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ABSTRACT As special types of factorization of finite groups, logarithmic signatures and covers have been
used as themain components of cryptographic keys for secret key cryptosystems such asPGM and public key
cryptosystems likeMST1,MST2,MST3 and eMST3. In particular, as a natural analogue of integer factorization
problem (IFP), group factorization problem (GFP) and its hardness assumption over certain factorization
basis, referred as logarithmic signature, play a core role in the security arguments for the family of MST
cryptosystems. Security is not the unique goal of designing a cryptosystem. Instead, efficiency is also a major
issue. In this paper, we design a new secure encryption scheme based on group factorization problem (GFP).
Furthermore, we present the security analysis and demonstrate the performance of our scheme. Comparing
with eMST3, our scheme is simplified with more efficiency.

INDEX TERMS Encryption scheme, group factorization problem, logarithmic signatures, random covers.

I. INTRODUCTION
Nowadays, the security of many public key cryptosystems
is based on the hardness assumptions of certain problems
over finite abelian algebraic structures such as cyclic groups
and finite fields. Two well-known hard problems are the
integer factorization problem (IFP) and discrete logarithm
problem (DLP) [14], [18], [20], [39]. However, Shor’s and
other quantum algorithms [22], [37], [41], [42] can solve
the IFP and DLP in polynomial time. For instance, Grover’s
algorithm [22] can improve brute-force attacks by signif-
icantly reducing search spaces for private keys. In other
words, these hardness assumptions would be broken if quan-
tum computers become practical [31], [34], [35]. Note that
the theoretical foundations for many current public crypto-
graphic primitives lie in the intractability of mathematical
problems closer to number theory than group theory. Number
theory deals mostly with abelian groups. It is well known
that non-commutative algebraic structures can increase the
hardness of some mathematical problems significantly [7],
[9], [36]. Therefore, it is meaningful to design secure
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and efficient cryptosystems based on non-abelian algebraic
structures.

It is always remained an attractive aspect for researchers
to study the underlying intractable assumptions of mathe-
matical problems for cryptographic primitives. Regarding the
non-commutative cryptography, the related work started from
1980’s, when the difficult problems in group theory were
incorporated into cryptographic domain. In 1984, Wagner
and Magyarik [50] devised a public key cryptosystem on
the basis of undecidable word problem in groups and semi-
groups. After that, Birget et al. [8] pointed out that Wagner’s
method is not based on the word problem but on a simpler
assumption. Furthermore, they designed a new public key
cryptosystem based on the word problem in finite gener-
ated groups. In 1999, Anshel et al. [1] put forward a key
exchange protocol based on the intractability of the solving
equation problem in non-abelian groups. At the same time,
they claimed that the braid group can be used as a platform in
public key cryptosystems. Subsequently, Dehornoy [15], [26]
systematically developed the braid group cryptography on
the basis of conjugacy search problem (CSP). In 2002, Grig-
oriev and Ponomarenko [21] proposed the first homomorphic
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encryption scheme based on non-abelian groups. The cor-
responding intractable assumption is the membership prob-
lem (MP) in the integer matrix group. Hereafter, Eick [17],
Shpilrain and Ushakov [46] and Baumslag et al. [6] et al.
raised several public key cryptosystems on the basis of poly-
cyclic groups and linear groups. In 2006, Cao et al. [12]
recommended an innovative perspective for designing public
key cryptosystems based on non-commutative rings. Since
2009, Habeeb et al. [23], [27]–[29] brought forward a series
of key exchange protocols and public key encryption schemes
based on group ring matrices, corresponding intractable
assumptions are reported to be DLP and factorization prob-
lem (FP) in group ring matrices, respectively. Afterwards,
Eftekhari [16], [33], [36], [40] gave an efficient quantum
algorithm in polynomial complexity on the DLP in group ring
matrices. Recently, algebraic eraser (AE) has also become
a typical representative of non-commutative cryptography
because of its potential to resist against known quantum
attacks [2]–[5].

