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ABSTRACT The rudder system is extensively used in aerospace, ships, missiles and other safety demanding
areas. Therefore, it is paramount to ensure that the performance of the system is optimal. Rudder system
testing equipment is a special tool used to diagnose its failure. Traditional ones can only artificially analyze
the massive and complex tested data. Due to the low-test degree of automation, the performance of such
testing tools is limited. Aiming to address this shortcoming, we developed a new rudder system testing
equipment with four independent loading platforms and intelligent data analysis systems. It sufficiently
shortens the installation and commission time of pneumatic actuators and the processing time of the testing
data which largely improves its performance and accuracy. Given the imbalanced nature of the data an
adaptive sampling algorithm considering informative instances (ASCIN) leveraging the Support Vector
Machine (SVM) is proposed to process the originally collected data. The optimal parameters in SVM and
ASCIN are searched by Whale Optimization Algorithm (WOA). Experiments are designed to assess the
performance of ASCIN in comparison with existing approaches in the area of imbalanced data learning.
The results show that the algorithm developed in this study has higher performance relative to traditional
approaches. The application of these intelligent algorithms in fault detection and location of rudder system
overcomes the limitation of traditional testing equipment and provides a new concept for future research into
more intelligent one.

INDEX TERMS Rudder system, fault diagnosis, intelligent algorithm, data analysis.

I. INTRODUCTION
The rudder system is widely used in aerospace and navigation
fields, like in civil aircraft, ship and missile. The directional
stability is strongly crosslinked with the performance of a
rudder system. Failure of rudder system in missile applica-
tion may cause catastrophic accidents. Therefore, selecting
a qualified rudder system for precise control of the course
is critical. The rudder system consists of four pneumatic
servos and one steering engine control amplifier circuit board.
In addition, the system contains a guidance for the production
of pneumatic servo and the circuit board for identified faults.

Initially, in missile rudder system testing was performed
using manual measuring method. This method was later
found to be inefficient with substantial manual errors caused
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by heavy testing workload. With the development of the
technology, the emergence of high performing automated
testing system has rendered traditional manual testing meth-
ods obsolete. Automatic testing system allows rapid calcu-
lation of results and higher testing accuracy [1]. However,
the signals acquired by this testing tool still require artificial
observations, analysis and decisionmaking [2], [3]. The oper-
ator processes the collected data manually and then analyzes
the system condition based their experiences. This detection
process is implemented half automatically. The rapid devel-
opment of machine learning provides new opportunities for
diagnosing defects in the rudder system. However, this field
requires advanced intelligent reforms [4].

It is therefore important to develop effective data analy-
sis tools and learning methods for processing the features
collected from the rudder system testing facility for bet-
ter performance. In practical application, the production of
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rudders and corresponding private circuit boards is highly
controlled, thus the number of unqualified products is rela-
tively small. For this reason, the raw data collected from such
testing facilities is imbalanced, with the number of normal
features outnumbering that of fault features. Considering the
imbalance within the dataset, several approaches have been
used to adjust the typical classifiers or features. Classical
classification algorithms have been designed to offset the
imbalanced dataset. Although the algorithm is effective for
balanced datasets, when applied to skewed data, its per-
formance rapidly reduces thereby decreasing the precision
of the classifier. Common methods used for the skewed
data learning mainly focus on resampling and balancing the
original dataset [5]–[13]. Over-sampling the minority class
samples and applying the informative examples is one of
the most promising and effective approaches for imbalanced
data learning [5], [14], [15]. Notably, no extra information
is needed in oversampling method except the dataset itself.
In addition, more valuable minority samples are generated
through over-sampling by emphasizing the informative sam-
ples to obtain balanced dataset.

Research has indicated that the data points near the deci-
sion boundary are more important [16]. Some of these points
lie on the margins at both sides of the decision boundary
and are called support vectors (SVs) [5]. They are important
for the training model since it determines the hyper-plane
setting [17]. Therefore, the SVM algorithm is employed to
diagnose failures of the rudder system. SVM is used because
of the following reasons. First, the basic theory and the
classification mechanism of SVM are simple. Second, SVM
utilizes the kernel function to transform the input to higher
dimensional space which allows separation of the nonlin-
ear separable data by a hyper plane. Then, the hyper plane
(decision boundary) is used to calculate the informative data
points. Radial basis function is used as the kernel function
in this study. The penalty factor c and kernel parameter g
play important roles in SVM classification. For this reason,
the WOA is applied for parameters optimization (The opti-
mized SVM called: WOA-SVM). In recent years, SVM has
been widely applied in small samples data analysis and fault
diagnosis with good results [18]–[22].

