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ABSTRACT The growing physical (PHY) layer capabilities of Wi-Fi have made it possible to use Wi-Fi
signals for both communication and human sensing. Wi-Fi channel state information (CSI) in PHY layer can
be obtained from commodity Wi-Fi devices. As CSI can detect the minute environment changes that alter
signal propagation, it is thus capable of capturing the subtle human activities to provide cost-effective and
easy-to-use human sensing. However, the limited bandwidth of each individualWi-Fi channel fundamentally
constrains the resolution of signals, resulting in poor performance of human sensing. In this paper, we present
WiRIM, a resolution improving mechanism for Wi-Fi based human sensing. We design a channel switching
and aggregation algorithm to extend the effective bandwidth of commodity Wi-Fi signals and improve the
performance and efficiency of human sensing applications. With aggregated CSI, WiRIM constructs feature
images which contain rich frequency, temporal and spatial characteristics, and then uses a deep learning
method to process the extracted features. We propose a cross-location human activity recognition (CLHAR)
scenario as a case study. The CLHAR scenario requires a high enough resolution of the Wi-Fi signals
to accurately recognize different activities under the interference of tiny changes in human location. The
experiments demonstrate the generality and effectiveness of the proposed mechanism.

INDEX TERMS Human sensing, resolution improvement, Wi-Fi, CSI, cross-location human activity
recognition.

I. INTRODUCTION
With the rapid development of Internet of Things (IoT),
such IoT applications as smart home and motion-controlled
video games have attracted increasing attention. Recently,
Wi-Fi based human sensing has become a promising tech-
nique in human activity recognition [1]–[15], objects track-
ing [16]–[21], physiological indicators detection [22]–[27]
and human detection [28], etc. This prosperity benefits from
some properties of Wi-Fi, including its low cost, extensive
use and device-free experience. The proposed DP-DFLAGR
system in [29], [30] estimates target’s location, activity,
and gesture based on the received signal strength (RSS).
The designed DFLAR system in [31] collects channel state
information (CSI) and estimates the location and activity of
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a person using a machine learning approach. Unfortunately,
due to the limited resolution of current Wi-Fi signals,
the above systems cannot always achieve good performance
especially when performing some activities or at some
locations.

The basic principle of human sensing based on Wi-Fi
signals is: due to reflection, scattering and diffraction intro-
duced by objects in space, Wi-Fi signals transmit through a
multipath channel from the transmitter to the receiver [32].
When a person is around the Wi-Fi devices, his body will
affect the travel-through signals. The received signals con-
tain the fine-grained physical (PHY) layer measurement of
CSI, which characterizes the propagation space. Using CSI
obtained from commodity Wi-Fi devices [33], power delay
profile (PDP) can be calculated through IFFT (Inverse Fast
Fourier Transform) [6], [34]–[36]. Through analyzing a high
resolution PDP, tiny human activities can be detected by
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differentiating subtle multipath channel changes [6], [35],
[37], [38].

However, the time resolution of PDP is determined by the
bandwidth of Wi-Fi signals. Currently, the bandwidth of a
single channel in commodity Wi-Fi NICs (network interface
cards) only spans 20 MHz, which provides a time resolution
of 50 nses for distinguishing different signal propagation
paths in PDP (thesewill be explained in detail in III-A). So the
resolution provided by the limit bandwidth [38], [39] limits
the performance of Wi-Fi based human sensing. For higher
performance and efficiency, how to improve the resolution of
signals with commodity Wi-Fi devices is the basic problem
to be solved.

To address the above challenges, we present WiRIM,
a resolution improving mechanism for human sensing with
commodity Wi-Fi. We design a channel switching and aggre-
gation algorithm to realize fast switch of adjacent chan-
nels in Wi-Fi NICs and aggregate these channels into an
extended channel. CSI from the extended channel has a
wider bandwidth and provides higher resolution for human
sensing. Leveraging both CSI amplitude and phase, we con-
struct feature images, which contain rich frequency, temporal
and spatial characteristics of the aggregated CSI. Finally,
WiRIM merges the features into a deep learning module for
human sensing.

We propose a cross-location human activity recogni-
tion (CLHAR) scenario as a case study. Since human
activity and location information is particularly important
in human sensing, the CLHAR scenario has important
practical significance. Existing studies use some tech-
niques to minimize the influence of location difference
on activity-related feature extraction, so as to realize
Wi-Fi based human sensing. However, this approach is lim-
ited in CLHAR scenarios where the location difference is
tiny.

Because of this, we conduct two controlled experiments.
Firstly, we use CSI to estimate human activity and location
information. The results of WIRIM using the aggregated
channel are compared with those of WIRIM using a single
channel. Secondly, we use CSI to recognize human activities
when there is a slight difference in human location. And we
comparedWIRIMwith a benchmark approach [13] of human
activity recognition (HAR).

Experiment results demonstrate the effectiveness and gen-
erality of the proposed mechanism.

The main contributions of this paper are summarized as
follows:

1) We prove that the time resolution of PDP is limited
by Wi-Fi channel bandwidth, and the high resolu-
tion provided by CSI can detect minute human activi-
ties through distinguishing subtle changes in multipath
channels.

2) We present WiRIM, a resolution improving mech-
anism that is universally applicable to Wi-Fi based
human sensing. And we implement WiRIM with
commodity Wi-Fi.

