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ABSTRACT ω−closure (together with ω−controllability) plays an important role in the supervisor
synthesis for liveness specifications imposed on discrete-event systems (DESs) with infinite behavior.
However, it is not closed under arbitrary unions, and thus there does not exist the supremal ω−closed
(and ω−controllable) sublanguage. In this paper, we first develop an algorithm to compute a subautomaton
of the automaton representing an arbitrarily given ω-language by deleting all bad loops (which lead to
un-closedness of the given language) in the automaton, and show that the obtained subautomaton represents
an ω−closed sublanguage and is maximal from the perspective of an automaton transition graph. With this
algorithm, we propose a new approach to construct a supervisor synthesizing an ω−language even if it is not
ω−closed. Furthermore, we prove that, compared with the supervisor computed by the Thistle’s supervisor
synthesis approach, the supervisor synthesized by our approach is often more permissive. Examples are
presented for illustration.

INDEX TERMS Discrete-event systems, infinite behavior, ω−closure, ω−automata.

I. INTRODUCTION
Generally, there are two kinds of specifications in discrete-
event systems (DESs) [1]–[3]. One is the safety specifications
requiring that some conditions should not occur; the other
is the liveness specifications requiring that some conditions
must be met eventually [4]. For specifications restricting the
set of finite trajectories, corresponding to safety specifica-
tions, they can be formalized as ∗−languages. For liveness
specifications, ω−languages are employed to model the infi-
nite behavior.

Ramadge pioneered the research to model DESs by Büchi
automata and extended the concept of ∗−controllability
of ∗−languages first introduced in [2] to the case of
ω−languages [5]. Thistle andWonham continued Ramadge’s
work to study the supervisory control of infinite behavior of
DESs. In [6]–[8], the plant was represented by a determin-
istic Büchi automaton and the specification of legal behav-
ior by a deterministic Rabin automaton. The definition of
ω−controllablility was proposed and the existence of the
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supremal ω−controllable sublanguage was shown, which
facilitated the solvability of infinitary supervisory control
problem.

However, the ω−controllable and ω−closed languages
proposed in [6]–[8] have different closure properties under
union and intersection. In particular, ω−controllability is
preserved under arbitrary unions but not intersections, and
ω−closure is preserved under arbitrary intersections but not
arbitrary unions. Thus, there does not exist the supremal
ω−controllable and ω−closed sublanguage of a given lan-
guage. We note that if a given specification language is
ω−closed, then we only need to tackle its ω−controllability,
which will facilitate the supervisor synthesis. We also note
that for a given ω−language K , the transitions leading to
unclosedness of K are the loops defined in the transition
graph of the automaton representing K , but not occurred
infinitely; we call these loops as bad loops (formally defined
in Section III). More importantly, such bad loops can be
detected by the known depth-first-search (DFS) mecha-
nism [24] on graphs. Thus in this paper, we propose an
algorithm based on the DFS mechanism to construct a subau-
tomaton by deleting all the bad loops; the resultant automaton
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obviously represents an ω−closed language. Then, we show
that the obtained automaton is maximal from the perspective
of the automaton transition graph. Combining this algorithm
with the one computing the supremal ω−controllable sublan-
guage (proposed by Thistle and Wonham in [6], [8]), we may
construct a supervisor synthesizing a sublanguage of K even
if it is not ω−closed. Furthermore, we prove that compared
with the supervisor computed by the Thistle’s supervisor syn-
thesis approach, the synthesized supervisor by our approach
is often more permissive.

The main contributions of this paper are two-fold. First,
we propose an algorithm to construct a subautomaton of the
automaton representing an ω−language, and show that the
obtained subautomaton represents an ω−closed sublanguage
of the given language and is maximal from the perspective
of the automaton transition graph. Second, we propose a new
approach to synthesize a supervisor for a given liveness speci-
fication, which is often more permissive than that synthesized
by the Thistle’s supervisor synthesis approach.

The control problem of DESs with infinite behavior also
has been studied intensively by other researchers. Park and
Cho proposed a state feedback supervisory control for real-
time DESs with infinite time of untimed states [9]. The
resultant supervisor restricted the behavior of the controlled
timed DESs within the legal behavior. Oliveira, Cury and
Kaestner presented a supervisor synthesis method for param-
eterized and infinity non-regular DESs [10], in which the
plant incorporated a finite state transition system equipped
with a data collection. Cury andKrogh designed robust super-
visors for nominal plants to satisfy specifications with infinite
behavior [11]. Kumar and Garg presented a finitely terminat-
ing algorithm for maximally permissive supervision of state
avoidance control for infinite state systems in assignment
program framework [12]. Chédor et al. studied the diagnosis
and opacity problems for infinite state systems [13]. Garg and
Kumar proposed a state-variable approach for the supervisory
control of DESs with infinite states [14]. Gohari and Won-
ham employed first-in-first-out queues to achieve bounded
fairness, which was often described as ω−languages [15].
In [5], [16], deterministic Büchi automata were used to
model DESs. Zhang and Cai designed a localization proce-
dure to achieve supervisor localization of DESs with infinite
behavior [17].