At the same time, group factorization problem (GFP)
has gradually become a typical intractable assumption
in group theory [13], [30], [32], [43], [48]. A type
of cryptosystems based on GFP has achieved rapid
development in recent thirty years. From 1986 to
2010, Lempken et al. [30], [32], [43], [48] have made great
achievements on devising cryptosystems based on logarith-
mic signatures and covers in non-abelian groups. Espe-
cially in 2009, Lempken et al. [30] put forward a practical
platform—Suzuki 2-group [25] and put MST cryptosystems
into practice. In 2013, Svaba et al. [44] analyzed the LS in
finite abelian groups in detail, and devised an efficient factor-
ization algorithm with respect to (fused) transversal logarith-
mic signatures. In 2017, Hong et al. [24] made some progress
towards searching theminimal length key forMST cryptosys-
tems and presented a theoretical proof for MLS conjecture.
In the same year, Reichl [38] specifically discussed GFP in
finite abelian groups, and proposed an efficient algorithm for
factorizing logarithmic signatures. In 2018, van Trung [47]
put forward a general method of constructing strong aperiodic
logarithmic signatures for abelian p-groups, and promoted
the practical application ofMST cryptosystems. So far,MST
cryptosystems are not known to be susceptible to quantum
algorithm attacks, which makes them viable to be candidates
for post-quantum public-key cryptography.

A. OUR MOTIVATIONS AND CONTRIBUTIONS
Our main motivation is to design a new secure encryption
scheme based on random covers and logarithmic signatures.
Comparing with known schemes, our scheme has higher
efficiency.

The remaining paper is organized as follows: In Section 2,
we review the related results in MST cryptosystems; In
Section 3, we specifically presents our proposal along with
its security analysis; The performance and illustrations are
introduced in Section 4.

II. PRELIMINARIES
A. COVER, LOGARITHMIC SIGNATURE AND GROUP
FACTORIZATION PROBLEM
Definition 1 (Cover and Logarithmic Signature [30],

[48]): LetG be a finite group,A ⊆ G. Let α = [A1, · · · ,Ak ]
be the ordered sequence of subsets Ai in G such that Ai =
[ai1, · · · , airi ] with aij ∈ G (1 ≤ j ≤ ri). Then, α is called a
cover for G (or A) if each g ∈ G (or A) can be represented
as a product

g = a1j1 · · · akjk (1)

with aiji ∈ Ai (1 ≤ i ≤ k). If each g ∈ G(or A) can be
expressed in an unique way, then α is said to be a logarithmic
signature for G (or A).

The sequences Ai are called the blocks, the vector
(r1, · · · , rk ) with ri = |Ai| is the type of α, the length of α is

defined to be l(α) =
k∑
i=1
ri. If the factorization aforementioned

(1) can be achieved in polynomial with dlog2 |G|e, then α is
called tame (factorizable).

Definition 2 (Cover (Logarithmic Signature) Mappings
[30], [48]): Let α = [A1,A2, · · · ,Ak ] be a cover (loga-
rithmic signature) for G of type (r1, r2, · · · , rk ) with Ai =
[ai,1, ai,2, · · · , ai,ri ], let ji be integers, 1 ≤ ji ≤ ri, and let
m =

∏k
i=1 ri. Letm1 = 1 andmi =

∏i−1
j=1 rj for i = 2, · · · , k .

Consider the maps λα and θα defined by

λα : Zr1 × Zr2 × · · · × Zrk → Zm

(j1, j2, · · · , jk ) 7→
k∑
i=1

jimi. (2)

and

θα : Zr1 × Zr2 × · · · × Zrk → G
(j1, j2, · · · , jk ) 7→ a1j1 · a2j2 · · · akjk (3)

Note that λα is a bijection, and both λα and λ−1α are efficiently
computable. Define the surjective (bijection) map

α̃ : Zm→ Gx 7→ θα(λ−1α (x)) = a1j1 · a2j2 · · · akjk (4)

Cryptographic Hypothesis 1 (Group Factorization Prob-
lem [43], [49]): Let α = [A1,A2, · · · ,Ak ] be a cover
(logarithmic signature) for G of type (r1, r2, · · · , rk ) with
Ai = [ai,1, ai,2, · · · , ai,ri ], then the map α̃ : Zm → G
induced by α with m =

∏k
i=1 ri is a one-way function.