3) We use a cross-location human activity recognition
system as a case study and conduct a series of com-
parison experiments. Experimental results verify the
effectiveness and generality of WiRIM.

The rest of the paper is organized as follows. Related
work and some preliminaries are discussed in Section II
and Section III, respectively. Then, the mechanism design
of WiRIM is elaborated in Section IV. The detailed experi-
ment procedures are presented in Section V and the results
are analyzed in Section VI followed by a conclusion
in Section VII.

II. RELATED WORK
A. HUMAN SENSING WITH COMMODITY WI-FI
There are numerous human sensing applications with com-
modity Wi-Fi.

Here we first introduce some representative human activ-
ity recognition applications based on Wi-Fi. CARM [4]
proposes a CSI-activity model for a CSI based human
activity recognition. WiDance [5] extracts complete infor-
mation of motion-induced Doppler shifts and prototypes
a contactless dance-pad exergame. WiHear [6] analyzes
fine-grained radio reflections from mouth movements and
detects pre-defined vocabulary. WiKey [7] is a Wi-Fi based
keystroke recognition system with an accuracy of 93.5%.
WiFall [8] can achieve fall detection with high accuracy.
Wi-Chase [10] fully utilizes all available subcarriers of the
Wi-Fi signals and recognizes corresponding human activ-
ities. PCA-Kalman [11] is a method for detecting indoor
activity using ubiquitous Wi-Fi. PCA-Kalman uses the prin-
cipal component analysis (PCA) algorithm to reduce the
dimension of the data, Kalman filter algorithm to remove
some outlier values, and support vector machine (SVM)
algorithm to classify data. WiFit [12] recognizes the exer-
cise type and count the number of exercise for diverse
population even in different environments. Reference [13]
proposes an attention based bi-directional long short term
memory (ABLSTM) for Wi-Fi based HAR and achieves the
best recognition performance for all activities when com-
pared with other approaches. WiAct [14] utilizes Doppler
shift correlation value and Extreme LearningMachine (ELM)
for activity data classification. Wri-Fi [15] detects the
writing action persistently by the Fast Fourier Transform
(FFT) based energy indicator and realizes the air-write
recognition.

These HAR systems are all based on CSI data from a single
channel, use some technologies to eliminate the influence of
human location and use statistical methods to extract features
reflecting activity characteristics. However, tiny changes in
activities, as well as tiny changes in a person’s location can
have an impact on Wi-Fi signals. Especially in our proposed
CLHAR scenario, tiny changes in human location will inter-
fere with signals and affect the extraction of human activity
features. If Wi-Fi sensing technology is to be applied in
the real world, such interference cannot be ignored. This
requires a high enough resolution of the Wi-Fi signals to
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accurately recognize different activities, even if disturbed by
small changes in human locations.

Meanwhile, there are still many advanced applications
in Wi-Fi based human sensing. Widar [16], [17] enables
tracking of both human locations and velocities with CSI
dynamics. Widar2.0 [18] devises an efficient algorithm for
estimating Angle-of-Arrival (AoA), Time-of-Flight (ToF),
and Doppler shifts together and designs a pipeline to trans-
late the erroneous raw parameters into precise locations.
IndoTrack [19] estimates the target speed and position
through spatial-temporal Doppler and AoA information, and
determines the absolute trajectory of the target. MobileRF
presented in [20] can estimate the location of a person via
RSS from radio frequency (RF). References [22]–[25] utilize
the First Fresnel Zone (FFZ) to achieve higher than 98%
accuracy of respiration rate monitoring. WiVit [26] is a Wi-Fi
based sensing platform hosted on Wi-Fi devices. WiVit accu-
rately captures human vitality information and achieves 98%
accuracy of vitality detection. Reference [28] exploits the
MUSIC algorithm to estimate the phase differences caused by
amoving person and proposes aWi-Fi based human detection
system.

However, these systems have to face the challenge of
a single channel when using commodity Wi-Fi devices.
In contrast, we address this challenge by a resolution improv-
ing mechanism for human sensing with commodity Wi-Fi.

B. METHODS TO IMPROVE THE RESOLUTION OF
WIRELESS SIGNAL
Prior works have also focused on improving the resolution of
wireless signals. Leveraging the spatial and frequency diver-
sity in MIMO transceiver, [40] introduces MIMO smoothing
and shows that MIMO smoothing can increase the accuracy
of multipath resolution. SWAN presented in [41] builds an
array of stitched antennas extended from the radio chains of
commodity Wi-Fi and increases Wi-Fi throughput by more
than 30%, resulting in much finer resolution and higher
accuracy. ToneTrack in [42] combines data from a WARP
hardware radio platform as it hops across different channels
in a frequency band. However, the systems above require
customized hardware with high cost and special equipment,
which limits the practical use of IoT applications. Compared
with other prior works using special equipment, we only need
commodity Wi-Fi devices, which makes Wi-Fi based human
sensing more convenient and applicable.

C. APPLICATIONS USING MULTIPLE CHANNELS
A few papers use multiple channels to locate Wi-Fi APs.
A recent paper [43] performs channel impulse response (CIR)
estimation by splicing measured CSI over multiple Wi-Fi
bands. ToneTrack [42] is an indoor location system imple-
mented on the WARP hardware radio platform. ToneTrack
hops across different channels and uses six of the plat-
forms served as APs to localize Wi-Fi clients. Splicer [44]
is a software-based system that achieves single-AP local-
ization by splicing the CSI measurements from multiple

FIGURE 1. The time domain PDP is calculated by the frequency domain
CSI through IFFT.