In addition to modeling with ω−automata for DESs with
infinite behavior, some other studies investigate the super-
visory control problem based on Petri Nets (PNs), which
are also capable of modeling DESs with infinite behavior.
Lu et al. proposed complex reachability trees to solve the
deadlock detection problem of unbounded PNs, in which the
set of reachablemarkings were infinite [18]. A new reachabil-
ity tree was constructed in [19] to characterize precisely their
infinite reachability sets for unbounded PNs with semilinear
reachability sets. A lean reachability tree for unbounded PNs
was proposed in [20]. Behavior consistency was calculated
in [21] for unbounded PNs with infinite branching process.
A three-stage iterative deadlock prevention policy for systems

of simple sequential processes with resources (S3PR) with
ω−siphons was proposed in [22]. Reference [23] proposed
a sufficient and necessary condition for a resource subset
to generate a strict minimal siphon in systems of sequential
systems with shared resources (S4PR).
The paper is organized as follows. Section II provides basic

preliminaries on supervisory control of DESs with infinite
behavior. Section III develops an algorithm to obtain themax-
imal subautomaton representing anω−closed sublanguage of
a given ω−language. Section IV proposes a new approach to
solve the supervisory control problem of DESs with infinite
behavior. Section V illustrates our results with a case study
on a small factory. Section VI concludes this paper.

II. PRELIMINARIES
Let 6 be a finite alphabet. Let 6∗ denote the set of all finite
strings over 6 and 6ω denote the set of all infinite strings
over 6. Let 6∞ := 6∗∪̇6ω.

For any k ∈ 6∗, v ∈ 6∞, write k ≤ v if k is a prefix of v.
Define the map pre : 26

∞

→ 26
∗

by

pre : V 7→ {k ∈ 6∗|(∃v ∈ V )k ≤ v}.

The limit of a ∗−language is given by

lim(K ) := pre−1(K ) ∩6ω,

where pre−1 : 26
∗

→ 26
∞

is the inverse of pre :
26
∞

→ 26
∗

.
Define operator clo : 26

∞

→ 26
∞

as

clo : R 7→ lim(pre(R)) = pre−1(pre(R)) ∩6ω.

clo(R) is called the ω−closure of R. R is ω−closed if R =
clo(R). R is ω−closed with respect to S if R = clo(R) ∩ S,
where S ⊆ 6ω.

A DES with infinite behavior (plant to be controlled) is
modeled as a (deterministic) Büchi automaton

G := (Q, 6, δ, q0,BQ),

where Q is the finite state set, q0 is the initial state, 6 is the
finite event set, δ : Q×6→ Q is the (partial) state transition
function, and BQ ⊆ Q is the Büchi acceptance criterion.
The notation δ(q, σ )! means that δ(q, σ ) is defined. More-

over, δ is extended to a partial function δ : Q× 6∗ → Q by
the rules

δ(q, ε) = q

δ(q, sσ ) = δ(δ(q, s), σ )

provided q′ := δ(q, s)! and δ(q′, σ )!. In this paper, we also
write q′ := δ(q, s)! as q

s
−→ q′.

The finite behavior of G is the ∗−language L(G) ⊆
6∗ accepted by the automaton (Q, 6, δ, q0), i.e. L(G) :=
{s ∈ 6∗|δ(q, s)!}; and the infinite behavior of G is the
ω−language S(G) accepted by G with the Büchi acceptance
criterion BQ, i.e.

S(G) := {s ∈ 6ω|�(s) ∩ BQ 6= ∅},
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where �(s) is set of states that s visits infinitely often. For
the supervisory control of G, event set 6 is partitioned into
the subset of controllable events 6c and the subset of uncon-
trollable events 6u. A supervisory control for G is any map
f : L(G)→ 0, where0 := {γ ⊆ 6|γ ⊇ 6u}. Then the finite
and infinite closed-loop behaviors of the controlled DES Gf ,
representing the action of supervisor f onG, are respectively
given by

1) L(Gf ), the ∗−language synthesized by f , defined by
the following recursion:
a) ε ∈ L(Gf ),
b) (∀s ∈ 6∗,∀σ ∈ 6)sσ ∈ L(Gf ) ⇔ s ∈

L(Gf ) & sσ ∈ L(G) & σ ∈ f (s),
c) no other strings belong to L(Gf );

2) S(Gf ), the ω−language synthesized by f , given by

S(Gf ) := lim[L(Gf )] ∩ S(G).

An ω−language K ⊆ 6ω is ∗−controllable with respect
to G if

pre(K )6u ∩ pre(L(G)) ⊆ pre(K ).