Remark 1: As described as Cryptographic Hypothesis 1,
the complexity of solving the GFP depends on m. According
to [43], when G is a cyclic group, the GFP with respect to
α amounts to solving the discrete logarithm problem (DLP)
in G. In view of the fact that non-commutative algebraic
structures can increase the hardness of some mathematical
problems significantly, the complexity of GFP in non-abelian
groups such as the Suzuki 2-group is much more intractable.
In fact, let |G| =

∏k
j=1 p

bj
j be the prime power decomposition
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of |G|, we have that l(α) ≥
∑k

j=1 bjpj. When l(α) =∑k
j=1 bjpj, it follows that m =

∏k
i=1 ri =

∏k
j=1 p

bj
j is

exponential based on non-abelian generators pj for 1 ≤ j ≤ k .
In other words, it is in general an intractable problem to find
a factorization g = a1j1 · a2j2 · · · akjk for the given group G
and an element g ∈ G.

B. MST3 CRYPTOSYSTEMS AND THE SUZUKI 2-GROUP
In 2002, Lempken et al. [30] devised an encryption scheme
named MST3 by using logarithmic signatures and random
covers. In this scheme, the secret key are a tame logarithmic
signature and several random numbers, the public key are
a random cover and its sandwich transform. Subsequently,
Blackburn et al. [10] specifically analysed MST3 cryptosys-
tem and put forward effective attacks based on this scheme.
Furthermore, in order to overcome known attacks, Svaba and
Van Trung [43] proposed an enhanced version named eMST3
cryptosystem. In order to improve the security of this scheme,
the authors took advantage of a secret homomorphism to pro-
tect the secret logarithmic signature.Meanwhile, they utilized
random numbers to realize probabilistic encryption.

So far, the only platform of MST cryptosystems is the
Suzuki 2-group of order q2 with q = 2κ (κ ≥ 3) [30],
[43]. Also, the Suzuki 2-group of order q2 can be denoted
by A(κ, θ), where θ is an automorphism of Fq with an odd
order. Moreover, the group A(κ, θ) can be represented by a
matrix group G = {S(a, b)|a, b ∈ Fq}, where

S(a, b) =

 1 a b
0 1 aθ

0 0 1

 (5)

is a 3× 3 matrix over Fq. Therefore, G is of order q2 and the
center Z(G) = {S(0, b)|b ∈ Fq}. In order to store the group
elements conveniently, S(a, b) can be denoted by (a, b, aθ ),
then the product of two elements in group G is

S(a1, b1)S(a2, b2) = S(a1, b1, aθ1)S(a2, b2, a
θ
2)

= (a1 + a2, b1 + b2 + a1aθ2, a
θ
1 + a

θ
2)

(6)

In addition, the inverse of an element in group G can be
expressed as

S(a, b, aθ )−1 = S(a, aθ · a+ b, aθ ) = S(a, aθ+1 + b, aθ )

(7)

and it also requires one multiplication and one addition in Fq.
If g = S(a, b) ∈ G, a, b ∈ Fq, then a and b can be denoted by
g.x and g.y, respectively. Thus, we have that g = S(g.x , g.y).
For clarity, we would like to introduce the notations used in
this paper (See Table 1).

III. MAIN RESULTS
Compared with eMST3, a few changes have taken place in
public key γ , the ciphertext pairs of our proposal are inde-
pendent of each other, and the encryption process is also
simplified.

TABLE 1. Notations used in this paper.