Wi-Fi frequency bands. Leveraging different Wi-Fi bands,
Chronos [45] measures the absolute ToF and enables a sin-
gle Wi-Fi AP to localize another. However, unlike WIRIM
which improves the performance and efficiency of human
sensing applications, these papers focus their attention on
Wi-Fi device-to-device localization.

III. PRELIMINARIES
A. PRINCIPLE OF RESOLUTION IMPROVING
The channel frequency response (CFR) characterizes the
effects of multipath in the frequency domain. CSI is a set of
the discrete samples of CFR:

H (f ) =
N∑
n=1

αne−j2π f τn , (1)

where n denotes the sequence number of total N multipaths,
αn and τn are the amplitude and propagation time delay
corresponding to the n th path. With the channel bandwidth B
and the sampling resolution 1f in the frequency domain,
we can deduce the number of CFR samples:

N = B/1f . (2)

As shown in FIGURE 1, the time domain PDP is calculated
by the frequency domain CSI through IFFT. The correspond-
ing PDP of CSI is:

h(t) =
N∑
n=1

αnδ (t − τn) , (3)

where δ (·) is the Dirac delta function, Since PDP is able
to characterize multipath channel features, it is widely used
in the field of human sensing based on Wi-Fi. In an indoor
multipath environment, a person’s activities can be detected
more accurately by using a finer PDPwith amuch higher time
resolution. In IFFT, the time resolution is defined as:

1τ = Ts/N , (4)
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FIGURE 2. The time resolution of the PDP obtained from CSI is
determined by the bandwidth of Wi-Fi signals.

where Ts is the window length of the time series and N is the
number of data points used in IFFT. The smaller the value
of 1τ , the higher the time resolution. The sample
frequency 1f can be expressed as [46], [47]:

1f = 1/Ts. (5)

Refer to (2), (4) and (5), we have:

1τ = 1/B. (6)

Hence, the time resolution of the PDP obtained from
CSI is determined by the bandwidth of Wi-Fi signals.
As shown in FIGURE 2, it makes clear that a wider bandwidth
leads to a higher PDP resolution, which is easier to distin-
guish subtle multipath channel changes caused by minute
activities [6], [37]. Therefore, a large channel bandwidth is
crucial for fine-grained Wi-Fi human sensing applications.
However, on one hand, single channel in Wi-Fi NICs only
spans 20MHz, which limits the performance of human sens-
ing, on the other hand, the total bandwidth of the Wi-Fi
signals is large enough. When switching multiple channels
rapidly, we can obtain CSI from multiple adjacent Wi-Fi
channels in a very short time interval. Then, by aggregat-
ing CSI from these channels, the Wi-Fi signal bandwidth is
extended to the entire bandwidth of these adjacent channels,
as shown in FIGURE 3.
As the signal bandwidth is extended, the resolution

of Wi-Fi signals can be accordingly improved.

B. ANGLE-OF-ARRIVAL ESTIMATION
CSI contains the amplitude and phase. The activities of
humans change the multipath characteristic of the wireless
channel, which is reflected on the amplitude and phase
of CSI. Thus, the amplitude and phase can be used to
extract the activity-related features. As shown in FIGURE 4,
the CSI amplitudes are in different ranges when the envi-
ronment is static and when the user is performing activities,
respectively. Therefore, different thresholds of CSI ampli-
tudes, such as variance, mean absolute deviation (MAD),

FIGURE 3. Channel switching and aggregation algorithm.

finite difference, can be used to determine human status.
Threshold-based methods are widely used in Wi-Fi based
human activity recognition [6], [48]–[51]. Unlike the raw
amplitudes which can be directly used, the raw phases
obtained by commodity Wi-Fi devices distribute randomly
as FIGURE 5. In real-world Wi-Fi systems, the received
phases are often deteriorated by some sources such as hard-
ware and software errors.

According to [47], [52], [53],the measured phase 6 ĈSI i of
the i th subcarrier can be expressed as:

6 ĈSI i = 6 CSI i + 2πTs

(
1f + i

ζ

Tu

)
+ 2π i

τ0

N
+ γ + n,

(7)

where 6 CSI i is the true phase of the i th subcarrier, Ts and Tu
are the total length of the OFDM symbol and the length of the
data symbol, respectively, 1f is the carrier frequency offset
(CFO), ζ is the sampling frequency offset (SFO) (formulated
in Equation (8)), T and T ′ are the sampling time at the
transmitter and receiver, respectively, τ0 is a time shift in
the time-domain samples, N is the number of data points
used in IFFT, γ is the oscillator phase offset in phase locked
loops (PLL), n is the Additive White Gaussian Noise
(AWGN) seen by the receiver.