For an ω−language T ⊆ 6ω, its controllability prefix is
defined as

preG(T ) := {t ∈ pre(T )|(∃T ′ ⊆ T/t)[T ′ 6= ∅ is

∗ −controllable with respect to L(G)/t and

ω − closed with respect to S(G)/t]},

where T/t := {s ∈ 6∞|ts ∈ T }, and L(G)/t and S(G)/t are
defined in the same fashion. T isω−controllablewith respect
to G if
1) T is ∗−controllable with respect to G;
2) pre(T ) = preG(T ).
ω−controllability is preserved under arbitrary unions but

not intersections, and ω−closure is preserved under arbitrary
intersections but not unions. Thus, two language classes are
defined separately as follows.

Cω(E) := {T ⊆ S(G)|T ⊆ E ⊆ S(G) and

T is ω − controllable with respect to G},

Fω(A) := {T ⊆ S(G)|A ⊆ T ⊆ S(G) and

T is ω − closed with respect to S(G)},

where E,A ⊆ 6ω are ω−languages representing respec-
tively the maximal legal and minimal acceptable speci-
fications imposed on G. Due to the closure property of
ω−controllability and ω−closure described above, there
exist the unique supremal ω−controllable sublanguage
supCω(E), given by

supCω(E) := lim(preG(E)) ∩ E

and the unique infimal ω−closed superlanguage infFω(A),
given by

infFω(A) := clo(A) ∩ S(G).

FIGURE 1. Büchi automaton of ω−language S.

It is proved [ [7], Theorem 5.3] that there exists
an ω−controllable and ω−closed language T such that
A ⊆ T ⊆ E if and only if

infFω(A) ⊆ supCω(E).

A supervisor f ω : L(G)→ 0 synthesizing such T , i.e.

A ⊂ T = S(Gf ω ) ⊆ E

can be implemented by a ∗−automaton SUP := (X , 6,
ξ, x0). SUP is an implementation of the supervisor f ω with

L(G) ∩ L(SUP) = L(Gf ω ),

S(G) ∩ lim(L(SUP)) = S(Gf ω ).

III. MAXIMAL SUBAUTOMATA REPRESENTING
ω−CLOSED SUBLANGUAGES
A given regular ω−language is not always ω−closed. For
example, if S = α∗βω, then clo(S) = αω ∪ α∗βω. Rep-
resenting S by a Büchi automaton shown in Fig. 1, a direct
explanation for S to be not closed is due to the existence
of the selfloop at state 0 to represent α∗. Thus, to obtain a
closed sublanguage of S, we need to delete the selfloop at
state 0. The result is S ′ = βω, which is obviously closed.
By this inspection, we propose an algorithm in this section
to compute the ω−closed sublanguage of a given language,
by deleting such bad loops (e.g. selfloop α∗ in Fig. 1).

A. ALGORITHM FOR DETECTING LOOPS
We treat the structure of a Büchi automaton as a directed
graph. A direct graph is an ordered pairG = (V, E) consisting
of:

1) V a set of vertices;
2) E ⊆ {(q1, q2) ∈ V2

} a set of edges.
Let a Büchi automaton be denoted as

G := (Q, 6, δ, q0,BQ).

Then, we have V = Q, E = {(q1, q2)|q2 = δ(q1, σ )!} with
q1, q2 ∈ Q, σ ∈ 6. Namely, states of a Büchi automaton
are regarded as vertices of a graph, and transitions of a Büchi
automaton as edges of a graph. Our goal is to compute its
ω−closed sublanguage of the regular ω−language.

First, we need to detect all loops in a graph. Let
(q1, · · · , qn)	 denote a loop in a graph with q1, · · · , qn ∈
Q, δ(qi, σi) = qi+1, i ∈ {1, · · · , n}, σi ∈ 6, qn+1 = q1. We
will employ the depth-first-search (DFS) mechanism [24] of
a graph to realize this. The algorithm is realized by recursion
and is described as Algorithm 1.

For example, for the Büchi automaton shown in Fig. 2,
assume that the Büchi acceptance criterion is BQ = {3}.
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Algorithm 1 DetectLoops
Input: x is the vertex number; num is the number of vertices;

v[num] is an array to memorize whether a vertex has been
visited; stack[num] is an array to implement the function
of a stack and top is the subscript of the top element;
in[num] is an array to indicate whether a vertex is in the
stack.

Output: The vertices of all loops
1: procedure DetectLoops(x, v[num], stack[num], top,
in[num])

2: v[x] = true; //Indicate that vertex x has been visited.
3: stack[++ top] = x; //Push x to the stack.
4: in[x] = true; //Indicate that vertex x is in the stack.
5: for i = 0 to the number of vertices −1 do
6: if There is an edge from x to i; then
7: if in[i] == false; //Vertex i is not in the

stack. then
8: DetectLoops(i, v, stack , top, in);
9: else Find the beginning vertex of a loop;
//Find element i from the stack.

10: end if
11: Output loop (i, · · · , top)	; //All vertices

from element i to the top element of the stack.
12: end if
13: end for
14: top−−; //Pop an element out from the stack because

element x may be a vertex in another loop.
15: in[x] = false;
16: end procedure

FIGURE 2. Transition graph of a Büchi automaton.