Some scholars have demonstrated the efficiency of over
sampling method while considering the informative samples.
Zhang et al. developed a framework which combined both the
majority and minority features in a nearly optimal fashion
to construct the feature selection metrics [23]. Treating all
data as equally important introduces redundancy to the infor-
mation. The ensemble SVM strategy proposed in a previous
study [7] mainly considers the distribution of the SVs and this
method was found to be effective. In this method, only the
SVs are considered and the base classifiers are not completely
independent. Recently, Wang et al. developed an ensemble
method which accounts for the samples near the decision
boundary of SVM and achieved good results [24]. However,
the importance of the datasets near the decision boundary is

compatible, which undoubtedly generates less significant or
even bad data points.

In our study, to generate more sensitive data and rectify the
skewness of decision boundary, we weighted the data points
according to their distance from the decision boundary. This
formed the main principle of ASCIN algorithm. The intelli-
gent algorithms ASCIN, SVM andWOA are employed to the
rudder system testing equipment which significantly improve
its accuracy and efficiency. The parameters in ASCIN and
SVM are optimized by WOA. SVM is mainly used to deter-
mine the informative samples and to facilitate data classifi-
cation. The application of intelligent data analysis in rudder
system testing equipment not only improves the degree of
automation but also the accuracy of diagnosing different
types of faults. It also guides the production of steering gears
and corresponding circuit boards.

In summary, it has broken the traditional model. Under
the traditional method, the collected massive data which
imply the system fault condition are compared to the stan-
dard indicators by manual operation to diagnose the faults,
and then according to the experience of the operators and
the comparison results, the failures can be located. The
whole process is semi-automatic. However, the data anal-
ysis, fault model establishment and fault location of pro-
posed system are accomplished by computer independently
and automatically. This function depends on the appli-
cation of machine learning, and the detail are described
as follows.

II. RUDDER SYSTEM FAULT DETECTION PROCESS
In this study, fault diagnosis in the rudder system is divided
into two steps; testing and data learning. The main modules
are shown in Figure 1. In the first stage, the parameters
reflecting the performance of rudder systems are measured
and acquired. Thereafter, the main features are collected
according to the signal conditioning. In the learning stage,
intelligent machine learning algorithms are applied to analyze
and create a detection model which can diagnose the rudder
system. The features collected after the testing are shown in
‘Features’ in Figure 1. (The detail description parameters are
shown in Appendix 2)

A. RUDDER SYSTEM TESTING EQUIPMENT
The automatic rudder system testing equipment is developed
as shown in Figure 1. In the testing system, the power sup-
ply unit consists of an electronic source and the pneumatic
power. The electronic source generates the required working
voltage for each functional circuit, sensor and machine. The
testing device needs 220V AC, however, some parts inside
the chassis need 5V DC or 24V DC. Changes in voltage are
accomplished by AC/DC and DC/DC modules. The pneu-
matic power supplies compressed air at a given pressure and
flow rate to the pneumatic steering gear.

The measurement unit consists of torque transducer,
photoelectric coder, data acquisition card and signal
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FIGURE 1. Process of the rudder system fault detection.

condition circuit. Torque is measured with the torque trans-
ducer and torsional angle is measured with the photoelectric
coder. The signal conditioning circuit ensures that the control
and feedback signals of the rudder system and output signal of
sensors can be adjusted and filtered. The signal produced after
conditioning is more sensitive and easier to collect. These
signals are collected and stored in the data acquisition card.

The control unit consists of a switch control circuit,
industry personal computer (IPC) and the master control
computer.

The switch control circuit controls the power supply junc-
tion or cut off. The IPC forms the core of the test equipment,
which regulates the signal transmission, processing and dis-
play. The master control computer is used for data analysis
and to control the entire testing procedures.

