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ABSTRACT In this paper, we propose modeling for a single repairable system with a hierarchical structure
under the assumption that the failures follow a nonhomogeneous Poisson process (which corresponds to
minimal repair action) with a power-law intensity function. The properties of the new model are discussed in
detail. The parameter estimators are obtained using the maximum likelihood method. A corrective approach
is used to remove bias with order O(n−1), and the respective exact confidence intervals are proposed.
A simulation study is conducted to show that our estimators are bias-free. The proposed modeling is
illustrated via a toy example on a butterfly valve system, an example of an early-stage real project related to
the traction system of an in-pipe robot, and also a real example on a blowout preventer system.

INDEX TERMS Bias correction, competing risks, hierarchical systems, maximum likelihood estimation,
power-law process.

I. INTRODUCTION
The presence of repeated recurrences of an event of inter-
est often arises in areas such as manufacturing, software
development, medical applications, social sciences, and risk
analysis, among others. In reliability engineering, when a
complex system such as supercomputers, airplanes or cars
is included in a study, several unexpected failures may be
exposed by different defects or weaknesses in the products’
design, manufacturing, operation, maintenance, and manage-
ment [1]. Models with this feature are traditionally referred to
as competing risks, or equivalently, a system with p compo-
nents connected in series. A single component failure results
in total system failure.

Recently, the availability evaluation of repairable systems
with multiple failure modes is at the center of attention due to
the broad application in engineering. According to the com-
peting risks framework, a series system fails by the earliest
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occurrence of failure modes. Therefore, in this paper, we uti-
lized a model for components, whose failures happen due
to one of the series competing failure mechanisms, whereby
each of them acts related to the system independently.

A system can be broken down into several sub-systems,
and sub-sub-systems compose the sub-systems in a hierarchi-
cal form until the elements cannot or are not worthy of being
divided. The system’s hierarchies can help engineers to better
understand the relationships between components and their
importance and functions. They can further help engineers to
determine the role and acceptable damaging degree of each
part of the structure and their influences on the whole system
under various external forces and effects [2].

Thus, structuring a problem according to a hierarchy can
help to increase accuracy and facilitate useful analysis of fail-
ure factors. Note that the event of interest at the system level is
expected to happen at its earliest occurrence. Therefore, a sys-
tem can be anticipated to follow a competing risks model.
As an example given by Liu et al. [3], mechanical devices
(e.g., gear pair and crank train) are always under multiple
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failure modes (including fracture, corrosion and wear), which
compete with each other so that when one kind of failure
happens, the device is invalid and other failure modes have
no chance to occur anymore.

The components under consideration are repaired upon
failure but are also preventively maintained. Thus, the excel-
lent books by Crowder [4] and Pintilie [5], among others,
motivate the need for accounting for competing risks in
reliability and survival applications using several examples
in industrial statistics and health sciences. More recently,
Langseth and Lindqvist [6] recorded cumulative service times
of a component spanning over 1,600 time units, then marking
each failure with its specific causing mode. In this case,
the causes were categorized into two broad groups, each with
several specified sub-causes. Tuli et al. [7] analyzed repeated
shunt failures in infants diagnosedwith hydrocephalus, where
the failures are known to occur due to a variety of causes.

In this paper, the focus is placed on failure data from
repairable systems. Thus, solid modeling and analysis of
this data provide equipment operators for better mainte-
nance activities. In the repairable system literature, it is
often assumed that failures occur following a nonhomo-
geneous Poisson process (NHPP) with power-law inten-
sity. The resulting process is usually referred to as the
power-law process (PLP). Proposed by Crow [8], the PLP
is convenient because it is easy to implement, flexible,
and the parameters have valuable interpretation ([9], [10]).
In the literature, the PLP has been widely used in modeling
software reliability [11], reliability growth [12], repairable
systems ( [9], [13], [14]), etc. Appropriateness of the PLP
for a particular dataset can be verified either by graphi-
cal methods, such as the Duane plots [15] and modified
total time on test (TTT) plots [16], or by formal hypothesis
tests ( [17], [18]). Regarding classical inference for the PLP,
see, e.g., Ascher and Feingold [13] or Ridgon and Basu [19].
Bayesian inference has been considered, among others,
by Bar-Lev et al. [20] and Guida et al. [21]. Along these lines,
Oliveira et al. [22] introduced an orthogonal parametrization
of the PLP, which simplifies both the analysis and inter-
pretation of the results. The most commonly used models
for repairable systems assume either perfect repair (renewal
process models) or minimal repair (NHPP models).

The main aim of this paper is to propose a hierarchi-
cal model for a repairable system subject to several failure
modes (competing risks). Under minimal repair, it is assumed
that each failure mode has a power-law intensity. Hence,
we develop a new PLP model with a minimal repair under
competing risks, which generalizes the model presented in
Somboonsavatdee and Sen [23]. Furthermore, we discuss
the inferential procedure for the parameters of the proposed
model using the maximum likelihood estimators (MLEs),
as well as the asymptotic confidence intervals based on the
MLEs. Since the sample size is usually small, due to the
problem of rare yet adverse failures in industrial scenarios
(e.g., in aerospace, nuclear and petrochemical industries) that
causes limited failure data availability, we may obtain biased

estimators and unreliable asymptotic confidence intervals.
To overcome this problem, we suggest a corrective approach
to obtain unbiased estimators for themodel parameters. Addi-
tionally, we discuss how to derive exact confidence intervals
based on these unbiased estimators.

The paper is organized as follows. In Section II, we give
some basic concepts about counting processes, repairable
systems, and competing risks models. This section also
presents the framework of recurrent competing risks for the
minimal repair model. In Section III, we present a new
statistical model to analyze single repairable systems with a
hierarchical structure under the assumption that the repairs
are minimal with a PLP intensity and also in the presence of
competing risks. In Section IV, we discuss classical inference
for the model parameters through the MLEs and asymptotic
confidence intervals and also perform a simulation study
to investigate their properties. In Section V, we develop
improved estimators (bias-corrected MLEs), as well as exact
confidence intervals for the model parameters, whose per-
formances are again evaluated through a simulation study.
In Section VI, we illustrate our proposed methodology using
simulated reliability data of butterfly valves (Section VI-A),
reliability data based on an in-pipe robot traction sys-
tem design information (real project in its early stage)
(Section VI-B), and real reliability data of blowout preventer
systems (Section VI-C). Finally, in Section VII, we conclude
the paper with some final remarks and suggestions for work.