By applying Algorithm DetectLoops to the graph, vertices 0
and 1 will be pushed to the stack in sequence. At vertex 1,
as there exists an edge (1, 0) corresponding to transitions

1
3,5
−→ 0 (Line 6), and in[0] = true (Line 7), the beginning

vertex 0 of a loop is found from the stack (Line 9). Then loop
(0, 1)	 is output (Line 11). Other loops will be found in the
same way. After the termination of this algorithm, four loops
will be output, i.e. loops (0, 1)	, (0, 1, 2)	, (1, 2, 3)	, (3)	.
As the time complexity of the DFS algorithm isO(nV+nE )

[24], where nV , nE are the numbers of vertices and edges of a
graph respectively, the time complexity of Algorithm Detect-
Loops is O(nV + nE ).

B. ALGORITHM FOR COMPUTING MAXIMAL
SUBAUTOMATA
We say that a loop (q1, · · · , qn)	 is a good loop if

{q1, · · · , qn} ∩ BQ 6= ∅.

FIGURE 3. The obtained Büchi automaton generated from the Büchi
automaton shown in Fig. 2.

Namely, the intersection of the vertex set of this loop and the
Büchi acceptance criterion is not empty. Otherwise, we say
that this loop is a bad loop. Obviously, the good loop corre-
sponds to the infinite part of an ω−language. For the graph
shown in Fig. 2, loops (1, 2, 3)	 and (3)	 are good loops, but
loops (0, 1)	 and (0, 1, 2)	 are bad loops.

Owing to the existence of bad loops, the ω−language
generated by the Büchi automaton is notω−closed. To obtain
a closed sublanguage of a regular ω−language, we need
to prevent bad loops by deleting its back edges, where
a back edge is the edge connecting the top vertex with
the beginning vertex during the DFS process. For the
loops (0, 1)	, (0, 1, 2)	, (1, 2, 3)	, (3)	 of the graph shown

in Fig. 2, the back edges are 1
3,5
−→ 0, 2

7
−→ 0, 3

6
−→ 1, 3

4
−→ 3

respectively. Therefore, if we delete back edges 1
3,5
−→ 0 and

2
7
−→ 0 of bad loops (0, 1)	 and (0, 1, 2)	 respectively, and

trim1 the result, we have that the obtained Büchi automaton
shown in Fig. 3 generates an ω−closed sublanguage, with the
Büchi acceptance criterion BQ = {3}.

However, required by the ω−controllability, uncontrol-
lable events cannot be prohibited directly and thus we require
that only controllable edges be deleted at some reached states
(of the plant). Thus we need to find the controllable edges
of a bad loop nearest to the beginning vertex in a counter-
clockwise fashion and call them as the nearest controllable
back edges. For example, in Fig. 2, for bad loop (0, 1, 2)	,

the nearest controllable back edge is 2
7
−→ 0. If there doesn’t

exist any nearest controllable back edges in a bad loop, then
this bad loop cannot be prevented and the result is empty.

Based on the descriptions above, we summarize the algo-
rithm to obtain the subautomaton representing the ω−closed
sublanguage of a given ω−language in Algorithm 2.
By our aforementioned analysis, the time complexity of
Algorithm DetectLoops is O(nV + nE ). The worst case for
step 3 in Algorithm Maxclo is to search all edges of a loop,
which has the time complexity O(nE ). The worst case for
step 5 in AlgorithmMaxclo is to delete all edges and vertices,
which has the time complexity O(nV + nE ). Thus, the time
complexity of Algorithm Maxclo is O(nV + nE ).
In fact, the resultant Büchi automatonB′ is a subautomaton

of B.
Proposition 1: The resultant Büchi automatonB′ is a max-

imal subautomaton of B, i.e. there doesn’t exist a Büchi
subautomaton of B having more transitions than B′ and
representing a ∗−controllable and ω−closed sublanguage.

Proof: The proof is by contradiction. Assume that there
exists Büchi automaton B′′, a subautomaton of B, having

1An automaton is trim if it is both reachable and coreachable [1].
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Algorithm 2 Maxclo
Input: A Büchi automaton B
Output: A resultant Büchi automaton B′

1: procedure Maxclo(B)
2: Call Algorithm DetectLoops to obtain all loops in B.
3: For each loop detected, if it is a bad loop, say

(q1, q2, · · · , qn)	, then find its nearest controllable back
edges, i.e. qi

σi
−→ qi+1, σi ∈ 6c, such that for j = i +

1, · · · , n, we have qj
σj
−→ qj+1, σj ∈ 6u with qn+1 = q1.