The loading platform consists of a mounting table and
four independent loading channels. The testing equipment
can load four sets of rudder systems and tests at least one
rudder system at a time. This design greatly improves the
efficiency of the testing system. However, it compromises
data processing. Consequently, using machine learning meth-
ods to analyze these massive complex data collected from
the testing facility can effectively solve the problem. The
computer-assisted diagnosis not only saves manpower and
time but also improves the efficiency, accuracy and the degree
of automation.

B. DATA LEARNING PROCESS
The original imbalanced data collected from the testing
equipment is automatically transmitted to the computer for
machine learning processing instead of manual intervention.
The data process consists of three aspects: data sampling,
diagnosis model establishment and fault detection. In the first
two stages, an adaptive sampling method ASCIN leveraging
the SVM is proposed to balance the data and achieve optimal
learning results. This machine learning method can directly
detect faults. In the process of learning, the optimal param-
eters in SVM and ASCIN are searched by WOA. During
the last stage, the newly processed data set is fed into the
optimized classifier SVM to determine the fault location.

III. ALGORITHMS FOR FAULT DIAGNOSIS
A. THE WHALE OPTIMIZATION ALGORITHM
An alternative metaheuristic swarm algorithm was developed
for the first time in reference [25], which was named WOA
since it simulates the feeding style of humpback whales. Sim-
ilar to the PSO [26], a population of the solution is initialized
randomly and then used to determine the best solution P∗

by calculating the fitness function for each solution P. The
performance of WOA was found to be superior to that of the
optimization algorithm PSO [20], [25], owing to its higher
exploration ability. The population updating is achieved by
employing the following two methods ¬ encircling, and ­
bubble-net [27].

In the encircling phase, the updating procedure is shown in
Eq. (1) {

P (t + 1) = P∗ (t)− A · D
D = |CP∗ − X (t)|

(1)

where D represents the distance between the best solution P∗

and P at the iteration t . t indicates the current iteration, A and
C are coefficient vectors, which are calculated as follows.{

A = 2a× r1 − a
C = 2× r2

(2)

where a is linearly decreased from 2 to 0 over the course
of iterations and r1 and r2 is a random vector in [0,1].
In the bubble-net method the solution can be updated using
¬ shrinking encircling or ­ spiral updating. Supposing the
search space is two-dimensional, the candidate position Pi
located at (X, Y) is updated based on the best position P∗

(located in (X∗, Y∗)) as shown in Figure 2. Any position can
be reached with respect to the current position by adjusting A
and C . Similar concepts are applicable to the n-dimensional
search space.

The shrinking encircling mechanism is accomplished by
decreasing the value of a shown in Eq. (4), and the position is
undated according to Eq. (1) and Eq. (2). Figure 2 shows the
convergence mechanism of position Pi with iteration.
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FIGURE 2. Bubble-net search mechanism implemented in WOA.

If the spiral updating strategy is used, the following spiral
equation simulates the helix-shaped movement of the whales.

P(t + 1) = D′ · ebl · cos(2π l)+ P∗(t) (3)

where D′ = |P∗(t) − P(t)| depicts the distance between the
position of current and the best at the ith iteration. Parameter
l ∈ [−1, 1] is a random number and the constant b is used to
define the shape of the logarithmic spiral [25]. In WOA algo-
rithm, the solutions updating mechanism involves switching
between the shrinking encircling and spiral-shaped path as in
Eq. (4).

Pi(t + 1) =

{
P∗(t)− A · D if r ≥ 0.5
D · ebl cos(2π l)+ P∗(t) if r < 0.5

(4)

where r is a random number in [0,1] denoting the proba-
bility of swathing between the above two techniques (see in
Eq. (1)-(3)) [27].

In nature, there exists a random search mechanism where
the best position P∗ is replaced by a random position Pr .{

P(t + 1) = Pr (t)− A · D
D = |B · Pr − P|

(5)

B. SUPPORT VECTOR MACHINE
SVM is a pattern recognition algorithm that utilizes an opti-
mized hyperplane to separate the space expressed by a normal
vector w and a hyperplane offset b [28]. The hyperplane is
obtained from the following function.