II. LITERATURE REVIEW
In this section, we briefly discuss the literature related to
the failure analysis of a single repairable system with the
particular assumptions that the repairs are minimal with a
PLP intensity, and subject to failure due to competing risks.
We also consider an orthogonal reparametrization of the
PLP model, which enables us to obtain a likelihood function
whose parameters are independent with desirable properties.

A. NONHOMOGENEOUS POISSON PROCESS
Let us suppose a repairable system with a single cause of
failure, where N (t) denotes the number of failures before
time t , and N (a, b] = N (b) − N (a) denotes the number
of failures in the time interval (a, b]. In turn, a NHPP with
intensity function λ(t), t ≥ 0, is a counting process with
independent increments, and we have

λ(t) = lim
1t→0

P(N (t, t +1t] ≥ 1)
1t

. (1)

The mean of the Poisson distribution for the random variable
N (t), at time t , is denoted as 3(t) =

∫ t
0 λ(s)ds. A flexible

parametric form for the intensity function is given by

λ(t) =
(
β

µ

)(
t
µ

)β−1
,
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where µ, β > 0. In this case, the NHPP represents a PLP
with mean function

3(t) = E[N (t)] =
∫ t

0
λ(s)ds =

(
t
µ

)β
.

The scale parameter µ is the time for which we expect to
observe only one event. In turn, β is the elasticity of the mean
number of events with respect to time [22].

Notice also that (2) is an increasing (decreasing) function
in t for β > 1 (β < 1). In this case, the PLP can reflect the
possibility of improvement or deterioration of the system over
time. It is worth noting that, when β = 1, the intensity func-
tion (2) is constant, and the PLP reduces to a homogeneous
Poisson process.

B. MINIMAL REPAIR MODEL
A major challenge when modeling repairable system data is
how to consider the effect of a repair action taken imme-
diately after a failure has occurred. It is usually supposed,
for the sake of simplicity, that the repair actions are instan-
taneous. However, it is not suitable for many real systems.
Therefore, the most investigated assumptions are either min-
imal or perfect repair at failures. In the former, it is assumed
that the repair action after a failure restores the system
(i.e., the intensity) to the same state as it was before the
failure, e.g., by replacing a failed minor component (flat
tire) of a large composite system (car); while in the latter,
the repair action leaves the system as if it was new, e.g.,
via replacement of a failed system (an engine with a broken
connecting rod) by a brand new one [24]. According to the
engineering literature, these repair or maintenance actions are
often calledABAO (‘‘as bad as old’’) andAGAN (‘‘as good as
new’’), respectively ( [25]–[27], [28], [29]). However, more
complex models suppose that the repair effect lies between
ABAO and AGAN (i.e., the failure intensity is reduced to a
level between ABAO and AGAN). These models are known
as imperfect repair models, but they are not considered here
(see, e.g., [30]).

In fact, the repairable systemmodel for the failure data will
be implemented according to NHPP under the assumption
of minimal repair. Furthermore, based on the time truncation
design, the likelihood and corresponding log-likelihood func-
tion for a collection of failure data up to time T , are expressed
as

L(β,µ | n, t) =
βn

µnβ

( n∏
i=1

ti

)β−1
exp

{
−

(
T
µ

)β}
and

`(β,µ | n, t) = n log(β)+ (β − 1)
n∑
i=1

log(ti)

−

(
T
µ

)β
− nβ log(µ),

respectively, where we assume that for n ≥ 1, failures are
observed at times t1 < t2 < · · · < tn < T (see, e.g., [19]).

The MLEs of β and µ, which are both biased, can be written
as

β̂ =
n∑n

i=1 log
(
T
ti

) and µ̂ =
T

n1/β̂
. (2)

Since the MLEs (2) suffer from bias, and inadequate con-
fidence intervals for small samples, several studies have been
performed to overcome these drawbacks. Some further dis-
cussions are given in Section V.
There is always a concern about how to determine the

confidence intervals under the classical inference. For the
sake of illustration, Rigdon and Basu [19] present the con-
fidence interval for the scale parameter. The results showed
that such an interval has no simple interpretation. Moreover,
the authors found that the usual methodologies result in very
long intervals. In turn, in some cases, the pivotal quantity,
which is used to derive the aforementioned classical intervals,
does not exist, or it is difficult to be obtained. Bain and
Engelhardt [31] extensively investigated confidence intervals
for the scale parameter. The outcome of their research has
shown that due to the non-existence of the pivotal quantity in
the setting of time truncated data, finding confidence inter-
vals for the scale parameter becomes difficult. Despite the
extensive efforts, in most cases, the approaches still have
limitations. For instance, Gaudoin et al. [32] studied the
interval estimation for the scale parameter according to the
PLPmodel. They used the Fisher informationmatrix to derive
asymptotic confidence intervals, while several constraints
have been reported on their results. Wang et al. [33] consid-
ered a more sophisticated approach to obtain a generalized
confidence interval for the scale parameter under some usual
assumptions. Furthermore, Somboonsavatdee and Sen [23]
have shown methods to obtain the frequentist confidence
intervals for the scale parameter under competing risks.

Oliveira et al. [22] suggested reparametrizing the
PLP intensity in terms of β and α, where

α = E[N (T )] =
(
T
µ

)β
.

In this case, the likelihood function is given by

L(β, α | n, t) = cβne−nβ/β̂αne−α

∝ γ
(
β | n+ 1, n/β̂

)
γ (α | n+ 1, 1) ,

where c =
∏n

i=1 t
−1
i and γ (x | a, b) = baxa−1e−bx/0(a), for

x, a, b > 0, is the probability density function of a gamma
distribution with shape parameter a and scale parameter b.
It is worth mentioning that β and α are orthogonal param-
eters, which play an important role for Bayesian inference
(see, e.g., [34]).