4: if Such nearest controllable back edges exist then
5: Delete transitions qi

σi
−→ qi+1 and remove the

uncoreachable transitions iteratively.
6: elseThere are no nearest controllable back edges

available, then return an empty Büchi automaton directly.
7: end if
8: Return a trim resultant Büchi automaton B′, which is

controllable and does not contain bad loops.
9: end procedure

more states than B′ and representing a ∗−controllable and
ω−closed sublanguage. As AlgorithmMaxclo deletes all bad
loops, the additional states in B′′ belong to good loops not
incorporated in B′. Hence, there exist strings correspond-
ing to additional good loops, but these strings cannot be
generated by B′. However, according to the semantics of
Algorithm Maxclo, only bad loops are deleted. Thus, these
additional good loops are non-existent. Namely, the resultant
Büchi automaton B′ is a maximal subautomaton of B. �
The reason we discuss from the perspective of the automa-

ton transition graph is that there does not exist a supre-
mal or maximal ω−closed sublanguage, but there exists a
maximal subautomaton representing an ω−closed sublan-
guage. Moreover, it is convenient of modeling and com-
putation from the perspective of automata. Thus, we use
Algorithm Maxclo to obtain a maximal Büchi subautomaton
representing a ∗−controllable and ω−closed sublanguage.
Furthermore, the automaton returned by Algorithm Max-

clo has the following properties, and these properties are
important for the supervisor synthesis in Section IV.
Proposition 2: Assume that the DES to be controlled is

modeled by Büchi automaton G. Let B and B′ denote the
ω−closed sublanguages represented by Büchi automata B
and B′ defined in Algorithm Maxclo respectively. If B ⊆
S(G) is ω−controllable with respect to G, then B′ is
ω−controllable with respect toG and ω−closed with respect
to S(G).

Proof: To show that B′ is ω−controllable with respect
to G, we need to show that

1) B′ is controllable with respect to G;
2) pre(B′) = preG(B

′).

For 1), we need to show that

pre(B′)6u ∩ pre(L(G)) ⊆ pre(B′).

Let s ∈ pre(B′), σ ∈ 6u, sσ ∈ pre(L(G)). String s should
be part of a good loop; otherwise, s /∈ pre(B′). We have sσ ∈
pre(B) as B isω−controllable with respect toG. Furthermore,
sσ is not part of a bad loop as Algorithm Maxclo deletes all
bad loops ofB. Thus, sσ ∈ pre(B′) asB′ retains all good loops
of B.
For 2), we first show that B′ is ω−closed with respect

to S(G). By the semantics of Algorithm Maxclo, as all bad
loops are deleted, we have that B′ is ω−closed, i.e. B′ =
clo(B′). Thus, clo(B′) ∩ S(G) = B′ ∩ S(G) = B′ as B′ ⊆
B ⊆ S(G).
Let

preG(B
′) := {t ∈ pre(B′)|(∃T ′ ⊆ B′/t)[T ′ 6= ∅ is

∗ −controllable with respect to L(G)/t and

ω − closed with respect to S(G)/t]}.

As B′ is ∗−controllable with respect toG and ω−closed with
respect to S(G), we have that pre(B′) = preG(B

′) by the
definition of pre(B′). �
Remark 1: Proposition 2 tells us that if B isω−controllable

with respect toG, the resultant B′ is still ω−controllable with
respect to G. Thus, Algorithm Maxclo does not change the
ω−controllability of input B.
Remark 2: Algorithm Maxclo could also be applied to

a Rabin automaton, because the main function of Algo-
rithm Maxclo is to delete all bad loops by preventing the
occurrence of the nearest controllable back edges of bad
loops. Correspondingly, Algorithm Maxclo returns a Rabin
automaton representing an ω−closed sublanguage.
Lemma 1: Let B and B′ denote the ω−closed sublan-

guages represented by Rabin automataB andB′ used in Algo-
rithm Maxclo respectively. If B ⊆ S(G) is ω−controllable
with respect toG, then B′ isω−controllable with respect toG
and ω−closed with respect to S(G).

Proof: As B and B′ denote the ω−closed sublan-
guages represented by Rabin automata B and B′ respectively,
we don’t need to consider the Rabin acceptance condition
after we have obtained B and B′. With this foundation,
we can show that B′ is ω−controllable with respect to G
and ω−closed with respect to S(G) in the same fashion
of Proposition 2. �

IV. SUPERVISORY CONTROL OF ω−CLOSED LANGUAGES
Construct a deterministic Rabin-Büchi automaton (RBA)

RBA = (Q, 6, δ, q0, {(Rp, Ip) : p ∈ P},BQ).

In RBA, the ∗−automaton (Q, 6, δ, q0) accepts the
∗−behavior of G, the Büchi automaton RBAB :=

(Q, 6, δ, q0,BQ) accepts the ω−behavior S(G) ⊆ 6ω of G,
and the Rabin automaton RBAR := (Q, 6, δ, q0, {(Rp, Ip) :
p ∈ P}) accepts E ⊆ 6ω. In this section, we will propose
a new approach to obtain an ω−controllable and ω−closed
language T such that A ⊆ T ⊆ E .
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FIGURE 4. Transition graph of RBA RBA.

FIGURE 5. Transition graph of Rabin automaton RBA′R .