αi ≥ 0i = 1, 2 . . .m
yi(wT xi + b)− 1 ≥ 0
αi(yi(wT xi + b)− 1) = 0

(6)

The xi and yi are the input and output vector, respectively, and
yi ∈ {−1,+1} determine the label of ith instance. Where α
is a vector which signs the Lagrange multiplier. In the above
function, when αi > 0, the solution xi stands for SV, and not
support vector (NSV). SVs lies in the planes wT x + b = ±1,
which determines the position of classification of hyper-
plane H (satisfying the functionwT x + b = 0). In conclusion,
the hyper-plane settings are adjusted based on the SVs, and
not NSVs in the majority.

The kernel function8(x) is applied to the non-linear sepa-
rable problems and the data is mapped to a new feature space.
Next, the decision boundary is described using the follow-
ing formula: wTφ(x) + b, in which w is obtained from the
following expression: w =

∑N
i=1 αiyiφ(xi).

1) SVM ON IMBALANCED DATASET
The performance of SVM decreases when applied to imbal-
anced dataset, especially to minority class examples. The
minority class samples are misclassified as majority class
because the decision boundary in SVM is biased towards the
minority class. Wu and Chang [29] stated that the skewness
of the decision boundary is due to the imbalanced SVs ratio
and imbalanced training data ratio. The number of major-
ity class data points and the majority class SVs is larger
than the minority. However, the concept was challenged
by Akbani et al. [30]. The principle of SVM is a trade-off
between margin maximization and classification error min-
imization. The cumulative misclassification cost of minority
class data is relatively small for its small number, therefore,
SVM tends to maximize the margin by regarding the minority
class cases as the majority.

Nevertheless, the skewed decision boundary of SVM is due
to the smaller number of the minority class instances com-
pared to the majority. In the following section, we describe
the solution to this problem.

C. THE PROPOSED SAMPLING ALGORITHM ASCIN
In this paper, we propose a new over-sampling algorithm
which integrates the SVM for imbalanced data learning.
As described above, the skewness of the decision boundary
is directly related to the imbalance in the dataset. In ASCIN,
the sensitive generate minority class data points are generated
and balanced in the dataset. The procedures used to perform
ASCIN are as follows.
Step 1: Partition of the original dataset into training dataset

(account for 70%) and testing dataset (account for 30%).
The imbalance ratio in both datasets is similar to that of the
original dataset. Next, the imbalanced gap in the training data
is calculated and set as the upper bound for generating the
synthetic minority class data points.
Step 2: SVM is developed on the original training dataset

and the G-mean (detailed in Section 4.1) is recorded to
evaluate the performance of the model. This is followed by
calculation of the decision boundary.
Step 3: The Euclidean Distance of the minority class

data points in training dataset from the decision boundary
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is calculated. The p% of them with short distance are con-
sidered to be informative samples and weighted according
to the distance from decision boundary. The smaller the
distance, the larger the weight. Subsequently, the Clustering-
based Synthetic Minority Oversampling Method (CSMOTE)
is employed to generate new synthetic samples in the space of
the above weighted dataset. The oversampling degree for the
minority class data points is d%. Finally, new training dataset
that contains some new generated minority class points is
obtained.
Step 4: The newly generated SVM is then tested on the

new training dataset and new decision boundary to obtain
informative samples. These steps are repeated and the relative
indices and the number of newly generated data points are
recorded.
Step 5: In this step, the data set corresponding to the best

classifier performance is obtained. The model is then trained
on the above dataset.

During the iterations, the algorithmWOA is used to obtain
the best value of the SVM parameter c, g and the ASCIN
parameter p% as well as d% according to the value of evalua-
tion matrix G-mean. The pseudo-code of ASCIN is described
in Table 1. (The notification of Algorithm ASCIN is shown
in Appendix 1)

1) THE ALGORITHM CSMOTE
In the basic generation algorithm SMOTE, the new synthetic
data points are created by interpolation between one dat-
apoint and its K nearest neighbors (the neighbors belong
to the informative minority class samples). This mechanism
may lead to the new generated data falling in the cluster of
majority class samples [11]. Therefore, CSMOTE is used
to generate samples as follows: 1) K-means Clustering is
used to categorize data samples into k clusters which are
L1,L2, . . . ,Lk so that each sample belongs to a cluster. 2) A
data point x is randomly selected from cluster Lt . Another
data point y is randomly selected from the members of
k-Nearest Neighbors of point x. It should be noted that the
point y is from cluster Lt , otherwise, the above steps have to
be repeated. 3) One synthetic data, w, is generated according
to w = x + β × (y− x), where β is a random number in the
range [0,1].