ζ = (T ′ − T )/T . (8)

Three antennas of a Wi-Fi NIC have the same carrier
and sampling clock frequency offset, sample clock time
offset [53]. Thus the phase difference of the i th subcarrier
can be approximated as:

16 ĈSI i = 16 CSI i +1γ +1n, (9)

where 1γ is a difference of constant phase shifts, 1n is
Gaussian noise. According to [53], [54], 1γ is constant
over time between antennas on one NIC, which does not
change the phase information of human activities. Compared
to the phases, the phase differences become more stable by
removing CFO, SFO and time offset. As shown in FIGURE 5,
on one hand, the phase differences maintain on a stable level
in the static environment, on the other hand, fluctuations
appear on phase differences when there are human activi-
ties. Therefore, the raw phases can be calibrated by phase
differences, verifying our derivation. FIGURE 6 plots the
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FIGURE 4. CSI amplitudes affected by human activities: static environment, human
performs an activity. And we can use the variance of the CSI amplitudes to detect the
beginning and end of each activity.

FIGURE 5. CSI phases and phase differences affected by human activities: static
environment, human performs an activity.

FIGURE 6. CSI phases and phase differences in the polar coordinate.

raw CSI values against polar coordinates, which includes
the amplitude, phase and phase difference information. The
phases are distributed between 0◦ and 360◦, while phase
differences are distributed between 65◦ and 90◦.
In our experiments, we set the distance between two adja-

cent antennas to λ/2, where λ is the wavelength. Let θi be the
AoA of the i th subcarrier, representing the angle at which the
signal of the i th subcarrier arrives at the antenna. As shown
in FIGURE 7, before reaching the second antenna, the Wi-Fi
signal travels an extra distance, which can be approximated
as:

1di = λ/2 cos(θi). (10)

The distance difference 1di will result into a phase
difference:

16 ĈSI i = 2π1di/λ. (11)

FIGURE 7. The signal travels an extra distance, which can be calculated
by the AoA.

We calculate the AoA value of subcarrier i:

θi = arccos(16 ĈSI i/π ). (12)

The AoA values of the multiple subcarriers contain rich
information of the signals in multipath channels, including
both information from static paths in the environment and
information caused by human activities. Although the phase
of CSI is affected by several error sources, the phase differ-
ence is relatively stable, we can use AoA values obtained
from the phase differences to accurately distinguish locations.

IV. MECHANISM DESIGN
The architecture of WiRIM mainly consists of the follow-
ing modules: a channel switching and aggregation algorithm
which collects CSIwith higher resolution, a feature extraction
module and a deep learning module, as shown in FIGURE 8.

A. CHANNEL SWITCHING AND AGGREGATION
ALGORITHM

By leveraging the Intel 5300 NICs with modified driver
and firmware [55], CSI is extracted from the received packets.
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FIGURE 8. An illustration of WiRIM, the resolution improving mechanism for Wi-Fi based human sensing.

Algorithm 1 Channel Switching and Aggregation Algorithm
Input:

Number of packets len
Number of channels n

Output:
Aggregated CSI C1,C2, . . . ,Clen/n from the extended
channel

1: Select n adjacent channels h1, h2, . . . , hn;
2: Add h1, h2, . . . , hn to channelList;
3: Both transmitter TX and receiver RX switch to the first

channel h1;
4: for each i ∈ [1, len] do
5: j = i % n+ 1;
6: TX transmits a packet pi;
7: while Both TX and RX is listening to the socket do
8: if RX receives pi then
9: RX replies with an acknowledgement ACK ;

10: RX switches to the next channel hj;
11: break;
12: end if
13: if TX does not receive ACK with given time-out

duration 1 ms then
14: TX retransmits the packet pi;
15: end if
16: end while
17: TX switches to the next channel hj;
18: if i % n == 0 then
19: Aggregate CSI c1, c2, . . . , cn from h1, h2, . . . , hn,

and obtain the aggregated CSI Ci/n;
20: end if
21: end for
22: return All aggregated CSI C1,C2, . . . ,Clen/n;

As aforementioned in III-A, CSI, which is derived from a sin-
gle Wi-Fi channel with limited bandwidth, is of low quality.
Thus, we design a method for switching multiple channels
by modifying the iwlwifi driver and the open source IEEE
802.11 packet injection library – LORCON (Loss Of Radio
CONnectivity) [56], and finally achieve multiple channels
switching and packet processing in millisecond granularity.
To ensure that the channel switching process does not affect
the extraction of activity-related features, the switching time
should not be greater than the sampling time.

In the process of channel switching, it must be ensured that
the transmitter and the receiver always work synchronously
in the same channel. In an unstable wireless environment,
packets may be lost. Once the packet is lost, an error will
occur in CSI aggregation.

To solve this problem, we have carried out a large num-
ber of verification experiments. Finally, WIRIM uses an
acknowledgement and retransmission mechanism in syn-
chronous transmission, which avoids the phenomenon of
packet loss in the process of fast channel switching. As shown
in Algorithm 1, before each round of data transmission,
the receiver and the transmitter are in the same channel.
At first, the transmitter sends a packet (step 6). After receiving
the packet, the receiver replies with an acknowledgement
and then switches to the next channel (step 8-12). When the
transmitter receives this acknowledgement, it also switches
to the next channel (step 17). However, once a packet is lost
after a given time-out duration, the transmitter will retransmit
the packet to ensure that the receiver receives a unique packet
in each channel (step 13-15). After one cycle, we aggregate
CSI from these channels (step 18-20). Based on the process,
WiRIM realizes fast channel switching between receiver and
transmitter. And we can obtain CSI from the extended chan-
nel with wider bandwidth.
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B. FEATURE EXTRACTION MODULE
1) AoA IMAGE CONSTRUCTION
As aforementioned in III-B, AoA values are robust even in
complex indoor environments due to the stability of the phase
differences. Thus we can use AoA values to accurately esti-
mate a given location. With aggregated CSI, WiRIM calcu-
lates phase differences between adjacent antennas, and then
obtainsAoA values calculated by Equation (12).We take time
as x-axis and subcarrier as y-axis and transform AoA values
on multiple subcarriers into AoA images.

