D cos@) 3)
Ball spin frequency (BSF):
BSF Dfr 1 d 6 ’ )
= — | =cos
2d D

Fundamental train frequency (FTF):

FTF =]2 (1 — icos@) @)
2 D

In comparison to raw vibration signals and the frequency
spectrum, the envelope spectrum provides more information
regarding bearing defects. Although defect frequencies can
still be identified from the frequency domain, the envelope
spectrum allows for the detection of defects in conditions
where the fault frequencies may be buried in background
noise or the shaft speed is too low to detect the frequen-
cies [22]. In order to do this however, an appropriate fre-
quency band needs to be selected for the demodulation
process.
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FIGURE 1. Flowchart showing the general operation of a typical genetic
algorithm.

B. GENETIC ALGORITHM

The genetic algorithm is a widely adapted technique for
optimization of complicated parameter selection tasks. It is
an evolutionary algorithm that mimics the process of
natural selection in order to find an optimized solution
to a problem [23]. A typical genetic algorithm’s opera-
tion can be seen in Fig. 1 and is further explained as
follows.

Firstly, an initial population is randomly generated where
each individual represents different combinations of param-
eters. The number of parameters in each individual is fixed
and these combinations are called chromosomes. The param-
eters for optimization are called genes and are the variables
that make each chromosome distinct by producing different
solutions. The viability of each chromosome in solving the
problem can be evaluated using a fitness function. The fitness
function is used to assess each of the chromosomes in the pop-
ulation against a certain criterion and find the most suitable
solution to the problem for that generation. The chromosomes
with a good fitness score are given a higher probability of
selection for crossover compared to those with a bad score.
Crossover is the exchange of genetic information from two
parent chromosomes selected based on their fitness score
to produce offspring. Genetic crossover is typically set to
occur between some of the more fit chromosomes in the
population to produce offspring that possess a combination
of genes that have achieved a good fitness score with other
genes. The new offspring produced from the crossover of
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parents replaces other chromosomes that have a low fitness
score in the population. This allows the algorithm to learn
by removing the chromosomes with a low fitness from the
population allowing only the fittest to crossover. Examples of
traditional crossover selection methods include single-point
and two-point crossover as further explained in [24], [25].
After the crossover event occurs between multiple parent
chromosomes, the new generation is once again evaluated
with the fitness function for crossover. This process repeats
either until convergence of the population, a set number of
generations or if a condition specified is met. Convergence
is when the population largely possesses the same genes
meaning that new offspring may not have a significant effect
on the fitness score of chromosomes in the following gen-
erations. Mutations, or the random alteration of parameters,
are occasionally introduced to newly produced offspring as a
means of introducing some diversity into the gene pool. This
ensures that the population does not converge sooner than it
should by reaching a solution that could perhaps be further
optimized [26].

C. OPTIMIZATION OF BANDPASS FILTER FOR ENVELOPE
ANALYSIS

A demodulation band is selected in the frequency domain
for envelope spectrum analysis to better visualize the defect
frequencies caused by the impact of the fault during oper-
ation of the testrig. The method utilizes genetic algorithms
in the selection of this band for the analysis of the envelope
spectrum. This is done by first generating an initial pop-
ulation of chromosomes for the genetic algorithm. In this
study, the number of chromosomes was set to be 40 as this
was a reasonable population size that would not be very
time consuming to process and still have diversity among
individuals. Each chromosome in the population has two
genes corresponding to the upper and lower limit of the
passband which are randomly assigned a value between the
constraints specified. The constraints are shown in (6) and (7)
as follows, where F,,y is the maximum frequency possible
on the spectrum, x, is the first and x; is the second gene
of a chromosome. In such a way, the value of genes are
represented in the form of real numbers instead of binary
numbers.