C. COMPETING RISKS
In reliability theory, the most commonly used system config-
urations are series, parallel, and series-parallel. Particularly,
components in a series system are connected so that the
failure of one of all components results in the system failure.
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For example, Figure 1 illustrates the fault tree analysis (FTA)
of the system 1, . . . , p. A series system is known as a compet-
ing risks model because its failure can be classified as one of
the p possible risks (or failure modes), which compete with
each other to occur first and cause the system failure. Compet-
ing risks can provide a complete analysis of the probabilistic
behavior of failures as many other methodologies presented
in the literature. However, competing risks has an additional
feature addressing not only failure times but also their causes
through a pair of observations. Furthermore, the competing
risks model involves the pair of observations (t, δ), where
t > 0 denotes the failure time, while δ is the indicator of
the component that failed.

In order to understand the competing risks framework for
investigating repairable systems, a single system would be
to consider successive failures at calendar time 0 < t1 <
. . . < tn < T . Let us suppose that failures happen from
an underlying competing risks structure, meaning that the
system fails by the earliest occurrence of one of p exclusive
failure modes. In this case, it is generally possible to observe
the failure mode δ(ti) at the failure time ti. And for the system
level, let us denote {N (t), t > 0} the cumulative failure
counter. In fact, if Nj(t) represents the counting process cor-
responding to the j-th failure mode, it is easy to demonstrate
thatN (t) =

∑p
j=1 Nj(t). The cause-specific intensity function

of this process is

λj (t; δ(t))

= lim
1t→0

P (δ(t)= j,N (t+1t)− N (t)=1 | N (s), 0≤s ≤ t)
1t

,

(3)

for j = 1, . . . , p.
According to equation (3), the time and the failure mode

are stochastically independent if and only if λ1(t), . . . , λp(t)
are proportional to each other, giving a simple extension of
a similar result from the competing risks literature in failure
time modeling of non-repairable systems.

As pointed out by many works in the literature, complex
repairable systems are mostly considered under the assump-
tion of stochastic independence, which is based on the phys-
ically independent functioning of components (see, e.g., [4],
[35], [36] and [37]). It is essential to mention that the current
paper is also based on this common assumption of indepen-
dent risks, or equivalently, independent failure modes.

D. MODELING MINIMAL REPAIR UNDER
COMPETING RISKS
Let us assume that the system is observed up to time T , and
that the adopted model is reparametrized in terms of βj and

αj = E[Nj(T )] =
(
T
µj

)βj
,

where Nj(.) is the j-th cause-specific counting process, for
j = 1, . . . , p. This implies that βj and αj are orthogonal
parameters.

A common strategy is to assume that the components
of the repairable system under investigation can implement
different operations, which are subject to different kinds of
failure. Let us consider p failure modes, which at each failure
are denoted by δ(t) = j, for j = 1, . . . , p (in the sequel,
we will suppress the explicit dependence of δ on failure time
t for brevity). Thus, if n failures are observed in the time
interval (0,T ], then we have the data (t1, δ1), . . . , (tn, δn),
where 0 < t1 < · · · < tn < T are the system failure times,
and the δi’s indicate the j-th failure mode associated with the
i-th failure time, for i = 1, . . . , n.
Let us consider again the counting process Nj(t) with

behavior according to the cause-specific intensity function

λj(t; δ) = lim
1t→0

P(δ = j,N (t, t +1t] ≥ 1)
1t

.

Consequently,N (t) =
∑p

j=1 Nj(t), which is the global system
failure counting process, can be seen as a superposition of
NHPPs whose intensity function is given by

λ(t; δ) =
p∑
j=1

λj(t; δ).

The corresponding cause-specific and overall cumulative
intensities are given, respectively, by

3j(T ) =

T∫
0

λj(u; δ) du and 3(T ) =
p∑
j=1

3j(T ).

Under the assumption that the failures from the j-th cause
follow a NHPP with intensity function (2), we can write the
cause-specific intensities as

λj(t; δ) =
(
βj

µj

)(
t
µj

)βj−1
and

3j(T ) =
(
T
µj

)βj
= E[Nj(T )],

for j = 1, . . . , p.

III. HIERARCHICAL COMPETING RISKS MODEL
In this section, we propose to analyze failure data represent-
ing events from a single repairable system studied under the
parametric framework of a PLP that is subject to hierarchi-
cal competing risks. It consists of a generalization of the
work done by Somboonsavatdee and Sen [23] for the cases
where there is the presence of secondary failure causes (sub-
systems or sub-trees’ branches), as illustrated in Figure 1.
The hierarchical competing risks problem/structure can also
be represented by a block diagram showing a nested series
system, where the sub-systems (and also the systems) are
connected in such a way that the failure of a single sub-
system (or component) results in the corresponding sys-
tem failure and, consequently, in the whole system failure
(see Figure 2).
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FIGURE 1. The general system structure (FTA) considering our proposed hierarchical competing risks model.

FIGURE 2. Block diagram for a nested series system with 2, 3 and 2 series sub-systems (or components) within series
systems 1, 2 and 3, respectively.

The hierarchical competing risks model’s data consist
of 3-tuples (t, δ, ψ), where t > 0 denotes the failure time,
δ is the indicator of the leading failure cause (system), and ψ
is the indicator of the sub-cause (sub-system).

Then, our proposed model for failure analysis can be for-
mulated as follows. First, we assume that the failures from
a sub-system k of a system j follow an NHPP with intensity
function given by

λjk (t; δ, ψ) =
(
βjk

µjk

)(
t
µjk

)βjk−1
, (4)

for j = 1, . . . , p, and k = 1, . . . , nj, with nj being the number
of sub-systems for the j-th system; µjk > 0 and βjk > 0 are,
respectively, the scale and shape parameters.

It follows that

λ(t) =
p∑
j=1

nj∑
k=1

λjk (t; δ, ψ) (5)

is the hazard function at time t . The sub-system-specific
cumulative intensity is

3jk (T ) =
(
T
µjk

)βjk
. (6)

Here, we assumed that the failure causes related to the sub-
systems are independent, therefore we expect that the failures
may occur at different times. Nevertheless, if the failure of
two or more sub-systems happens occasionally at the same
time, the sub-system-specific cumulative intensity for each
sub-system can be calculated from (6), hence the intensity
function (5) can be computed in the presence of multiple
failures at the same time.