2) STFT IMAGE CONSTRUCTION
In order to use CSI amplitude to classify different activities,
we should first extract the representative features of differ-
ent activities. WiRIM first applies PCA to the CSI streams
so that we can capture all relevant human activities and
greatly reduce the data dimensions [17]. WiRIM uses the
first principal component for further processing, as it clearly
captures human activities. Given the correlation between the
frequency and the reflected path length change rate caused by
human activities, we use STFT (Short-Time Fourier Trans-
form) to extract the temporal-frequency features [57] from
the first principal component. Based on this, WiRIM extracts
the STFT spectrum of each activity.

AoA values are stable enough for a given location, and
STFT can well distinguish the temporal-frequency character-
istics of different activities. By constructing AoA spectrum
images and STFT spectrum images, we obtain rich frequency,
temporal and spatial characteristics of the aggregated CSI.

C. DEEP LEARNING MODULE
WiRIM uses a CNN (Convolutional Neural Network) [58]
to learn the recognition features from the constructed images
in IV-B. The proposed deep learningmodel consists of several
convolution layers and maximum pooling layers, as well as
multiple fully connected layers.

1) CONVOLUTION LAYER
For the convolution layer, we extract time-frequency features
from the STFT spectrum images and extract time-space fea-
tures from the AoA spectrum images. Each convolution layer
consists of multiple convolution filters with different weights
and biases. The filter weights of the convolution layer are
connected to local areas in the previous layer’s feature maps.
The convolution layer function in WIRIM can be expressed
as:

x li = f

∑
j∈Mi

x l−1j ∗ wlij + b
l
i

 , (13)

where x li is the i th feature map generated in layer l, Mi is
the set of feature maps in layer l − 1, wlij is the filter weight
to generate x li , b

l
i is the bias of x

l
i , f (·) is the rectified linear

unit (ReLU) function [59]. It can be inferred from (13) that
the operation of a feature map in the convolution layer is

a discrete convolution. Through the convolution layer, local
features can be obtained by sharing the same weights at
different locations of the previous layer’s feature maps.

2) MAX POOLING LAYER
After obtaining local features from the convolution layer,
WIRIM uses the max pooling layer to merge similar features
into one. The max pooling layer function can be written as:

x li = max x l−1i u(n, n), (14)

where x li is the j th featuremap generated in layer l, u(n, n) is a
window function. As can be seen, a max pooling layer com-
putes the maximum value within the pooling window from
the feature maps generated by the convolution layer. To be
specific, the max pooling layer achieves spatial invariance
by reducing the resolution of the feature maps. Because of
this, WIRIM can use the max pooling function to effectively
optimize the memory usage and reduce the training time.

3) FULLY CONNECTED LAYER
At the end of the WIRIM, there are two fully connected lay-
ers. The first fully connected layer conducts feature dimen-
sion reduction and the second one performs the classification
task. The fully connected layer consists of multiple percep-
trons, which represent the nonlinear relationship between the
weighted sum of inputs and outputs. The first fully connected
layer function can be expressed as:

XL−1 = f
(
Dense(XL−2)W L−1

+ BL−1
)
, (15)

where L is the number of layers of the proposed CNN, XL−1

is the feature maps in layer L − 1, Dense (·) compresses
the outputs of the previous layer into the inputs of the fully
connected layer, W L−1 and BL−1 are the weights and biases
of the perceptrons in layer L − 1, respectively.
The last fully connected layer has a node for each class and

the outputs of the nodes can be expressed as:

ZL = XL−1W L
+ BL . (16)

The fully connected layer then uses a softmax activa-
tion function to output the probability value of each class
(Equation (17)). The class with the highest probability is
estimated as the correct class.

yi =
ezi∑

zk∈ZL e
zk
. (17)

Here yi is the probability of class i, which is the output
of WIRIM, zk indicates the weighted sum of inputs to
the k th unit in the output layer. WIRIM then uses a cross
entropy loss function, defined as:

C = −
1
n

n∑
i=1

[
(
ŷi log (yi)+

(
1− ŷi

)
log (1− yi)

]
, (18)

where ŷi is the true value of i th class, which can only
be 0 or 1. The higher the accuracy of the model, the smaller
the value of the loss function. By minimizing the value of the
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loss function with the BP (error Back Propagation) algorithm,
we optimize the weights and biases with the Adam (Adaptive
Moment Estimation) algorithm [60], [61]. Adam algorithm
can compute adaptive learning rates for different parameters
to avoid overfitting. In addition, dropout mechanism is also
used in WIRIM to reduce the risk of overfitting. Note that
dropout has proven to be a very efficient way to reduce
overfitting by preventing complex co-adaptations on training
data [62], [63].