2) PARAMETERS OPTIMIZATION
For improved classification performance, it is important
to find the most optimal value of the related SVM and
ASCIN parameters. A previous study applied the WOA for
SVM parameter optimization [20]. It has been proven to be
superior to PSO optimization algorithm in terms of perfor-
mance. The details of the overall processes are described
below:
Step 1: The parameters whales’ numbers, expressed as

Search_Agents; the variables’ number (expressed as dim);
the maximum iteration number (expressed as Max_itr):
the value of lower and upper boundary are defined as
lb = [lb1, lb2, . . . lbn] and ub = [ub1, ub2, . . . ubn]

TABLE 1. The algorithm ASCIN.

respectively. In this study, the parameters are set as follows:
Search_Agents = 50, dim = 4, Max_itr = 50, lb =
[0.001, 0.001, 0, 0], and ub = [1000, 1000, 1, 1]. Thereafter,
the first random population of whales is calculated. The
iteration value is set as 1 in the first period.
Step 2: Four parametersc, g p% and d are optimized. The

fitness function is defined as the G-mean of the classifier.
Step 3: In this step, the fitness value of each whale is

calculated, fitkt = −(G − mean), t = 1, 2, . . .M , and the
value is then used to rank the first batch of whales and the one
with best fitness value is selected. Subsequently, the location
of whales is updated in reference to the best one.
Step 4: The population is then updated according to the

formula (1)-(5). The iteration is performed until the largest
iteration is obtained.
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IV. EXPERIMENTS
In this study, 850 sample datasets with 18×4 features are col-
lected and used to create the detection model. The 4 indicates
the number of pneumatic-servo-actuators (detailed descrip-
tion of different features is shown in Appendix 2). The num-
ber of minority class samples is 200 and the imbalance ratio
is 17.64%. A rudder system fault diagnosis experiment is
then developed to verify the performance of the proposed
intelligent algorithms in dealing with imbalanced data clas-
sification problem and fault diagnosis of rudder system.
The effectiveness of the algorithm ASCIN is validated by
learning the dataset collected from the testing facility. To
determine the performance of ASCIN, it is compared to dif-
ferent samplingmethods. ThenWOA-SVM is applied to fault
location.

A. THE EVALUATION METRICS
In this study, majority of the samples are considered
positive, whereas few are negative. By convention, the clas-
sification accuracy of overall data is applied to eval-
uate the performance. However, for classification tasks
of imbalanced dataset, other assessment methods should
be adopted to evaluate the performance. In this study,
the confusion matrix F-measure, G-mean and TNR are also
selected to evaluate the learner [31]. They are calculated as
follows:

Accuracy = Acu =
TP+ TN

TP+ FN + FP+ FN
(7)

F-measure =
2∗Precision∗Recall
Precision+ Recall

(8)

G-mean =
√
TPR∗TNR (9)

where Precision, Recall, TPR and TNR are further
defined as:

Precision =
TP

TP+ FP
(10)

Recall = TPR =
TP

TP+ FN
(11)

TNR =
TN

TN + FP
(12)

where TP is the number of true positive examples; FP is the
number of the false positive examples; FN is the number of
false negative examples and TN is the number of true nega-
tive examples. The indicator G-mean matrix is a coordinate
between the TPR (classification accuracy of positive) and the
TNR (classification accuracy of the negative).

B. THE EXPERIMENTAL PROCESS
The experimental process consists of two stages: data collec-
tion and data learning. The data learning process is briefly dis-
cussed in Section 2.2. The data collection process is similar
to the traditional automatic testing equipment. We record the
corresponding output responses at different input excitation

input stimulus (given by the programs). For instance, when
the system is given a step signal, the parameter ‘‘transition
time’’ can collected according to the shortest time the system
changed from the original stable state to the new equilibrium
state. Detailed correlations between the input and the col-
lected parameters are shown in Appendix 2.