A. FULL SCHEME
1) KeyGen(κ): Let κ be the system security parameter,

G = A(κ, θ) be the Suzuki 2-group with order q2,
and the message space Z = {S(0, b)|b ∈ Fq} be the
center of G, where q = 2κ (κ ≥ 3). Then it outputs
the public key [α, γ ] and the corresponding private key
[β, (t0, · · · , tk ), f ].
• Choose a tame logarithmic signature β =

[B1,B2, · · · ,Bk ] = (bij) = (S(0, b(ij)·y)) of type
(r1, r2, · · · , rk ) for Z , where bij ∈ Z and b(ij)·y ∈
Fq;

• Select a random cover α = [A1,A2, · · · ,Ak ] =
(aij) = (S(a(ij)·x , a(ij)·y)) of the same type as β for a
subset A ofG such that A1, · · · , Ak ⊆ G\Z , where
aij ∈ G\Z , a(ij)·x ∈ Fq\{0} and a(ij)·y ∈ Fq;

• Choose t0, t1 · · · , tk ∈ G\Z;
• Construct a secret homomorphism f : G→ Z;
• Compute γ := (hij) = (S(h(ij)·x , h(ij)·y)), where
hij = t−1i−1 · f (aij) · bij · ti;

• Output public key pk = [α, γ ] and private key sk
= [β, (t0, · · · , tk ), f ].

2) Enc(pk,m): For a message m ∈ Z , the ciphertext is a
pair (y1, y2) which is produced as follows:
• Select a random number R ∈ Z|Z|;
• Compute

y1 = α̃(R) · m

y2 = γ̃ (R)

= t−10 · f (α̃(R)) · β̃(R) · tk ; (8)

• Output (y1, y2).
3) Dec(sk,C): For the ciphertext pair (y1, y2) ∈ G × G,

the user utilizes private key [β, (t0, · · · , tk ), f ] to cal-
culate a plaintext m′ ∈ Z as follows:
• Compute R′ = β̃−1(y2t

−1
k f (y1)−1t0);

• Compute m′ = α̃(R′)−1 · y1;
• Output m′.

Theorem 1 (Correctness): The aforementioned encryption
scheme is consistent.

Proof 1: For a valid ciphertext pair (y1, y2) ∈ G × G,
it follows that

y1 = α̃(R) · m

y2 = γ̃ (R)

= b1ji t
−1
0 f (a1j1 )t1 · · · bkjk t

−1
k−1f (akjk )tk

= b1jib2j2 · · · bkjk t
−1
0 f (a1j1a2j3 · · · akjk )tk
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= β̃(R) · t−10 · f (α̃(R)) · tk
= β̃(R) · t−10 · f (α̃(R) · m) · tk
= β̃(R) · t−10 · f (y1) · tk
⇒ β̃(R) = y2 · t

−1
k · f (y1)

−1
· t0, (9)

then using β̃−1, we can recover the random number R by

β̃−1(β̃(R)) = β̃−1(y2t
−1
k f (y1)−1t0) = R = R′. (10)

Consequently, using y1 we can recover message m by

m′ = α̃(R′)−1 · y1 = α̃(R)−1 · y1 = m. (11)

B. SECURITY ANALYSIS
Now, we proceed to prove the security of the aforementioned
construction. By using the classic techniques in [11], [19], our
proposal can be easily proved to be IND-CCA2 secure in the
standard model. Then, we briefly introduce the proof of our
idea.

Theorem 2: The aforementioned proposal is indistin-
guishable against adaptively chosen ciphertext attacks (IND-
CCA2) in standard model assuming that the GFP is
intractable in G.

Proof 2: If there exists an adversary A, who can break
the CCA security of the proposal, then the challenger B
can solve the GFP in G. The general ideas are presented as
follows.

Setup B sets the public values α and γ , then sends them
toA. Clearly,A has no ideas about the correspond-
ing private key [β, (t0, · · · , tk ), f ].