0 Xa < Frax (6)

Xg < Xp < Fax @)

IA

Although it is common to select a central frequency and the
passband width as the parameters for optimization, the upper
and lower limit of the passband were chosen with the con-
straints above as it naturally introduces a bias to the pop-
ulation reducing the likelihood of randomly selecting lower
frequency bands. The algorithm can benefit from this bias as
the peaks in the lower range of the frequency spectrum typi-
cally correspond to the vibrations produced at the frequency
of the shaft speed where the desired fault information cannot
be extracted.
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The chromosomes in the population are used to compute
the fitness score obtained by their respective genes. The
fitness function implemented aims to maximize the amplitude
of the fault frequency compared to other frequencies on the
envelope spectrum. This is done by generating the envelope
spectrum from each chromosome using Hilbert transform.
Once the array of data is acquired for each demodulation
band in the population, the fitness of that chromosome is
calculated. Equation (8) below is used to calculate the fit-
ness score (fy) where A, is the highest amplitude that
corresponds with one of the TDFs achieved in the envelope
spectrum. A tolerance is assigned when searching for peaks
corresponding to TDFs to account for any slip that may occur
causing a slight variation in recorded data. The term sy, 1S
the maximum amplitude obtained in the envelope spectrum
before the lower tolerance limit of A,y

fs=

AH]BX

®)

Smax

When the demodulation band selected is too narrow, S;,4x
is typically higher than any defect frequencies present and
the envelope spectrum’s amplitude distribution appears posi-
tively skewed. The ratio of A4, and s,y is therefore chosen
as the fitness function in order to avoid the phenomenon
described and also maximize the defect frequency amplitude
with respect to the rest of the signal.

The triangle number series principle is used to distribute
the probability of selection of a chromosome in such a
way that the fittest element has the highest probability for
crossover and the probability lowers according to each chro-
mosome’s fitness rank. The fittest half of the population
is carried into the next generation with a probability of
crossover whereas the other half is given zero chance of
crossover and is overwritten by offspring. This means 20 new
chromosomes will be generated in each iteration. The prob-
ability is divided among the fittest half of the population
by using the triangle number series as shown in the simple
example below with a population size (Sp.p) of 8. The triangle
series number (n) respective to half the population size minus
1 is found using (9) and (10).

S 8
n:%—1=5—1=3 9)

1 33+ 1
Tnzw_)n:%zé (10)
(o)) (an
T Spop

Equation (11) was written so that the sum of the numerator
for the fittest half of the population would add up to the
total population size. Note that x here denotes the rank of an
individual’s crossover probability. Table 1 shows an example
of the crossover probability distribution among the chromo-
somes for a population size of 8. The fittest chromosome will
have the highest probability for crossover, and the probability
percentage will decrease the lower the chromosome’s fitness
compared to the rest of the population.

168831



IEEE Access

V. Kannan et al.: Demodulation Band Optimization in Envelope Analysis for Fault Diagnosis of Rolling Element Bearings

TABLE 1. Distribution of probability among a population of 8
chromosomes ordered from fittest to least fit.

Population Crossover probability

Py 0.3750
p, 0.2917
Py 0.2083
P, 0.1250

"""""" Ps (00417
Py —0.0417 Set to
Py —0.1250 zero
Pg \—0.2083 )

1

8
2P
x=1
Parent 1 el =N Gene 2 Offspring 1 el

FIGURE 2. Crossover of genes to produce two offspring.

If the two chromosomes selected for crossover happen to
be the same, the second parent is reselected with the same
probabilities until a different chromosome is chosen. In each
crossover that occurs, two offspring will be produced for
the next generation replacing the least fit half of the chro-
mosomes of the initial population. As there are only two
genes in each chromosome, the algorithm is made so that
two offspring are produced in each crossover allowing each
gene of the parents an equal chance to carry over in the next
generation as shown in Fig. 2.

Occasionally the gene corresponding to the lower limit
parameter of the offspring is larger than that of the upper limit
parameter for the passband resulting in an error. Although
the occurrence of this is rare, a mutation is forced when this
occurs replacing the second gene with a randomly assigned
value between the first gene and the maximum frequency
possible on the spectrum. In order to account for any biases
this may create, the second offspring for the same par-
ents has the mutation occur in its first gene to randomly
select a value between zero and its second gene. Once all
the offspring overwrite half the population with the lowest
fitness score, the chromosomes of the population are re-
evaluated based on the fitness function and the process is
repeated.