V. CASE STUDY
When a person locates at different locations or performs
different activities, the influence of the person on Wi-Fi
signals will be different. Since this paper focuses on the
impact of resolution improving mechanism on Wi-Fi based
human sensing, it is of great importance whether the system
using the proposed mechanism can accurately estimate the
human activity and location, even if the distance between
these selected locations is small (0.6 m). Based on this,
we propose a particular scenario: a cross-location human
activity recognition scenario. Because the distances between
these locations are small in this scenario, higher Wi-Fi sig-
nal resolution is required. Otherwise, low resolution makes
it impossible for the classifier to extract complete activity-
related signal features. Therefore, this scenario is of great
practical significance and more challenging to HAR.

We conduct two controlled experiments. Firstly, we ver-
ify the accuracy of human activity and location estimation
by using CSI data sets in the aggregated channel and in a
single channel, respectively. Secondly, we use CSI to rec-
ognize human activities when there is a slight difference in
human location. Andwe comparedWIRIMwith a benchmark
approach of Wi-Fi based HAR.

A. EXPERIMENTAL SETUP
In our experiments, we use two mini-PCs as the trans-
mitter and receiver, both equipped with the Intel Wireless
Link 5300 NIC. The transmitter uses one antenna while the
receiver is equipped with three antennas. Given the reported
subcarrier number as 30, then 3 × 1 × 30 CSI streams
are captured in one channel. As aforementioned in IV-A,
we implement the channel switching and aggregation algo-
rithm based on LORCON. We use 5 GHz Wi-Fi chan-
nels with 20 MHz bandwidth and select three channels
(Channel 132, Channel 136, and Channel 140). After channel
switching and aggregation, we then have 3 × 1 × 90 CSI
streams. The switching time from one channel to another is
about 2 ms. Given the channel switching overhead, the sam-
pling rate is 200 Hz in our system.

B. DATA COLLECTION
In this particular CLHAR scenario, we collect 8405 samples
in the room of size 8m×5m, as shown in FIGURE 9.We select
four representative adjacent locations for experiments. There
are four adjacent locations which labeled as the star shape
in FIGURE 9, and the target performs one of five activities

FIGURE 9. A cross-location human activity recognition scenario with four
representative adjacent locations.

TABLE 1. Number of samples collected in the system with the resolution
improving mechanism.

TABLE 2. Number of samples collected in the system using a single
channel, as most off-the-shelf studies do.

continuously for one hour at each location. Because ‘‘Walk’’,
‘‘Run’’ and ‘‘Stand’’ activities are continuous, we divide a
long sequence of packets into multiple sequences. For ‘‘Sit’’
and ‘‘Pick’’ activities, we first need to use the variance of
the CSI amplitudes to detect the beginning and end of each
activity. The number of samples for different activities at dif-
ferent locations is described in TABLE 1.We randomly select
100 samples from each label, and then use the 2000 samples
as the test sets. The remaining 6405 are used as the training
sets.

To show our effectiveness of the channel switching and
aggregation module, we keep the experimental environment
unchanged and then collect CSI from only a single channel,
as most off-the-shelf studies do, and carry out the same
data processing and model training. TABLE 2 describes the
number of samples collected in the system using a single
channel.

C. IMAGE CONSTRUCTION
We calculate 90 phase differences between antenna 1 and 2,
and 90 phase differences between antenna 2 and 3. Thus,
we obtain 180 AoA values in each packet. When we take
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TABLE 3. Architecture of the CNN for WIRIM.

180 consecutive packet samples, we can construct an AoA
spectrum image with the size of 180 × 180. With a sam-
pling rate of 200 Hz, we can extract the frequency range up
to 100 Hz. When 128 frequency components are extracted
by STFT, the corresponding frequency granularity is 0.78Hz.
Such frequency ranges and frequency granularity are suffi-
cient to cover common human activities. In this way, AoA
spectrum images and STFT spectrum images are constructed
to train our models.

D. TRAINING SETUP
We implement the deep learning module of WiRIM
using tensorflow [64] and the workstation for our exper-
iments is equipped with 48 core CPUs of Intel Xeon(R)
2.50GHz, 4 GPUs of NVIDIA GeForce GTX1080Ti and
48GB memory.

As the input data of the CNN, the constructed images
are then processed in convolution layers and max pooling
layers. The first convolution layer contains 16 convolution
filters with size 5 × 5 and the max pooling layer with size
2 × 2 is used to obtain 16 feature maps with size 88 × 88.
Then, by successively implementing the other two convolu-
tion layers and twomax pooling layers as shown in TABLE 3,
we obtain 64 feature maps of size 19 × 19. Through two
fully connected layers, we calculate the cross entropy of every
activity at every location and choose the one with the largest
likelihood as the state of the human. Other parameters of the
CNN for WIRIM are presented in TABLE 4.
To verify that the images from the feature extrac-

tion module can also use other deep learning method to
extract activity-related features and accurately classify them,
we compare the performance of CNN with that of long short
term memory (LSTM) [65], which can hold temporal state
information [66]. In addition, we can also prove whether
the deep learning method we choose is suitable through
comparison. TABLE 5 presents the parameters of the LSTM
for WIRIM. We use the Adam algorithm to reduce the risk of
over-fitting.

E. A BENCHMARK APPROACH OF HUMAN ACTIVITY
RECOGNITION
To show the feasibility and generality of WIRIM in human
sensing, we also perform a comparison with a benchmark

TABLE 4. Parameters of the CNN for WIRIM.