Phase 1 B builds the following decryption oracle.
• Decryption Oracle Odec: A sends a ciphertext
C = (y1, y2) ∈ G × G to this oracle, B
firstly computes R = β̃−1(y2t

−1
k f (y1)−1t0) and

searches whether R exists in Table Tdec. If it
exists,B sendsm = α̃(R)−1·y1 toA; otherwise,
B sends ⊥ to A.

Challenge A sends the challenger B two messages
m0,m1 ∈ Z with the samematrix form.B computes
the challenge ciphertext C∗ = (y∗1, y

∗

2) as follows:
• Choose a random R∗ from Z|Z|, and compute
y∗2 = γ̃ (R

∗).
• Compute y∗1 = α̃(R

∗) ·mδ , where δ is a random
number from {0, 1}.

At last,B sendsC∗ toA as the challenge ciphertext.
Phase 2 It is almost the same as Phase 1, except thatA can

not directly send C∗ to the decryption oracle Odec.
Guess A outputs the guess b′ on b. B randomly chooses

R′ from Table Tdec, and sets R∗ as R′. If A can
output a correct guess, then R′ is the correct R∗

with probability 1/qdec at least, where qdec denotes
the maximum number of queries to the decryption
oracle Odec by A.

In analogy with the construction of FullIdent in [11], since
qdec is polynomially bounded, so B breaks the GFP with

non-negligible probability 1/qdec. Specifically, suppose that
A’s advantage in guessing b′ = b is ε which is non-negligible,
thenB’s advantage in breaking the GFP is about ε/qdec which
is also non-negligible. According to the classic conclusion in
[11], [19], we have that: if no polynomially bounded adver-
sary has a non-negligible advantage in breaking our scheme,
the proposal is indistinguishable against adaptively chosen
ciphertext attacks (IND-CCA2).

Remark 2: Apparently, one-wayness of our scheme
depends on Cryptographic Hypothesis 1. Thence, we obtain
corresponding security level in analogy with the method in
[11], [19]. Here, we omit the proof of Theorem 2 and attempt
to pave an unique path to verify the security of our scheme
by using a heuristic method of analyzing the complexity of
known attacks.

1) ATTACK ON SECRET KEY
a. In order to obtain the private key β and (t0, tk , f ), the adver-
sary attempt to extract useful information from the equation

β̃(R) = y2 · t
−1
k · f (y1)

−1
· t0 (12)

where R ∈ Z|Z|, y1 = α̃(R) · m, y2 = γ̃ (R), f (y1)−1 ∈ Z .
Specifically, the adversary takes advantage of enough val-

ues β̃(Ri) to construct β by using the corresponding conclu-
sion in [48]. If β is of type (r1, r2, · · · , rk ), then one can
construct a logarithmic signature equivalent to β by using
n selected values β̃(Ri), where n = 1 − k +

∑k
k=1 rk . Let

{R1,R2, · · · ,Rn} be a series of random numbers chosen by
the adversary. Then

β̃(Ri) = yi2t
−1
k f (yi1)−1t0

= f (yi1)−1yi2t
−1
k t0

⇒ β̃(Ri)f (yi1) = yi2t
−1
k t0, i = 1, 2, · · · , n (13)

where yi1 = α̃(Ri) · m and yi2 = γ̃ (Ri). Notice that yi2 is
known, f (yi1) and β̃(Ri) ∈ Z , it follows that

yi2t
−1
k t0 ∈ Z
⇒ t0 ∈ tky

−1
i2 Z. (14)

Since tk ∈ G \ Z , there are q2 − q possibilities for tk .
If tk is chosen, there are q possibilities for t0 owning to
t0 ∈ tky

−1
i2 Z . Hence, there are q(q2−q) suitable pairs (t0, tk ).