It is seen from (5) that 3(T ) =
∑p

j=1
∑nj

k=13jk (T ) is the
cumulative hazard function at time T . Thus, we have that the
reliability function is given by

R(T ) = exp {−3(T )} = exp

−
p∑
j=1

nj∑
k=1

3jk (T )

 , (7)
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while the sub-system-specific reliability function is

Rjk (T ) = exp
{
−3jk (T )

}
. (8)

Then, similarly as in Section II-D, we consider that the
sub-system’s lifetime is observed up to time T and we
reparametrize our model in terms of βjk and

αjk = E[Njk (T )] =
(
T
µjk

)βjk
, (9)

where Njk (.) is the j-th system and k-th sub-system-specific
counting process.

IV. INFERENCE
In this section, we describe classical inference for the model
that we introduced in Section III. TheMLEs and Fisher infor-
mation matrix, which is used for estimating the asymptotic
variances of the MLEs, are presented here.

Given the common (but sometimes unrealistic 1) assump-
tion that the failure modes act independently and are mutually
exclusive, the classical inference for the proposed model
is conducted using the likelihood function, or equivalently,
the log-likelihood function, which are defined, respectively,
as follows:

L(θ | t, δ, ψ) =
n∏
i=1

p∏
j=1

nj∏
k=1

[λjk (ti; δi, ψi)]I(δi=j,ψi=k)

× exp

−
p∑
j=1

nj∑
k=1

3jk (T )

 (10)

and

`(θ | t, δ, ψ) =
n∑
i=1

p∑
j=1

nj∑
k=1

I(δi = j, ψi = k)

× log
(
λjk (ti; δi, ψi)

)
−

p∑
j=1

nj∑
k=1

3jk (T ), (11)

where θ =
(
β11, . . . , βpnp , α11, . . . , αpnp

)
denotes the gen-

eral parameter vector; λjk (ti; δi, ψi) and 3jk (T ) are given
by (4) and (6), respectively; and I(δi = j, ψi = k) is
an indicator function. Before going further, it is important
to mention again that our model is a generalization of the
work by Somboonsavatdee and Sen [23], which estimates
the PLP in the presence of competing risks. However, our
model has an additional hierarchical structure, and thus the
proposed estimators require a comprehensive investigation to
be performed.

1As pointed out by Meeker and Escobar [38], it is possible that the
failure of one component may either degrade or improve the reliability of
other components, thus leading to either a positive or negative correlation
between failure times in different system’s components. Moreover, when this
dependence exists, it is usually positive, since short (long) failure times of
one mode tend to go with short (long) failure times of another.

The MLEs can be obtained by maximizing the log-
likelihood function (11). After some algebraic manipulation,
such estimators can be written as

β̂jk =
njk∑n

i=1 log
(
T
ti

)
I(δi = j, ψi = k)

(12)

and

α̂jk = njk , (13)

where njk denotes the total number of failures due to the
subcause k of the major cause j.
Since from (9), E[Njk (T )] = αjk , we have that the Fisher

information matrix can be expressed as

I (θ ) = Diag(α11β
−2
11 , . . . , α1n1β

−2
1n1
, . . . , αp1β

−2
p1 , . . . ,

αpnpβ
−2
pnp , α

−1
11 . . . . , α

−1
1n1
, . . . , α−1p1 . . . . , α

−1
pnp ), (14)

where Diag(·) is a κ×κ diagonal matrix, with κ = 2
∑p

j=1 j×
nj. The MLEs have a closed-form expression and unique
solution, consequently from the Central Limit Theorem, they
are asymptotically normally distributed with a multivariate
normal distribution, which can be given by

θ̂ ∼ Nκ
(
θ , I−1(θ )

)
as njk →∞. (15)

A. SIMULATION STUDY
We conducted a simulation study to investigate the consis-
tency and efficiency of the MLEs presented in equations (12)
and (13). To that end, we used two criteria: the bias and
mean square error (MSE), which are given, respectively, by
Bias

(
θ̂w

)
= (1/M )

∑M
m=1

(
θ̂
(m)
w − θw

)
and MSE

(
θ̂w

)
=

(1/M )
∑M

m=1

(
θ̂
(m)
w − θw

)2
, for w = 1, . . . , κ , where M =

50, 000 is the number of Monte Carlo replications and
θ = (θ1, . . . , θκ ) =

(
β11, . . . , βpnp , α11, . . . , αpnp

)
repre-

sents the parameter vector. Moreover, θ̂ (m)w denotes the MLE
of θw obtained from sample m, for m = 1, . . . ,M .

By this approach, it is expected that good estimators have
both bias and MSE close to zero. In turn, reasonable confi-
dence intervals, which are produced here using the asymp-
totic normality of the MLEs (as given in equation (15)), are
expected to be short with coverage probabilities close to the
nominal value of 95%. In this work, all computations and
simulations were performed using the R software (R Core
Team, 2019).

In what follows, we present the results for a single system
subject to 2 failure causes each with 3 sub-causes (Scenarios
1, 2 and 3), or 3 failure causes with 2, 3 and 2 sub-causes,
respectively (Scenarios 4, 5 and 6), both under the assumption
that the component system is observed in the fixed time
interval (0,T ], where T = 20. Hence, four different scenarios
(described below), with different parameter values in order to
yield distinct sample sizes, are examined.
• Scenario 1: β11 = 0.8, α11 = 3.30, β12 = 0.5,
α12 = 2.23, β13 = 1.0, α13 = 7.0, β21 = 1.0, α21 =
4.0, β22 = 1.0, α22 = 2.0, β23 = 1.1, α23 = 2.0;
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TABLE 1. Bias, MSE and CP95% from the MLEs, considering different parameter values (Scenarios 1, 2 and 3) and M = 50,000 simulated samples.