A mutation probability is also set to introduce some diver-
sity to the otherwise stagnant gene pool of the population.
The mutation is introduced into the population during the
crossover process and affects one of each offspring’s genes.
The first offspring’s first gene and second offspring’s second
gene are mutated by replacing what should exist with a
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randomly generated value that falls within the constraints for
the respective gene in the chromosome. After a certain point,
a majority of the population will possess the same genes so
the introduction of a mutation according to the mutation rate
set will allow for some variance in the population. The ideal
mutation rate varies from case to case. It is common to set it
to a lower number as this provides a good balance between
introducing diversity into the population and fully utilizing
the genetic algorithm’s ability to carry over useful genes into
the next generation. A 10%, or 0.1, mutation rate was chosen
for the purpose of the test as there are only two genes in each
chromosome. The high mutation rate accounts for the fact that
convergence will be reached sooner in a population with only
two genes in a chromosome.

After a set number of iterations, the execution of the algo-
rithm will terminate and output the most suitable combina-
tion of demodulation upper and lower band limits found.
Alternatively, the algorithm can also be set to terminate if
convergence is expected prior to running the set number of
iterations. This is done by checking the fittest chromosome’s
two genes for change in magnitude. If no change is found
for more than 30% of the set iterations, it can be assumed
that the algorithm has reached a state where crossover of the
fittest individuals led to the current population largely pos-
sessing the same genetic makeup. This would mean that there
would be no significant variation in the optimal parameters
identified by the algorithm. Mutations may have little to no
effect on the population at this point and therefore it would
be wise to automatically terminate the program and reduce
computation time to arrive at the most optimal result possible.

IIl. RESULTS AND DISCUSSIONS

The proposed envelope analysis with the GA-based demod-
ulation band optimization was implemented using MATLAB
R2018a. The algorithm was assessed by using vibration sig-
nals obtained from a bearing testrig with seeded Outer Race
Fault (ORF) and Inner Race Fault (IRF) bearings running at
various shaft speed as described below.

A. EXPERIMENTAL SETUP

The testrig used for the experiment was a SpectraQuest
Machinery Fault Simulator-Lite as shown in Fig. 3.
An accelerometer, PCB Piezotronics model 352C65 with a
sensitivity of 10.29 mV/m/s> was attached on the Y-axis of
bearing housing 1 to measure the vibrations produced when
the testrig was in operation. 5 second vibration signals were
collected by using an ECON MI-7004 dynamic signal ana-
lyzer at a sampling frequency of 96 kHz. Envelope analysis
with the proposed demodulation band selection approach was
programmed using MATLAB and was executed on a DELL
laptop with 8 GB RAM and an i5 8350U CPU.

Rexnord ER12KCL ball bearings with a seeded IRF or
ORF were used in bearing housing 1 of the testrig for testing.
The single localized defect seeded on the IRF bearing was
1.905 mm and the ORF bearing was 2.54 mm in diameter.
The geometric parameters of the bearings are given in Table 2.

VOLUME 7, 2019



V. Kannan et al.: Demodulation Band Optimization in Envelope Analysis for Fault Diagnosis of Rolling Element Bearings

IEEE Access

: e T
sk

"

FIGURE 3. Experimental setup with SpectraQuest Machinery Fault
Simulator-Lite.

TABLE 2. Geometric parameters of Rexnord ER12KCL ball bearings.

Pitch diameter (D) 33.5 mm
Rolling element diameter (d) 7.938 mm
Number of rolling elements (n) 8

Contact angle (0) 0°

TABLE 3. Shaft frequencies and the corresponding theoretical defect
frequencies (TDF). Unit: Hz.

17 16.69 50.94 82.58 33.24 6.37
27 26.68 81.43 132.01 53.14 10.18
37 36.67 111.92 181.44 73.03 13.99
47 46.65 142.38 230.82 92.91 17.80
57 56.64 172.88 280.24 112.81 21.61

The testrig was set to run at shaft frequencies of 17 Hz
to 57 Hz at intervals of 10 Hz. Note that the actual shaft
speed was slightly lower than what was set. Table 3 lists
the set shaft frequencies, actual shaft frequencies, and the
corresponding TDFs calculated from (2)-(5) using the actual
shaft frequencies.