A. THE MINIMAL ACCEPTABLE SPECIFICATION A = ∅
If A = ∅, the minimal acceptable specification is satisfied
automatically. We could apply Algorithm Maxclo to RBAR
and denote the result as RBA′R. Let R and R′ denote the
ω−languages represented by RBAR and RBA′R respectively.
IfR isω−controllable with respect toG, by Lemma 1we have
that R′ is ω−controllable with respect to G and ω−closed
with respect to S(G). Thus, R′ can act as a supervisor by
Theorem 5.3 in [7]. If R is not ω−controllable with respect
to G, we should apply the Thistle’s controllability com-
putation approach to R′ to obtain an ω−controllable and
ω−closed language T such that A ⊆ T ⊆ E .

Take the RBA RBA shown in Fig. 4 for example.
The Büchi acceptance criterion is BQ = {0, 1, 2, 3, 4, 5},

and the recurrence family of Rabin automaton RBAR is
(Rp = {3}, Ip = {2, 3, 4}). We could verify that RBAR is
ω−controllable, but not ω−closed, owing to the existence of
bad loop (0, 1, 5)	.

By applying Algorithm Maxclo to RBAR, we have that
loop (0, 1, 5)	 is a bad loop. Thus, the nearest controllable

back edge 1
13
−→ 5 of this loop is deleted, and the resul-

tant Rabin automaton RBA′R is shown in Fig. 5. As the
ω−language represented by RBA′R is ω−controllable and
ω−closed, it is an implementation of a supervisor.
If we use the Thistle’s supervisor synthesis approach

to compute the supervisor, it will return a state feedback
map φA : CA

→ C shown in Table 1, where

CA
=

|X |⋃
i,j,l=1

⋃
k=0,1

CA
i,j,k,l

is the controllability subset. For each of the subsets CA
i,j,k,l ,

a total feedback map φAi,j,k,l : C
A
i,j,k,l → C is defined as

detailed in [6]. Finally, the total map

φA : CA
→ C

x 7→ φAi,j,k,l(x)

is defined, where (i, j, k, l) is the least 4−tuple in the lexico-
graphic ordering such that x ∈ CA

i,j,k,l .
Readers are referred to [6] for the details to compute CA,

with the illustration shown in Table 2 in the appendix. As at
state 3, event 19 is disabled by φA, state 4 and transitions

FIGURE 6. Transition graph of the Rabin automaton returned by the
Thistle’s supervisor synthesis approach.

TABLE 1. Map φA computed by the Thistle’s controllability computation
approach.

3
19
−→ 4, 4

21
−→ 2 will be removed, thereby returning the result

shown in Fig. 6.
Obviously, the result of the Thistle’s supervisor synthesis

approach is more restrictive as at state 3, event 19 is disabled.
While at state 3 in RBA′R, event 19 is enabled. The reason for
this phenomenon is to be explained in the next section.

B. THE MINIMAL ACCEPTABLE SPECIFICATION A 6= ∅
Let Büchi automaton A represent the minimal accept-
able language A. If the minimal acceptable specification
A 6= ∅, we need to incorporate A into RBA. For this,
we first need to modify the transition function of A :=
(QA, 6A, δA, q0A,BQA) to a total function. Namely, for any
q ∈ QA, if event σ ∈ 6A is not defined at state q, then
add transition δA(q, σ ) = qd , where qd is a newly added
dump state, and all events have selfloops at this state. Denote
the resultant Büchi automaton as A′. Clearly, the transition
function of A′ is a total function. For brevity, we assume that
BQA = QA in this paper.
Next we compute an ω−controllable and ω−closed sub-

language by the following steps.
Step 1: Compute the synchronous product of RBA and A′,

and denote the result as NRBA.
Step 2: Apply the Thistle’s controllability computation

approach toNRBA and denote the result as SUPW.
Step 3: Compute Maxclo(SUPW) to obtain a RBA rep-

resenting its ω−closed sublanguage. Denote the
resultant RBA as T.

Lemma 2: Let NRBA denote the synchronous product of
RBA and A′. We have S(NRBA) = S(RBA).

Proof: Let

RBA = (Q, 6, δ, q0, {(Rp, Ip) : p ∈ P},BQ),
NRBA = (QN , 6N , δN , q0N , {(RpN , IpN ) : p ∈ P},BQN ),

A = (QA, 6A, δA, q0A,BQA),
A′ = (Q′A, 6

′
A, δ
′
A, q
′

0A,B
′
QA).

The transition function δN of NRBA is defined as

δN (qN , σ ) := δN ((q, q′A), σ )

= (δ(q, σ ), δ′A(q
′
A, σ )),
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where qN ∈ QN , q ∈ Q, q′A ∈ Q
′
A. As the transition function

of A′ is a total function, we have that whenever δ(q, σ ) is
defined, δA(q′A, σ ) is defined.

In addition, BQN = {qN := (q, q′A)|q ∈ BQ}; for a given
p ∈ P, RpN = {qN := (q, q′A)|q ∈ Rp}, IpN = {qN :=
(q, q′A)|q ∈ Ip}.