C. THE EXPERIMENTAL RESULTS AND ANALYSIS
In this study, we compared the performance of ASCIN
to six common imbalanced data learning algorithms: Syn-
thetic Minority Oversampling Technique (SMOTE) [13],
Borderline Synthetic Minority Oversampling Technique
(BSMOTE) [12], Safe-Level Synthetic Minority Oversam-
pling Technique (SLSMOTE) [8], Cluster-Based Synthetic
Minority Oversampling Technique (CSMOTE) [9], Adaptive
Synthetic Sampling (ADASYN) [10] and Majority Weighted
Minority Oversampling

Technique (MWMOT) [11]. The classification results
based on the original imbalanced dataset are provided for
reference. The parameters used in the above methods are
defined as default or the recommended value. To avoid over-
fitting, 5-fold cross validation is applied in these experiments.
The dataset is then partitioned into five subsets with equal
size. In cases where the five subsets do not have the same size,
the former four subsets should be the same at least. Themodel
is repeated five times, each time the model is trained on four
of the subsets and the rest are used to test the model. In each
iteration, the test dataset is different. The final model perfor-
mance is the average of the five models. To further reduce
the effect of randomness, eight trials are repeated under the
same conditions. The parameters used in our method are
optimized by WOA, therefore, the classification algorithm
WOA-SVM is applied to analyze the data after other sam-
pling approaches. Different sampling methods are assessed
and compared by measuring the evaluation matrix accuracy,
F-measure, G-mean and TNR. The average and deviation of
metrics are shown in Table 2. In addition, Figure.3 shows the
classification results in terms of evaluation metrics with sev-
eral sampling algorithms and our adaptive sampling method
ASCIN.

Table 2 and Figure.3 show that the proposed sampling
method is more effective in processing imbalanced data col-
lected from the testing equipment. The algorithm ASCIN
achieves the highest matrix accuracy of 0.953, F-measure
of 0.964, G-mean of 0.903 and TNR of 0.8375. In addi-
tion, the proposed sampling algorithm ASCIN, correctly
classified nearly 84% of the minority class examples. This
reflects an improvement of 133% compare to 36% in the
original data. Our proposed sampling algorithm ASCIN
achieves the G-mean of 0.903, reflecting an improve-
ment of 10.34% (0.903–0.444), 57.04% (0.903–0.575),
31.82% (0.903–0.685), 22.19% (0.903–0.739), 29.37%
(0.903–0.698) and 15.37% (0.903–0.356) in terms of the
average G-mean compared to the ones obtained with
SMOTE, BSMOTE, LSMOTE, CSMOTE, ADASYN and
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FIGURE 3. (a). Comparison of accuracy among sampling algorithms, (b). Comparison of F-measure among sampling
algorithms, (c). Comparison of G-mean among sampling algorithms, (d). Comparison of TNR among sampling algorithms.

TABLE 2. Comparison of several sampling methods (the bolded indicates the best in this column).

TABLE 3. The confusion matrix of the classification in the testing data.

MWMOTE respectively. The algorithm ASCIN achieves
the TNR of 0.838, reflecting an improvement of 286.1%
(0.838–0.217), 144.3% (0.838–0.343), 71.02% (0.838–0.49),
44.5% (0.838–0.58), 66.6% (0.838–0.503) and 470.1%

(0.838–0.147) in terms of the average TNR compared to
the ones obtained using SMOTE, BSMOTE, SLSMOTE,
CSMOTE, ADASYN andMWMOTE respectively. The algo-
rithm ASCIN achieves the F-measure of 0.964, reflecting an
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TABLE 4. The classification results of fault location.

improvement of 9% (0.964–0.884), 7% (0.964–0.901), 6.3%
(0.964–0.907), 5.6% (0.964–0.913), 5.4% (0.964–0.915) and
9.7% (0.964–0.879) in terms of the average F-measure
compared to the ones obtained using SMOTE, BSMOTE,
SLSMOTE, CSMOTE, ADASYN and MWMOTE, respec-
tively. Apart fromMWMOTE, all the other samplingmethods
produce a higher accuracy, G-mean, F-measure, and TNR
than the most basic sampling method SMOTE.