B. DIAGNOSIS OF OUTER RACE FAULT

For the testing case of an ORF bearing at a set shaft fre-
quency of 47 Hz, the envelope spectrum generated using the
proposed method is shown in Fig. 4(a), where the optimal
demodulation band was selected by the real-coded genetic
algorithm. The envelope spectrum clearly shows the ORF
as the amplitudes relating to the defect frequency (BPFO
= 142.38 Hz) and its harmonics are large enough to be
distinguished from other frequencies present. It demonstrated
that the fitness function used in the genetic algorithm could
successfully find the solution with the highest amplitude in
the respective fault frequency. The automatically selected
frequency band to generate the envelope spectrum is shown
in Fig. 4(b). The selection of the frequency band was based on
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FIGURE 4. (a) Envelope spectrum and (b) frequency spectrum band
selection for the ORF bearing at shaft speed of 47 Hz.

the evaluation made through the fitness function used in the
real-coded genetic algorithm. The best individual in the final
generation was used as the selected solution. It can be seen
that the selected band is not coincident with a traditionally
assigned band with a center at a structural resonance such as
location A.

Fig. 5(a) shows the fitness score of the best individual
in each generation. It can be seen that the score does not
further increase after convergence at the 25th iteration. The
highest fitness score achieved for this case using the pro-
posed algorithm was approximately 9.2. Fig. 5(b) shows the
variation of the selected demodulation band in each iteration.
The passband selected was 23390.6 to 31384.4 Hz and it
did not change after convergence. The fast convergence can
be attributed to the design of the genetic algorithm where
each chromosome in the population only has two genes. The
diversity of the population was maintained by using a high
mutation rate. Additionally, real-coded genetic algorithms are
generally considered to be fast as they use less storage than a
standard binary genetic algorithm.

C. DIAGNOSIS OF INNER RACE FAULT
The method was applied for an IRF bearing with a shaft
speed of 47 Hz and the envelope spectrum obtained is shown
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FIGURE 5. (a) Fitness score of the best individual and (b) best passband
found within 100 iterations for an ORF bearing at a shaft speed of 47 Hz.

in Fig. 6(a). The amplitudes corresponding to the IRF fre-
quency are generally higher than the rest of the envelope spec-
trum peaks. As an IRF bearing is used, prominent sidebands
can also be noticed on either side of the BPFI harmonics
spaced at the magnitude of the shaft frequency harmon-
ics. This lowers the fitness score of the solution, however,
the BPFI amplitudes are still clearly distinguishable. Fig. 6(b)
shows the demodulation band selected by the algorithm for
the IRF bearing at 47 Hz. The frequency band can be seen
focusing around a dominant resonance, location A, similar to
the band selection method that was mentioned in [5].

Fig. 7(a) shows the fitness score of the best individual
in each generation and it can be observed that it converges
after about 27 iterations. The highest fitness score found
through the algorithm was approximately 1.67. The varia-
tion in optimal passband selection for each iteration can be
seen in Fig. 7(b). The optimal band selected was 17840.4 to
23297.1 Hz and was found within the first 27 iterations.
The IRF bearing case also converges in a small number of
iterations similar to the ORF bearing for the same reasons.

D. COMPARISON OF DEMODULATION BANDS AND
PERFORMANCE

Fig. 8(a) and 8(b) graphically represent the variation in
demodulation bands obtained for ORF and IRF bearings
respectively for the five sets of different shaft frequencies.
The highlighted sections show the maximum and minimum
points the limits have been computed to for each bearing.
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FIGURE 6. (a) Envelope spectrum and (b) frequency spectrum band
selection for the IRF bearing at shaft speed of 47 Hz.
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FIGURE 7. (a) Fitness score of the best individual, and (b) best passband
found within 100 iterations for an IRF bearing at a shaft speed of 47 Hz.