• Scenario 2: β11 = 1.2, α11 = 14.56, β12 = 0.9,
α12 = 10.37, β13 = 1.0, α13 = 12.0, β21 = 1.0, α21 =
4.0, β22 = 2.0, α22 = 20.0, β23 = 1.2, α23 = 10.92;

• Scenario 3: β11 = 1.2, α11 = 10.92, β12 = 1.1,
α12 = 13.49, β13 = 1.2, α13 = 12.74,
β21 = 1.5, α21 = 17.89, β22 = 1.8, α22 =

21.97, β23 = 1.6, α23 = 12.07;
• Scenario 4: β11 = 2.0, α11 = 8.0, β12 = 0.4,
α12 = 4.97, β21 = 0.6, α21 = 12.07, β22 = 0.7,
α22 = 12.21, β23 = 1.5, α23 = 8.94, β31 = 0.4,
α31 = 9.94, β32 = 0.8, α32 = 7.69;

• Scenario 5: β11 = 0.8, α11 = 4.39, β12 = 0.8,
α12 = 8.24, β21 = 0.6, α21 = 9.05, β22 = 0.3,
α22 = 4.67, β23 = 1.1, α23 = 8.10, β31 = 0.5,
α31 = 8.94, β32 = 1.3, α32 = 7.37;

• Scenario 6: β11 = 2.0, α11 = 8.00, β12 = 1.1,
α12 = 40.48, β21 = 1.2, α21 = 72.82, β22 = 1.1,
α22 = 40.48, β23 = 1.5, α23 = 8.94, β31 = 1.1,
α31 = 80.96, β32 = 1.2, α32 = 25.49.

Due to space constraints, the results are reported only for
these six scenarios. However, similar findings are obtained
for other parameter choices.
By considering the well-known results regarding

NHPPs [19], and also from the assumption that the failure
modes are independent, we can generate the failure times,
for each Monte Carlo replication, according to the following
steps.

1. For the k-th sub-system of the j-th system, j = 1, . . . , p,
k = 1, . . . , nj, generate a random number njk ∼
Poisson

(
3jk (T )

)
;

2. For the k-th sub-system of the j-th system, j = 1, . . . , p,
k = 1, . . . , nj, let the failure times be t1,j,k , . . . , tnjk ,j,k ,

where ti,j,k = T U
1/βjk
i,j,k and U1,j,k , . . . ,Unjk ,j,k are the

order statistics of a random sample of size njk from a
Uniform(0, 1) distribution;

3. Finally, in order to obtain the data in the form
(ti, δi, ψi), let the ti’s be the set of ordered failure times
andmake δi equal to j andψi equal to k according to the
corresponding failure mode and subcause, respectively

(i.e., set δi = 1 and ψi = 1 if ti = th,1,1 for some
h, or δi = j and ψi = k depending on the failure mode
and subcause).

As shown in Tables 1 and 2, the bias of the MLEs varies
depending on the αjk parameter values, i.e., the mean number
of failures. If the values of αjk are small, the bias of β̂jk is
considerably higher than expected, as well as the MSEs. This
result is due to the systematic bias that the MLE of βjk pos-
sesses. On the other hand, the maximum likelihood estimates
of the αjks are close to the true values, which is expected
since α̂jk is an unbiased estimator of αjk . Note also that while
the coverage probabilities of the nominally 95% confidence
intervals (CP95%) for the βjks seem to be satisfactory (i.e.,
they are close to 0.95), the CP95% for the αjks are far from the
assumed levels. This difference may occur because we are
considering that the asymptotic normality of the MLEs was
achieved. However, this may not be true, returning inadequate
confidence intervals. In order to overcome such a problem,
in the next section, we will discuss an improved estimator for
βjk , as well as exact confidence intervals for both αjk and βjk .

V. BIAS CORRECTION AND IMPROVED CONFIDENCE
INTERVALS
Cox and Snell [39] showed that, when the sample data
are independent (although not necessarily identically dis-
tributed), the bias of θ̂w, for w = 1, . . . , κ , can be written
as

Bias
(
θ̂w

)
=

κ∑
i=1

κ∑
j=1

κ∑
l=1

swi(θ )sjl(θ )
(
hij,l(θ )+ 0.5hijl(θ )

)
+O(n−2), (16)

where sij is the (i, j)-th element of the variance-covariance
matrix of θ̂ ,

hijl(θ ) = E
[
∂3 logL(θ )
∂θi∂θj∂θl

]
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TABLE 2. Bias, MSE and CP95% from the MLEs, considering different parameter values (Scenarios 4, 5 and 6) and M = 50,000 simulated samples.

and

hij,l(θ ) = E
[
∂2 logL(θ )
∂θi∂θj

.
∂ logL(θ )
∂θl

]
,

for i, j, l = 1, . . . , κ .
Cordeiro and Klein [40] proved that, even when the data

are dependent, the bias expression (16) can be rewritten as

Bias
(
θ̂w

)
=

κ∑
i=1

swi(θ )
κ∑
j=1

κ∑
l=1

sjl(θ )
(
h(l)ij (θ )− 0.5hijl(θ )

)
+O(n−2),

where h(l)ij (θ ) =
∂hij(θ )
∂θl

, for i, j, l = 1, . . . , κ .

Firth [41] showed that the first-order term is removed from
the asymptotic bias of the MLEs by considering the Jeffreys
prior [42] as a penalty function in the likelihood equation
for the exponential family of distributions. The Jeffreys prior
can be obtained as the square root of the determinant of
the expected Fisher information matrix I (θ ). Thus, it follows
from equation (14) that

π J(θ ) ∝ |I (θ )|1/2

=

√
|Diag(α11β

−2
11 , . . . , α1n1β

−2
1n1
, . . . , α−1p1 . . . . , α

−1
pnp )|

=

p∏
j=1

nj∏
k=1

1
βjk
. (17)

Note that after some algebraic manipulation, the likelihood
function (10) can be rewritten as

L(θ | t, δ, ψ) ∝
p∏
j=1

nj∏
k=1

γ (βjk | njk + 1, njk/β̂jk )

×γ (αjk | njk+1, 1).