TABLE 5. Parameters of the LSTM for WIRIM.

approach of Wi-Fi based HAR. Note that the proposed
ABLSTM in [13] was shown to be effective for HAR.
As aforementioned above, in the particular CLHAR scenario
of our case study, the distance between each location is small.
This scenario is very common in the real world, but is often
overlooked in Wi-Fi based activity recognition. Such human
activity recognition system with close location is a difficult
problem to be solved. It is not just small changes in activities,
small changes in a person’s location can also have an impact
on Wi-Fi signals. Thus it is essential that the resolution of
the system is high enough to accurately distinguish different
activities under the influence of location. And that’s why we
use [13] as a benchmark approach of Wi-Fi based human
activity recognition, and compare it with WIRIM.

VI. PERFORMANCE EVALUATION
A. WIRIM PERFORMANCE
We first evaluate the performance of the system with the
resolution improving mechanism.

With aggregated CSI, WiRIM uses CSI phase and ampli-
tude to construct AoA spectrum images and STFT spectrum
images, respectively. FIGURE 10 shows the AoA images at
four different locations. It can be seen that the distribution of
AoA spectrums from four adjacent locations are significantly
different, so the AoA spectrum images can be used as the
fingerprint of indoor localization. FIGURE 11 shows the
extracted STFT spectrum images of typical activities. The
frequency band concentrated by high energy (‘‘hot’’ colored)
represents the frequency band at the corresponding time of
the activity. It is clear that the STFT images characterize the
influence of human activities onWi-Fi signals. As can be seen
from the figures, the feature images constructed by WiRIM
for different locations and different activities are intuitively
easy to classify, which is due to the high resolution provided
by WiRIM.

To explore a fine-grained performance, we show the con-
fusion matrix of accuracy at four locations in FIGURE 12.
The recognition accuracy of each activity at each location
ranges from 87% to 100%. To be specific, the accuracy at
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FIGURE 10. AoA spectrum images of walking at different locations, constructed in the system with the resolution improving mechanism. The
images constructed by WiRIM for different locations are intuitively easy to classify, which is due to the high resolution provided by WiRIM.

FIGURE 11. STFT spectrum images of different activities at location 2, constructed in the system with the resolution improving mechanism. The images
constructed by WiRIM for different activities are intuitively easy to classify, which is due to the high resolution provided by WiRIM.

FIGURE 12. Confusion matrix of accuracy at different locations when using WIRIM with the aggregated channel.

four locations is 97.8%, 97%, 94.6% and 96.2%, respectively.
It is clear that even if the four locations we selected are
closely adjacent to each other,WiRIM can still achieve a good
recognition performance at any location, rather than being
confused by different activities at different locations, which
proves that WiRIM is able to achieve high resolution.

To achieve a comprehensive analysis, we employ the
following metrics widely used in statistics [67], [68]: 1)
precision (PR), defined as TP

TP+FP , where TP (true posi-
tive) means the correctly predicted positive value and FP
(false positive) means the wrongly predicted positive value,
2) recall (RE), defined as TP

TP+FN , where FN (false negative)
means thewrongly predicted negative value, 3) F1-score (F1),
defined as 2∗PR∗RE

PR+RE , is a metric that combines the PR and
RE, 4) false positive rate (FPR), defined as FP

FP+TN , where TN
(true negative) means the correctly predicted negative value.

FIGURE 13 shows the statistical results of the four metrics,
describes the performance of human activity and location
recognition in our experiments. The 20 labels on the x-axis
correspond to five activities at four locations. In FIGURE 13,
we can observe that all the PR, RE and F1 are above 87%with
an average precision of 95.4%, while all FPR are below 0.6%,
indicating that WiRIM with the aggregated channel can
not only accurately but also comprehensively classify
the overwhelming majority of corresponding activity and
location.

Besides, we calculate the average localization error (ALE)
in meters by converting the location labels into distance:

ALE =
1
N

N∑
i=1

‖g (li)− g
(
l̂i
)
)‖22, (19)
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FIGURE 13. PR, RE, F1 and FPR of corresponding activity and location when using WIRIM with the aggregated channel. The
performance is excellent and stable.

FIGURE 14. Confusion matrix of accuracy at different locations when using WIRIM with only a single channel.

where N is the number of test sets (N = 2000), ‖ · ‖22 is
to compute the distance, li and l̂i are the predicted location
label and the true location label, respectively, g (·) is to con-
vert the location label to the spatial coordinates according
to FIGURE 9. According to Equation (19), ALE of WIRIM
is 0.043 m, which is accurate enough.

B. COMPARING AGGREGATED CHANNEL WITH SINGLE
CHANNEL
In this section, to demonstrate the effectiveness of the
aggregated CSI from multiple channels, we will compare
the aggregated channel with a single channel. As aforemen-
tioned in V-B, without changing the environment, we carry
out controlled experiments in WIRIM with a single channel.
It should be noted that in off-the-shelf studies only a single
channel was considered, while aggregated CSI from multiple
channels is used in our paper.