(⊇) This direction is automatic by the definition of
NRBA.

(⊆) The proof is by induction. Clearly, the basis step holds
when the string is ε.
(Inductive step:) Let s ∈ S(NRBA) ∩ S(RBA), sσ ∈

S(NRBA). We need to show that sσ ∈ S(RBA).
Assume that δN (q0N , s) = qN := (q, qA), δN (qN , σ ) =

q′N . By the inductive assumption, we have that δ(q0, s) = q.
By the definition of the synchronous product of RBA and A′,
we have δ(q, σ ) is defined. Thus, sσ ∈ S(RBA). �
Lemma 2 tells us that NRBA incorporates the behavior of

A′ without changing the behavior of RBA. This is a premise
of this subsection.
Theorem 1: Denote the language represented by RBA T

as T . By following the aforementioned approach to obtain
an ω−controllable and ω−closed language T , there exists a
supervisor f ω : L(NRBA)→ 0 synthesizing T , i.e.

A ⊂ T = S(NRBAf ω ) ⊆ E .

Proof: By the definition of T , we have that T =
supCω(E). Moreover, T is ω−closed as there is no bad loop
in T. Thus, infFω(A′) ⊆ T . Hence, supCω(E) 6= ∅ and
infFω(A′) ⊆ supCω(E). By Theorem 5.3 in [7], we have that
the supervisory control problem forω−languages is solvable.
Hence, there exists a supervisor f ω : L(NRBA) → 0

synthesizing T . �
Theorem 1 tells us that T is an implementation of the

supervisor f ω.
Theorem 2: [ [6], Theorem 8.15] Let

A = (6,X , δ, x0, {(Rp, Ip) : p ∈ P},BQ)

be a deterministic Rabin-Büchi automaton. There exists a
map φA : CA

→ C such that, for any x ∈ CA for which
Ex ⊆ Sx , the map defined by

fx : 6∗→ C

l 7→ φA(δ(l, x))

is a complete, deadlock-free supervisor for (Lx , Sx) such that
(Sx)fx ⊆ Ex .
Theorem 3: The state feedback fx defined in Theorem 2 is

more restrictive than f ω defined in Theorem 1.
Proof: Let T ′ := (Sx)fx . To show that fx defined in

Theorem 2 is more restrictive than f ω, we need to show
T ′ ⊆ T .

Clearly, T ′ ⊆ T if s = ε.
Let s ∈ T ∩ T ′, and sσ ∈ T ′; for each σ ∈ 6, we need to

show sσ ∈ T . Since6 = 6c∪̇6uc, we consider the following
two cases.

(i) σ ∈ 6uc. In this case, by Proposition 2 we know
that T is ω-controllable; thus sσ ∈ T by the definition of
ω−controllability.

(ii) σ ∈ 6c. In this case, we prove the contraposition, i.e.
if sσ /∈ T , then sσ /∈ T ′.
Let x = δ(x0, s). By the semantics of Algorithm Maxclo,

since s ∈ T and σ is removed by it, (1) state x must be
coreachable to a state in Rp by a string t ∈ 6 \ {σ }6∗,
and (2) σ and its downstream string will lead x to a bad
loop. (1) means that there must exist event σ ′ ∈ 6 and
string t ∈ 6∗ such that σ ′ 6= σ , δ(x, σ ′t) ∈ Rp. According
to the definition of supervisor φAi,j,k,l : C

A
i,j,k,l → C (as

described in the proof of Theorem 8.15 in [6]), when x is
firstly added toCA

i,j,k,l for some (i, j, k, l), σ ′ should be chosen
by φAi,j,k,l(x) (due to (1)), but σ will not (due to (2)). Further,
φA(x) = φAi,j,k,l(x) because i, j, k, l is the least 4-tuple in the
lexicographic ordering. Hence, we conclude that σ /∈ φA(x),
and thus T ′ ⊆ T . �
Remark 3: We should clarify that the control patterns in

both of the two approaches (our approach and Thistle’s
supervisor synthesis approach in [7]) are closed under union.
Considering the case that there are multiple events defined
at a state, but leading to different good cycles (legal infinite
behavior), there may exist multiple control patterns φAi,j,k,l :
CA
i,j,k,l → C (as described in the proof of Theorem 8.15

in [6]). According to the supervisor construction rule in the
Thistle’s supervisor synthesis approach, only one control pat-
tern is selected (see the definition of φA : CA

→ C in [6]).
By contrast, in our approach, all events (in all the control
patterns) will be retained, because the control patterns are
closed under union.
Remark 4: Regarding to the ω−controllability, we should

clarify that none of the two approaches can derive the unique
maximal ω−controllable sublanguage if this language is not
ω−closed. The reason is as follows.
It is proved in [Proposition 4.5, [7]] that both of
ω−controllability and ω−closure are necessary for the exis-
tence of a complete and deadlock-free supervisor. It is also
true that every specification language contains a unique max-
imalω−controllable sublanguage becauseω−controllability
is closed under set union. However, if the maximal
ω−controllable sublanguage is notω−closed, the supervisor
does not exist, and thus none of the two approaches can con-
struct a supervisor synthesizing it. In this case, our approach
will first compute a maximal subautomaton which represents
an ω−closed sublanguage, and then construct a complete
and deadlock-free supervisor. Moreover, in the case that
the maximal ω−controllable sublanguage is ω−closed, our
approach will directly construct a complete and deadlock-
free supervisor synthesizing the maximal ω−controllable
sublanguage.