The marginal distribution for each parameter is indepen-
dent of the other parameters. Moreover, since the marginals
follow a gamma distribution, they belong to the exponen-
tial family of distributions. Hence, the approach proposed
by Firth [41] is valid for our hierarchical competing risks
model. The penalized log-likelihood function using the Jef-
freys prior (17) as a penalized criterion can be written as

LP(θ | t, δ, ψ) ∝
p∏
j=1

nj∏
k=1

γ (βjk | njk , njk/β̂jk )

×γ (αjk | njk + 1, 1),

Then, with some algebraic manipulation, we obtain the
corrected MLEs (CMLEs) given by

β̃jk =
njk − 1
njk

β̂jk (18)

and

α̃jk = α̂jk , (19)

which are unbiased to O(n−1jk ). Although the penalized like-
lihood method introduced by Firth [41] only ensures that the
first-order term is removed from the asymptotic bias, we have
that

E
[
β̃jk | t, δ, ψ

]
= βjk

and

E
[
α̃jk | t, δ, ψ

]
= αjk .

Therefore, the obtained CMLEs are unbiased for njk > 1.
As we observed from the simulation results presented in

Section IV-A, the asymptotic confidence intervals are not
satisfactory for small samples. Using the improved estimates
in the estimators of the asymptotic variance, which are used to
obtain the confidence intervals, will return the worst results in
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TABLE 3. Bias, MSE and CP95% from the CMLEs, considering different parameter values (Scenarios 1, 2 and 3) and M = 50,000 simulated samples.

terms of coverage probabilities than obtained with the MLEs.
On the other hand, by observing that

LP(αjk | t, δ, ψ) =
α
njk
jk e
−αjk

njk !
,

i.e., αjk ∼ Erlang(njk + 1, 1), then 2αjk ∼ χ2
2(njk+1)

. There-
fore, the 100(1 − ξ )% confidence interval for αjk can be
calculated as[

1
2
χ2
2njk+2; ξ/2 ;

1
2
χ2
2njk+2; 1−ξ/2

]
, (20)

where χ2
a; υ represents the 100υ-th percentile of the chi-

square distribution with a degrees of freedom.
Furthermore, since LP(βjk | t, δ, ψ) = γ (βjk |

njk , njk/β̂jk ), we have that the 100(1 − ξ )% confidence
interval for βjk can be obtained directly from the quantile
function of the gamma distribution, that is,[

γQ

(
njk ,

njk
β̂jk
;
ξ

2

)
; γQ

(
njk ,

njk
β̂jk
; 1−

ξ

2

)]
, (21)

where γQ (a, b; υ) is the quantile function of the gamma
distribution with shape parameter a and scale parameter b,
and 0 ≤ υ ≤ 1. This quantile function is available in most of
the standard statistical softwares. For instance, in R it can be
computed by using the qgamma(.) function. Thus, the exact
confidence intervals for themodel parameters can be obtained
without the use of intensive computation.

A. SIMULATION STUDY
In this section, we perform a second simulation study with
the same general specifications (i.e., same scenarios, number
of Monte Carlo replications and evaluation criteria) of the
first one shown in Section IV-A. However, the main goal
now is to assess the performance (i.e., the consistency and
efficiency) of the CMLEs for the model parameters presented
in equations (18) and (19), as well as of the exact confidence
intervals given in equations (20) and (21). It is worthwhile
mentioning that the generated samples are the same as those

of Section IV-A, in order to achieve a fair comparison of the
different approaches.

Tables 1, 2, 3 and 4 summarize the results. The CMLEs
of the βjks are more adequate, since their bias were suc-
cessfully removed compared with their correspondingMLEs.
Moreover, the CP95% for the αjks using the exact confidence
intervals, rather than the asymptotic confidence intervals, are
in general higher and closer to the nominal value (0.95).

VI. APPLICATIONS
In this section, we illustrate the usefulness of the newmethod-
ology considering three data sets: an artificial data set for
a butterfly valve system (Section VI-A), a data set from a
real early-stage project of an in-pipe robot traction system
(Section VI-B), and a real data set consisting of failures of a
blowout preventer system (Section VI-C).

A. BUTTERFLY VALVE SYSTEM: A TOY EXAMPLE
To illustrate the inference process in hierarchical competing
risks model, we start with a toy example based on a butter-
fly valve system. Butterfly valves are exact, low cost and
a lightweight valve with excellent capability and durability,
consisting of fewer parts, which makes butterfly valves easy
to maintain, repair and less structural support for productive
use [35]. They contain a disc, which is positioned in the center
that can be rotated a quarter of a turn through a shaft running.
For this reason, this kind of valve is known as quarter-turn
valves [43]. The rotation of the disc determines the flow
passing a pipe, whose maximum occurs when the disc is
positioned parallel to the stream and minimum when per-
pendicular to it. The relative position between the geometric
center of the disc and the shaft defines if the valve is namely
symmetrical, eccentric or double eccentric [44].

Butterfly valves include a wide range of applications with
excellent isolation, throttling as well as on-off service and
flow regulation [35]. They provide reliable, long-term perfor-
mance that satisfies a wide range of industrial applications
such as oil and gas. For instance, the applications involve
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TABLE 4. Bias, MSE and CP95% from the CMLEs, considering different parameter values (Scenarios 4, 5 and 6) and M = 50,000 simulated samples.

FIGURE 3. Schematic diagram of a butterfly valve.

isolation or regulating of oil and gas equipment, fill and
drain or bypass systems and other similar applications where
the principal function for the control of the flow or pressure
can be satisfied whether on or off [45].

As shown in Figure 3, the butterfly valve includes a disc
valve, placed inside one configured valve body that rotates
about its axis separate from the axis of rotation of the stems
that support the disc valve in position for a turn between
opening and closure. A packing part is located connecting the
valve body and the stem to prevent any leakage happening
when the flow passes into the pipe. Furthermore, a ring seal
acts as a seal between the metal disc and body to avoid any
leakage when the valve is in the fully closed position.

Because of the critical impact of the butterfly valve in the
industry, in this paper, the attention is focused on carrying
an FTA to increase the performance of this type of valve.