Besides, for each solution pair (t0, tk ), there are q equivalent
solutions (t0z, tkz) with z ∈ Z . Furthermore, since f (yi1)
is unknown, there are q possible choices for f (yi1) on the
left side of equation (13). Consequently, there are q(q2 − q)
different solutions, it follows that the complexity of this attack
is O(q(q2 − q)).
b. In this attack, the adversary intents to take advantage

of equivalent private key [β∗, (t∗0 , · · · , t
∗
k ), f ] to replace the

original private key [β, (t0, · · · , tk ), f ]. From [43], the adver-
sary may let t∗i = tizi(1 ≤ i ≤ k) and b∗ij = bijcij(1 ≤ i ≤
k, 1 ≤ j ≤ ri) for zi, cij ∈ Z . so for the first block of γ ,
it follows that:

h1j = b1jt
∗−1
0 z0f (a1j)t1 (15)
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Let b∗i1 = id , then ci1 = bi1, we have

h11 = b∗11c11t
∗−1
0 z0f (a11)t1

= b∗11t
∗−1
0 f (a11)(t1c11z0)⇒ t∗1 = t1c11z0

h1j = b1jt
∗−1
0 z0f (a1j)(t∗1 c11z0) j = 2, · · · , r1

b∗1j = b1jc1j = h1jt
∗−1
1 f (a1j)−1t∗0 ⇒ c1j = c11 = b11 (16)

h21 = b∗21c21t
∗−1
1 c11z0f (a21)t2 ⇒ t∗2 = t2c21c11z0

h2j = b2jt
∗−1
1 c11z0f (a2j)t∗2 c21c11z0 j = 2, · · · , r2

b∗2j = b2jc2j = h2jt
∗−1
2 f (a2j)−1t∗1 ⇒ c2j = c21 = b21

... (17)

We can get that cij = ci1 = bi1 for all i = 1, · · · , k . If we
denote cij = ci, then t∗i = tiz0

∏i
k=1 ck .

γ̃ (R) = β̃(R)t−10 f (α̃(R))tk

= β̃(R)t∗−10 z−10 f (α̃(R))t∗k z0
k∏
s=1

cs

= (β̃(R)
k∏
s=1

cs)t
∗−1
0 f (α̃(R))t∗k

= (β̃(R)
k∏
s=1

cs)t0f (α̃(R))tk (18)

Let β̃(R) = b1x1b2x2 · · · bkxk , β
∗
:= (b∗ij) and b

∗
ij = bijci for

ci ∈ Z , then

β̃∗(R) = b∗1x1b
∗

2x2 · · · b
∗
kxk

= b1x1c1b2x2c2 · · · bkxk ck

= β̃(R)
k∏
s=1

cs. (19)

Since β∗ is tame, the adversary can take advantage of forged
private key [β∗, (t∗0 , · · · , t

∗
k ), f ] to recover the random num-

ber R. Then, there are q = |G|/|Z| possible choices for t0 in
t0Z and q possible choices for f (α̃(R)), so the complexity for
this attack is O(q2) and it’s computationally infeasible.

2) ATTACK ON CIPHERTEXT
a: ONE-WAYNESS OF CIPHERTEXTS
As we all known that one-wayness is the basic requirement
for public-key cryptography. Therefore, we should consider
one-wayness of ciphertexts in our proposal. In the encryption
phase, we can get that m = α̃(R)−1 · y1 from y1 = α̃(R) · m.
Thence, if the adversary wants to obtain the original message
m, he(she) either guesses the random number R, or recovers
the random number R from the cover mapping y2 = γ̃ (R).
However, since q is large enough and γ̃ is a one-way function
from Cryptographic Hypothesis 1, so it is computationally
infeasible for the adversary to recover R from γ̃ .

b: INDISTINGUISHABILITY OF CIPHERTEXTS
The adversary A sends the challenger B two messages
m0,m1 ∈ Z with the same matrix form. B computes the
challenge ciphertext C∗ = (y∗1, y

∗

2) as follows:
• Choose a random R∗ from Z|Z|, and compute y∗2 =
γ̃ (R∗).