The ORF bearing’s narrowest bandwidth was observed for
the case where the shaft frequency was 17 Hz. The widest
bandwidth computed for the same bearing was in a shaft
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FIGURE 8. Comparison of optimal band limits computed for (a) an ORF
bearing, and (b) IRF bearing at five different shaft frequencies.

frequency of 47 Hz. Unlike the ORF bearing, the IRF bear-
ing’s narrowest and widest bandwidths computed were from
the shaft frequencies 27 and 37 Hz respectively. No direct
correlation could be made regarding selection of optimal
bands with the operating frequency of the shaft. An important
point worth noting however is that the highlighted sections
in Fig. 8(a) and 8(b) are at a high frequency with the IRF
bearing’s optimal range reaching much higher than that of the
OREF bearing.

The fitness scores obtained for the two bearings at the
shaft frequencies tested are shown in Fig. 9. The fitness
score of the IRF bearing is much lower than that of the ORF
bearing for all shaft speeds due to the sidebands present on
either side of the BPFI harmonics spaced by the magnitude
of the shaft frequency harmonics. It was also noticed that
the general shape of the fitness score variation relates to
the band selection for both bearings in Fig. 8. The increase
and decrease of the optimal band’s position, disregarding
magnitudes, closely resembled the variation observed in the
respective fitness scores. The higher bandpass filters selected
through the real-coded genetic algorithm gave a higher fitness
score. However, this does not necessarily mean that the man-
ual selection of a higher filter will always produce a better
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FIGURE 9. Fitness scores obtained for each optimal demodulation band
selected.

TABLE 4. Fitness scores and time taken for 100 iterations using the
proposed method for ORF and IRF bearings.

Set Shaft 17 27 37 47 57
Frequency (Hz)
Fitness 4 56 7.91 6.69 9.20 9.82
w score
S
Time(s) 34204 34419 343.15 33602 333.43
Fitness 151 1.70 2.20 1.67 1.44
w Score
o«
Time(s) 33864 350.83 360.61 339.49  358.02

result as it is also greatly dependent on the bandwidth and the
frequencies present within.

As shown in Table 4, all cases tested using the proposed
method achieved reasonable fitness scores. This meant that
the algorithm and fitness function were able to accurately
select optimal passbands based on the evaluation made with
the fitness function. ORF bearing tests obtained a very high
fitness score but the IRF bearings cases were not quite as high
due to the sidebands of the fault frequency present in the enve-
lope spectrum. It is also important to note that in most cases
tested, convergence is either achieved within 30 iterations or
the fitness score increases minutely not making a significant
difference. This means that for most cases, a reasonable
fitness score can be achieved in 30 iterations. On average,
the time taken to run a hundred iterations of the algorithm is
345 seconds on a DELL laptop with 8 GB RAM and an i5
8350U CPU. If convergence, or an acceptable solution, can
be reached in about 30 iterations then the approximate time
taken for this will be about 103 seconds.

It is demonstrated that the proposed approach can automat-
ically find the optimized demodulation bands corresponding
to the acquired vibration signals under different shaft frequen-
cies. Although the algorithm achieved a fitness score large
enough to distinguish the presence of faults, the performance
could be further improved if the fitness score limitation was
due to convergence at a local optimum rather than a global
optimum. Methods such as vibrational genetic algorithm [27]
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TABLE 5. Fitness scores for data analyzed from testrig using fast
kurtogram method for ORF and IRF bearings.

Set Shaft 17 27 37 47 57
Frequency (Hz)
Fitness 25 2.19 253 1.03 121
w score
(-4
S
Time(s)  2.67 2.10 2.42 2.06 2.08
Fitness
1.05 1.08 1.48 1.22 1.08
w Score
[
Time(s)  2.26 437 2.50 277 0.49

TABLE 6. CWRU dataset envelope analysis comparison using proposed
method and fast kurtogram.

Defect size (mm) 0.1778 0.5334
Fitness 15.61 154
Proposed algorithm score
P Time (s) 35.38 117.52
S -
Fitness 3.54 0.98
Fast kurtogram score
Time (s) 1.17 0.83
Fitness 423 234
Proposed algorithm score
w Time (s) 112.30 128.64
o -
Fitness 0.08 1.44
Fast kurtogram score
Time (s) 0.83 1.06

or adaptive genetic algorithm [28] can ensure that the popu-
lation diversity is maintained. The downside to using these
methods however would be a significant increase in compu-
tation time due to the additional processes introduced to the
real-coded genetic algorithm.