The main goal is to know the failures and with new main-
tenance limits or avoid different risks within the valve per-
formance. Hence, the FTA moves towards higher reliabil-
ity, higher quality, and improved safety. As can be seen
in Figure 4, we created the FTA based on the Failure
Mode and Effects Analysis (FMEA) available in Bin and
Abdullah [35], with reviewing primary components of the
butterfly valve, which consists of a body, metal, disc, stem,
seat and packing with several failure modes and their causes.
It is worthwhile mentioning that these failures happen due
to one of the series competing failure mechanisms, whereby
each of them act related to the system independently. Based
on the information provided in the FMEA by Bin and Abdul-
lah [35], we were able to generate the data set, as shown
in Table 5, which is representative of a butterfly valve system.
Two numbers represent the failure modes, say 1.1, the first
one stands for the system, in our example, system 1, and
the second number stands for the sub-system, in our example,
sub-system 1. Furthermore, we can evaluate the proportion of
the PLP for each cause of failure by employing a graphical
tool, which is known as the Duane plot [19]. As can be seen
in Figure 5, the values of the sub-systems are close to the line.
This means that the obtained data set comes from a PLP, and
our approach can be adequately used.

Table 6 displays the bias-corrected maximum likelihood
(CML) estimates, along with the corresponding 95% exact
confidence intervals (CI 95%) for the model parameters. The
results shown in this table suggest that the reliability of the
body and stem components improve over time since the corre-
sponding β̂1ks and β̂3ks are less than one. Moreover, observe
that the reliability of the disk components may decrease over
time due to corrosion on the disk surface (β̂22 = 1.535 > 1),
while the reliability of the seat and packing components show
an intermediate behavior since their CML estimates are close
to one. Note, however, that almost all the CI 95% include
the one. Therefore, we can not say that the cause-specific
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FIGURE 4. FTA of butterfly valve failure.

TABLE 5. Failure data for a butterfly valve.

intensity functions of some components increase or decrease
over time.

It is essential to point out that such results can provide
valuable insights to the maintenance crew. They also allow
us to estimate the intensity function of each system or sub-
system and the hazard function of the overall system. The
estimated intensity functions can be obtained from (4), while
the overall hazard function can be obtained from (5), with the
parameters substituted by their estimates. Table 7 presents
the estimated intensity functions for each sub-system and
the estimated hazard function over some fixed failure times.
Observe that the results shown in this table are in agreement
with the ones presented in Table 6, that is, for the cases
where β̂jk > 1 the intensity function increases over time,
while for β̂jk < 1 the intensity function decreases over time.

FIGURE 5. Duane plots for the failure modes of a butterfly valve.

We also see that the overall hazard function decreases over
time, which may be due to the repair and maintenance effects.

In order to provide a better understanding of the effect of
fatigue damage on any point of the butterfly valve compo-
nents, we then created a fatigue simulation, which is given
as follows. Fatigue design of the butterfly valve is done
using design fatigue curves, which are created based on the
relationship between fatigue life and stress or strain. Because
in the real structure of the valve, its components are constantly
subjected to the high cycle fatigue stress and therefore, cracks
begin from regions of concentrated stress resulting from this
cycle fatigue and corresponding fatigue safety factor [46].
It is thus essential to determine the safety factor of fatigue
failure, which indicates the ability of damage in the critical
area in the valve components. The safety factor for this valve
is determined by evaluating the effects of the loading history
due to the fluid-structure interaction on fatigue life [47].
All computations and simulations required to build
Figures 6 and 7 were performed with coupling CFD (fluids)
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TABLE 6. CML estimates and CI 95% of parameters βjk and αjk ,
considering the butterfly valve failure data.

TABLE 7. Estimates of the subsystem-specific and overall intensity
functions at different times, considering the butterfly valve failure data.

and FEM (mechanics) models, which were prepared using
the commercial pieces of software FLUENT and ANSYS
2019 R1. Figure 6 shows the safety factor of fatigue life
associated with any point of the butterfly valve components.
As can be seen, the safety factor values are presented in
terms of change between 0 and 15, in which the lower value
identifies the critical damage locations in the component.
Analysis over the safety factor of fatigue life results revealed
that fatigue could be expected to initiate near the stems, due
to their role as stress concentration points. It can be observed
that the butterfly valve has several components connected in

FIGURE 6. Fatigue safety factors of the butterfly valve components.

FIGURE 7. Available fatigue life of the butterfly valve components.

series. Therefore, a single component failure results in total
system failure. The available fatigue life curve, in cycles,
for the estimation of a finite lifetime of the butterfly valve
under 50% to 100%of the fatigue loading history, is presented
in Figure 7. Analysis of the outcomes shows how the fatigue
results change as a function of the loading at the critical
location on the model. For instance, the results from this fig-
ure verified that the minimum value of fatigue life appeared
at the maximum fatigue loading of 100%. Therefore, damage
starts from the points related to the component with the
lowest fatigue safety factor due to the significant stress con-
centration. Finally, as a conclusion, a good comparison was
observed between the simulated fatigue damage results and
statistical analysis. However, the present safety factor fatigue
simulation indicates some disagreement, which is possibly
related to differences in conditions between this simulation
and statistical analysis.

B. IN-PIPE ROBOT TRACTION SYSTEM: EXAMPLE ON
EARLY-STAGE INNOVATIVE PROJECT
In this section, we consider another example based on a
real problem we are working on in a partnership with Petro-
bras (abbreviation of Petróleo Brasileiro S.A.), which is the
Brazil’s largest oil and gas producer. The problem is related
to the traction system of an in-pipe robot that was developed,
though still in its early stage of development, to be used at a
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FIGURE 8. Schematic diagram of an in-pipe robot traction system.

TABLE 8. FMEA for the in-pipe robot traction system. S = Severity,
O = Occurrence, D = Detection.

future time to remove hydrates that form in pipelines and can
cause problems in oil and gas flow. In this case, a locomotive
is responsible for conducting the robot inside the pipe, and
once hydrate formation is identified, the robot will work on
its safe removal for the oil to flow again. A schematic of the
studied system is shown in Figure 8.

We obtained a suitable data set for this problem using
a similar approach as proposed in the previous section,
i.e., based on the limited but available information provided
by FMEA and FTA tools. Due to the criticality of the traction
system, we will focus on it instead of the overall locomotive
system. An excerpt from the FMEA devised by the project
executing team is shown in Table 8. On the other hand,
the hierarchy of failure modes that compete with each other
to cause a general system failure can be seen in Figure 9.
Thus, these two tools supported the generation of the data set
shown in Table 9, whose parameter representativeness tries to
express the degree of severity and occurrence of the FMEA
used.