FIGURE 14 shows the confusion matrix of WIRIM with
a single channel at four locations. It can be seen that, except
at the third position, the performance is poor. This is because
the selected locations are relatively close to each other, so the
limited resolution of the system can easily cause confusion.
At some locations, ‘‘Walk’’ and ‘‘Run’’ are not easy to dis-
tinguish, which may be due to the fact that they are both con-
tinuous activities with high frequency. Therefore, when the
distance between adjacent locations is small or when several
activities are similar, the system with limited resolution will
have difficulty distinguishing these differences. However, our

proposed system is not confused by these differences, which
proves the effectiveness of the aggregated channel.

Additionally, we use PR, RE, F1 and FPR to measure the
classification performance of WIRIM with a single channel.
FIGURE 15 shows that at some locations, the PR, RE and
F1 can be as high as 100%, while at some other locations,
it can only achieve an accuracy of nearly 60%. Compared
to FIGURE 13, the performance in FIGURE 15 fluctuates
significantly. That is to say, when obtaining human activity
and location information at the same time, the performance
of the system that uses only a single channel is unstable.
The results demonstrate that the accuracy decreases obvi-
ously when using only a single channel. In detail, the overall
accuracy of the system using the aggregated channel is as
high as 95.4% while the limited resolution system drops
to 86.5%. Via Equation (19), the average localization error
of the system is 0.069 m, which is coarser than the system
using the aggregated channel.

This result suggests that the system with higher resolu-
tion can achieve better performance in Wi-Fi based human
sensing, which confirms our analysis. Although the system
using only a single channel can achieve reasonable accuracy,
the performance of the system using aggregated CSI from
multiple channels will be remarkably better.

C. COMPARING CNN WITH LSTM
And then we design experiments by using different
deep learning methods to evaluate their effect on the
performance.
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FIGURE 15. PR, RE, F1 and FPR of corresponding activity and location when using WIRIM with only a single channel. The
performance is poor and unstable.

TABLE 6. The training time and accuracy of WIRIM using the two
approaches.

The results are shown in TABLE 6. The overall accuracies
of the system using the CNN and the LSTM are 95.4% and
95.1%, respectively. It should be mentioned that both CNN
and LSTM have been successfully applied to learn deep
features from the images. WIRIM leverages the amplitude
and phase of the aggregated CSI to construct feature images,
and exploits a deep learning based image processing mod-
ule for extracting deep image features from the constructed
images, so that both CNN and LSTM can learn informative
features from the images and achieve excellent performance
in our system. This further indicates the effectiveness of the
proposed WIRIM for Wi-Fi based human sensing.

Note that the computational cost of the deep learning
method is a common concern. To evaluate the time complex-
ity of these two approaches, we measure the training time
required to achieve a human status estimation. As TABLE 6
shows, the training time of LSTM is much larger than that
of CNN. This is because LSTM can hold and encode the
temporal state information of the activity, which takes more
time in training. On one hand, the major drawback of LSTM
is that it has very high computational cost, on the other hand,
WIRIM converts the raw time varying signals into feature
images, which maximizes CNN’s ability to learn features
from feature images. Therefore, considering the approximate
accuracy of the two approaches, we choose CNN with faster
training speed to train the constructed images.

D. COMPARING WIRIM WITH A BENCHMARK APPROACH
In this section, to demonstrate the effectiveness of our pro-
posed mechanism, we will compare the activity recognition
accuracy of WIRIMwith a state-of-the-art approach of HAR.

FIGURE 16 demonstrates the accuracy of all the activities
under WIRIM and the benchmark approach ABLSTM [13].
The overall accuracy of the system using ABLSTM is 88.6%

FIGURE 16. The accuracy of all the activities under the two mechanisms.

while WIRIM can achieve 96.4% in HAR. We can observe
thatWIRIM is superior to ABLSTM inmost categories. Since
the proposed cross-location human activity recognition sce-
nario requires high resolution, ABLSTM no longer performs
well in this scenario. In particular, some ‘‘Run’’ activities
are recognized as ‘‘Walk’’, while ‘‘Stand’’ and ‘‘Sit’’ are not
easily distinguished. This is why ABLSTM keeps a relatively
low accuracy in most activities. The comparative experiments
show that WIRIM is more capable of distinguishing the dif-
ferent activities at different locations and can remove such
location impacts more effectively. This is due to the fact that
WIRIM uses the aggregated channel, which improves the
resolution of Wi-Fi signals and facilitates the classifier to
learn more abundant and complete features.

VII. CONCLUSION
In this paper, we present WiRIM, a resolution improving
mechanism generally applicable to Wi-Fi based human sens-
ing. As most Wi-Fi based human sensing technologies aim
to fundamentally understand the governing law on how a
human’s activity and location impact the received signals,
we use a cross-location human activity recognition system as
a case study.

We conduct two controlled experiments. Firstly, we esti-
mate the human activity and location information.
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The experiment results suggest that the channel switching
and aggregation module, the feature extraction module and
the deep learning module all improve the performance, and
their combination enables the largest performance gain.

Secondly, we do human activity recognition when there is a
slight difference in human location. We conduct comparison
experiments with the state-of-the-art approach of HAR. The
system usingWiRIM reaches an activity recognition accuracy
of 96.4%, compared with 88.6% for the system using the
state-of-the-art approach without the resolution improving
mechanism.

Experiment results demonstrate that the resolution improv-
ing mechanism can immediately benefit activity recognition.
As our future work, we plan to make WIRIM feasible to
various applied environments.
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