• Compute y∗1 = α̃(R
∗) · mδ , where δ is a random number

from {0, 1}.
If A can not output the correct b, then challenge ciphertext
C∗ is statistical indistinguishable.
In this case, we can analyse the following two cases:

y∗1 = α̃(R
∗) · m0

y∗2 = γ̃ (R
∗) (20)

and

y′1 = α̃(R
′) · m1

y′2 = γ̃ (R
′). (21)

Since R∗ and R′ admit the same probability distribution,
it follows that R∗ and R′ are statistical indistinguishable for
the adversary. It can be denoted by R∗ ≈

s
R′. Meanwhile,

since α̃ and β̃ are both one-way maps, so we can get that
α̃(R∗) ≈

s
α̃(R′) and γ̃ (R∗) ≈

s
γ̃ (R′). Besides, since m0 ≈

s
m1,

so α̃(R∗) · m0 ≈
s
α̃(R′) · m1. Consequently, we can get that

(y∗1, y
∗

2) ≈s
(y′1, y

′

2).

IV. DISCUSSION
In this section, we focus on analyzing the efficiency and
related security parameters of our proposed scheme. Here,
we investigate the number of basic operations for one encryp-
tion/decryption. The basic operation is composed of addition
(Add), multiplication (Mult), exponentiation with θ (Exp(θ )),
generation of m-bit random R (PRG), and factorization of
β ′(R) ∈ Z for β using the Algorithms 9-11 (Factor) in
[43]. Then, the time of an Add operation is denoted as TAdd ,
the time of a Mult operation is denoted as TMult , the time of
an Exp(θ ) is denoted as TExp, the time of a PRG is denoted as
TPRG and the time of a Factor is denoted as TFactor .
Table 2 demonstrates the number of basic operations

required for eMST3 scheme and our proposed scheme. Table 3
reveals the number of basic operations required in the key
generation phase (including public keys and private keys).
In addition, we utilize the NTL library [45], measure on a
machine with macOS, 1.8 GHz Intel Core i5 processor, 4G
RAM and 1600 MHz DDR3, and implement our scheme
in C++. We obtain average time of every operation in one
encryption/decryption using the method of repeated comput-
ing one thousand times, and the experimental results reveal
that TAdd = 0.019ms, TMult = 0.26ms, TExp = 3.556ms,
TPRG = 1.8ms and TFactor = 2.74ms.
Upon receiving the computational overheads of TAdd ,

TMult , TExp, TPRG and TFactor , on the one hand, we vary
k from {8, 16, 24, 32, 40, 48, 56, 64, 72, 80} and depict the
variation of computational overheads of eMST3 and our
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TABLE 2. The computational overheads of one encryption/decryption.

TABLE 3. The computational overheads in the key generation phase.

FIGURE 1. The computational overhead comparison between eMST3 and our scheme for one encryption/decryption.

FIGURE 2. The computational overhead comparison between our private
and public keys in the key generation phase.

scheme for one encryption/decryption in term of k , which
is presented in Figure 1. As shown in Table 2 and
Figure 1, comparing with eMST3 scheme, our proposed

scheme has a lower computational overhead for one encryp-
tion/decryption in terms ofAdd operation,Mult operation and
total.

On the other hand, we vary k from {20, 40, 60, 80, 100},
running time from {5, 10, 15, 20} and depict the computa-
tional overheads of our private and public keys for the key
generation phase in Figure 2. As described in Table 3 and
Figure 2, it is obvious that the computational overhead of
generate public key α is the highest of all the others, that
of generate private key β is the lowest, that of generate
private key [t0, . . . , ts, f ] is lower than that of generate public
key γ . In addition, the generation of public keys needs a
higher computational overhead in the key generation phase
comparing with that of private keys.

V. CONCLUSION
In this paper, we put forward a new secure encryption
schemes on the basis of random cover and logarithmic
signature. The intractability assumption of our scheme is
group factorization problem (GFP) on a type of Suzuki
2-group. Comparing with eMST3 scheme, our scheme has
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higher efficiency. Also, our method is universal and can real-
ize basic encryptions on files and images.
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