Duane plots applied to the data for each failure mode
show evidence that a PLP may be able to adequately
describe the behavior of system-associated failure times,
since the scattered points show an approximately linear trend
(see Figure 10).

The CML estimates for the parameters associated with
each failure mode, as well as their respective CI 95%, are
presented in Table 10. From these results, there is evi-
dence that the intensity associated with some failure modes
(e.g., Cracking by atomic hydrogen permeation) increases.
On the other hand, there seems to be a decrease in risks

FIGURE 9. FTA of in-pipe robot traction system failure.

FIGURE 10. Duane plots for the failure modes related to the in-pipe robot
traction system.

associated with other failure modes (e.g., Compromised paw
lining adhesive and Riser rupture), although their CI 95%
contains the one.

The behavior over time of the estimated intensities
and reliabilities, for each specific failure mode, is shown
in Figures 11a and 11b, from which we can see that the
intensities associated with the failure modes 2.1 and 2.2
(Structure system) grow significantly more than others.
In addition, the median lifespan of these sub-systems is
around five weeks, while the rest is around seven weeks.
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TABLE 9. Failure data for the in-pipe robot traction system. FT = Failure
time, FM = failure mode.

TABLE 10. CML estimates and CI 95% of model parameters, considering
the in-pipe robot traction system failure data.

The combination of individual intensities and reliabilities,
within their respective hierarchies, results in specific func-
tions corresponding to each system. In this context, it is
possible to study such measures by considering a level above
in the hierarchy. The results are shown in Figure 11c, where
it can be seen that the intensity of the Paws system grows
significantly much less than the Structure system; however,
in the (approximately) twenty initial weeks, its intensity is
lower than the Paws system. This can also be observed from
the reliability curve, where the median lifetime of the Paws
system is around one week, while that of the Structure system

TABLE 11. Failure data for a BOP system.

is close to three. In addition, the curves become very close
from week fifteen.

Finally, the combination of the intensities and reliabilities
of all failure modes results in their respective functions for the
general system, as a whole. Thus, there is a growing intensity
associated with it, and a median time of operation close to
one week.

C. BLOWOUT PREVENTER SYSTEM: A REAL EXAMPLE
A blowout preventer (BOP) is a large, specially designed
valve that is used to seal, control and monitor oil and gas
wells [48]. This valve mounts on top of the well during the
drilling and completion stages of operation and serves as an
essential barrier against blowouts, that is, the uncontrolled
release of crude oil and/or natural gas from a well.

FTA for the BOP system is shown in Figure 12, which
was done based on the real data set downloaded from
the RAPID-S53 website (https://www.rapid4s53.
com). This data set is available in Table 11. Analogously
to Section VI-A, the failure modes are represented by two
numbers, in the order that they appear from left to right in the
graphical representation (again, the first number refers to the
system, and the second one stands for the sub-system). It is
worth mentioning that these failures occur due to a competing
risks mechanism (in which we assume that each of them acts
independently), and the safety equipment in question (BOP)
is considered to be a repairable system.

First, we can evaluate the proportion of the PLP for each
failure cause by using the Duane plot. As it can be observed
from Figure 13, the values of the sub-systems are, in general,
close to the line, which means that this data set comes from a
PLP and our methods can be suitably used.

Table 12 shows the CML estimates and CI 95% for the
model parameters. The results presented in this table suggest
that the reliability of all components improves over time since
the β̂jks are less than one. Therefore, we can say that the
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FIGURE 11. General graphical results.

FIGURE 12. FTA of BOP failure.

cause-specific intensity functions of all components decrease
over time.

Table 13 displays the estimated intensity functions for
each sub-system and the estimated hazard function over
some fixed failure times. Observe that the results shown

in this table are in agreement with the ones presented
in Table 12, that is, the intensity functions decrease over
time. We also see that the overall hazard function decreases
over time, which may be due to the repair and maintenance
effects.
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FIGURE 13. Duane plots for the failure modes of a BOP system.

TABLE 12. CML estimates and CI 95% of parameters βjk and αjk ,
considering the BOP failure data.

The results presented in Table 12 would also allow us
to estimate the reliability function of each system or sub-
system, and the reliability function of the overall sys-
tem. The estimated reliability functions can be obtained
from (8), while the overall reliability function can be
obtained from (7), with the parameters substituted by their
estimates. Table 14 shows the estimated reliability func-
tions for each sub-system and the estimated overall reli-
ability function over some fixed failure times (which are
the same times considered in Table 13). Observe that the
overall reliability function, as well as the sub-systems’ reli-
ability functions, decrease over time, although at different
rates.

TABLE 13. Estimates of the subsystem-specific and overall intensity
functions at different times, considering the BOP failure data.

TABLE 14. Estimates of the subsystem-specific and overall reliability
functions at different times, considering the BOP failure data.

VII. CONCLUDING REMARKS AND FURTHER RESEARCH
In this paper, we introduced a new statistical model for
repairable systems subject to hierarchical competing risks
under the assumption that the failure modes act indepen-
dently. The competing risks approach may be useful in the
engineering area, since it may lead to a better comprehension
of the several failure modes of a system. Therefore, design
strategies improve overall system reliability. The hierarchical
structure may also be advantageous because sometimes it
may record information about which sub-system of a specific
system has resulted in the total system failure.

We assumed that the repairs are minimal, and the fail-
ure intensity follows a PLP model after a convenient
reparametrization. Under a classical framework, we proposed
estimators and confidence intervals for the model parameters,
whose performances were investigated using a simulation
study. In short, the simulation results revealed that the bias-
correctedMLEs (or CMLEs) provide better estimates, mainly
for the βjk parameters, than theMLEs. Besides, the exact con-
fidence intervals for the αjk parameters give coverage proba-
bilities closer to the nominal value (0.95) than the asymptotic
confidence intervals. Finally, the proposed methodology is
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illustrated through a toy example on a butterfly valve sys-
tem, an example of a real early-stage project related to an
in-pipe robot traction system, and also a real example on
a BOP system.

As future works, we intend to derive Bayesian estimators
for the model parameters, generalize our results to more than
two hierarchical levels, model the dependence among the
failure modes (and sub-causes) via shared frailty models,
and assume that repairs are either perfect (renewal process
model) or imperfect.
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