1) FAULT LOCATION
In machine learning the location of failures is a multi-
classification problem. In our experiment, there are 11 sys-
tems sates in the data-set, including 9 single fault states,
a multiple fault state and a qualified state. In this process,
the classifier WOA-SVM is used for fault location. The best
new training dataset in the above experiments which contains
the new synthetic minority class samples is selected to train
the new model. The noise that does not conform to the actual
physical meaning should be removed and labels are assigned
to the new samples.

In the first experiment involving five repeated trials, during
the iteration of ASCIN, we choose the best value of G-mean
to record the index of iteration and the corresponding param-
eters. At the beginning, the number of original training data
is 595 comparing 455 majority class data and 140 minority
class data. In the 5th iteration (the new training dataset is
455 + 351), the best G-mean of 0.988 is obtained (only
8 negative samples are misclassified). The best parameters c,
g, p% and d% are 12.33, 4.11, 27.39% and 20.3%, respec-
tively. The new training dataset after noise removal and
labeling is used for training the fault location WOA-SVM
model. Similarly, 5-fold cross validation is employed to
avoid over-fitting. The testing results of the testing dataset
are provided in Table 3. The F1, MF and Q reflect the
first type of faults, multiple fault state and qualified state,
respectively.

From Table 3, the calculated classification accuracy is
97.3% (248/255), the entire qualified states are classified
correctly, and the classification accuracy of the unqualified is
88.3% (53/60). It is anticipated that, if the multi-classification
data imbalance problem is solved, the accuracy of unqualified
will be increased.

To illustrate the stability and high performance of this
method, the new training dataset obtained from the above five
trials is used to train the model, and the testing results are

shown in Table 4. The classification results on the original
imbalanced dataset are provided for reference.

From Table 4, the classification accuracy and TNR of the
original model is 84.3% and 66.7% respectively. Using the
new generated training dataset, the classification accuracy of
the minority samples is significantly improved.

V. CONCLUSION
In this study, we provide a data learning mechanism for auto-
matic rudder system testing equipment that achieves excel-
lent data acquisition and analysis. The model improves the
accuracy and efficiency, as well as reduce wastage of labor
resource and other costs., compared to traditional testing
equipment. In addition, the four individual loading platforms
shortened the installation and testing time and reduced the
manpower cost to some extent, indicating the practicability
of the rudder system testing equipment.

In terms of the intelligent algorithm, novel sampling algo-
rithm ASCIN, SVM and parameters optimization algorithm
WOA are used for data analysis and fault diagnosis. The
ASCIN which provides a comprehensive consideration of the
informative data points integrates the Clustering, SVM and
WOA, hence, addresses the lower classification rate of the
minority class examples and improves the performance of
the classifier. This technique not only avoids the problem of
adding trivial information during classification but also pre-
vents loss of important information from the dataset. Based
on the experimental results, the classification accuracy of the
minority class instances (TNR) is only 0.36 under the original
dataset which is far from meeting the testing requirements.
The ASCIN processing produces a satisfactory classification
accuracy and TNR value. Its diagnosis performance under the
processed dataset is markedly superior to the original dataset.
Table 2 shows that the performance under sampling method
ASCIN is highly comparable to the other sampling methods.
The comparison results show that it is effective and applicable
to the dataset of rudder system testing equipment. The high
accuracy of the proposed model to diagnose fault location
promotes pneumatic steering gear production.

In summary, the experiments performed in this study reveal
the high performance of the intelligent algorithms for fault
detection when applied to the automatic rudder system testing
equipment. This is a new paradigm in the field of rudder
system testing, as it not only improves the efficiency and the
accuracy of the testing equipment, incorporates the fault loca-
tion function, but also provides more avenues for improving
the performance of traditional rudder system testing equip-
ment.

All the following nine parameters are measured respec-
tively under input signals with the same amplitude and posi-
tive phase and negative phase.
APPENDIXES
APPENDIX 1
See Table 5.

APPENDIX 2
See Table 6.
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TABLE 5. Notations of algorithm ASCIN.

TABLE 6. The description of dataset.
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