E. BENCHMARKING AND ADDITIONAL TESTING

The proposed algorithm was benchmarked with an estab-
lished spectral analysis tool. The fast kurtogram as in [12] was
used to analyse the same set of testing data as listed in Table 3.
The resultant fitness function values as introduced in Eq. (8)
are listed in Table 5. Comparing with the results obtained
using the proposed method as listed in Table 4, it can be
seen that the proposed method outperforms the fast kurtogram
method for both ORF and IRF bearings over all shaft frequen-
cies. Fig 10 shows the kurtogram and envelope spectrum from
the fast kurtogram method for a case with an ORF bearing
at a shaft frequency of 47 Hz. It can be seen that in the
envelope spectrum, although the defect related frequencies
can be observed, other frequencies are still prominent, which
makes it difficult to identify the defect frequencies. As a
comparison, the envelope spectrum by using the proposed
approach, as shown in Fig 4, shows clearly the bearing defect
frequencies associated with the ORF. It demonstrated the
effectiveness of the new method.
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FIGURE 10. (a) Fast kurtogram where the red box indicates the selected
combination and (b) envelope spectrum of ORF bearing at shaft
frequency of 47 Hz.

The CWRU bearing dataset [29] has been used by many
researchers in the field of bearing fault diagnosis and is
therefore considered a standard set of reference data for the
testing of new algorithms. The proposed method and the fast
kurtogram [12] were once again used to obtain an optimal
envelope spectrum from selected cases in CWRU’s dataset as
listed in Table 6. The dataset used was for drive end bearing
faults at a sampling frequency of 48 kHz, and the cases
selected for analysis were the largest and smallest defect size
available for both bearings with an IRF and ORF. Note that
the ORF data used had the defect in the 6 o’clock position.
The largest and smallest defect sizes were used as these cases
give a good indication of the performance of the algorithms.

The comparison of the fitness scores obtained showed that
the performance of the proposed algorithm is better than
the benchmark in all cases tested in terms of the detection
accuracy. Thei algorithm is able to achieve a much higher
fitness score specifically for cases with the smaller defect
for both types of bearings. As for the cases with the larger
bearing defects, the proposed algorithm also resulted in a
greater fitness score, although the gap is not so significant.
The superior performance in comparison to the benchmark
for both the dataset collected and the one from CWRU’s
testrig indicated the adaptability of the algorithm. It was
found that the proposed algorithm is capable of converging or
completing its maximum iterations much sooner while using
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CWRU’s bearing dataset. This is due to the smaller sampling
frequency in this dataset, which means that the algorithm will
generally compute faster. A very high sampling rate is not
required for the accurate analysis of accelerometer signals
and therefore a good envelope spectrum result can still be
achieved in a reasonable time. It should be noted that the
benchmarking technique was able to generate results much
faster than the proposed algorithm. Nevertheless, the promi-
nence of defect frequencies in the proposed algorithm was
significantly greater for all cases. It is expected the proposed
method will be further improved in future study to reduce the
computational cost.

IV. CONCLUSION

This paper proposed a real-coded genetic algorithm with
a novel fitness function and crossover selection method to
automate the optimal selection of bandpass filter parameters
for envelope analysis to diagnose rolling element bearing
defects. The ratio between fault frequency peaks and the
maximum peak not corresponding to defects in the enve-
lope spectrum is used as the fitness function to evaluate
the solutions obtained by the algorithm. The triangle series
method was used to divide the probability of each individual
in the population being selected for crossover based on the
fitness scores obtained. A generally fast convergence was
achieved due to the design of the GA. The algorithm allowed
for the distinction of defect related frequencies in a fully
automated way. Comparison to a benchmarking test using fast
kurtogram proved the effectiveness and superior capability of
the developed algorithm to better accentuate defect related
frequencies. Additional testing on another rotor-bearing sys-
tem dataset was able to demonstrate the adaptability of the
proposed algorithm to measurement data from different plat-
forms.
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