The supervisor to synthesize state feedback fx is imple-
mented by the Thistle’s supervisor synthesis approach. An intu-
itive explanation for the restrictiveness of the result obtained
by this procedure is that, if there exist several events defined
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FIGURE 7. Transition graph of Büchi automaton A.

FIGURE 8. Transition graph of A′ .

FIGURE 9. Transition graph of NRBA.

FIGURE 10. Transition graph of T.

at a given state to form several good loops, the synthesized
supervisor may only enable one event at this state, as in the
proof of Theorem 8.15 in [6], (i, j, k, l) of φAi,j,k,l : C

A
i,j,k,l →

C defining φA : CA
→ C is the least 4−tuple in the

lexicographic ordering such that x ∈ CA
i,j,k,l . However, RBA

T retains all good loops. Therefore, RBA T is often more
permissive than the result obtained by applying the Thistle’s
supervisor synthesis approach directly to NRBA.
We continue the example of Subsection IV-A. Let the

minimal acceptable language A be represented by the Büchi
automaton shown in Fig. 7, whose Büchi acceptance criterion
is BQ = {0, 1, 2, 3}. We modify the transition function of A
to a total function and denote the result asA′, which is shown
in Fig. 8.

The product of RBA and A′ is denoted as NRBA shown
in Fig. 9, in which Rp = {5, 9}, Ip = {3, 5, 7, 8, 9}. Apply the
Thistle’s controllability computation approach to NRBA and
denote the result as SUPW. By applying Algorithm Maxclo
to SUPW, bad loop (2, 4, 6)	 is prevented by deleting the

nearest controllable back edge 6
13
−→ 2, and denote the result

asT shown in Fig. 10. AsT isω−controllable andω−closed,
by Theorem 1 we have that T is an implementation of the
supervisor f ω.

FIGURE 11. Transition graph of the RBA computed by the Thistle’s
supervisor synthesis approach.

FIGURE 12. Layout of Small Factory.

If we use the Thistle’s supervisor synthesis approach [6],
[7] to compute the supervisor, we obtain the RBA shown
in Fig. 11. The result of our approach is more permissive as
event 19 at state 9 is enabled in our approach but disabled in
the Thistle’s supervisor synthesis approach.

V. CASE STUDY: SMALL FACTORY
A. MODEL DESCRIPTIONS: PLANT AND SPECIFICATIONS
We illustrate the above supervisor synthesis approach for
DESs with infinite behavior by studying a Small Factory
example, adapted from [6, Chapt. 3]. As displayed in Fig. 12,
the plant to be controlled, denoted by SF, consists of two
machines Mi (i = 1, 2) coupled with two buffers Bi (i =
1, 2). The alphabet of event symbols for SF is

6 = {α1, α2, β1, β2, γ1, γ2},

in which events α1 and α2 are considered as controllable
events, i.e. 6c = {α1, α2}.

The finite behavior of the plant is described as follows.
There are two routines in the plant. At each routine i
(i = 1, 2), machine Mi processes one workpiece each time.
When Mi begins a job, it acquires a workpiece from else-
where in the factory (event αi). Upon completion,Mi pushes
the workpiece into buffer Bi (event βi). Machines not shown
in Fig. 12 remove workpieces from buffer Bi for further pro-
cessing (event γi); we assume that certain control mechanism
prevents such events from inducing bufferBi to ‘‘underflow’’.
For the sake of simplicity, we assume that each buffer has only
one slot. These two machines and two buffers are modeled by
the automata shown in Fig. 13.

The infinite behavior of the plant describes that removing
workpieces from the buffers are in continual operation, so that
every occurrence of βi is eventually followed by an occur-
rence of γi. This behavior is captured by Büchi automata Fi
(i = 1, 2) shown in Fig. 14.
Now we have a complete model of the uncontrolled

DES plant SF: the finite behavior is the intersection
of the languages accepted by the four automata shown
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FIGURE 13. Automata representing finite behavior of machines Mi , and
buffers Bi (i = 1,2).

FIGURE 14. Büchi automata Fi (i = 1,2) representing infinite behavior of
Small Factory.

FIGURE 15. Safety specifications: prevention of buffers’ overflow
represented by automata BUFSPECi (i = 1,2) and mutual exclusion
requirement represented by automaton MUXSPEC.

in Fig. 13, i.e.

L(SF) = L(M1) ∩ L(M2) ∩ L(B1) ∩ L(B2);

the infinite behavior is the intersection of lim(L(SF)) with
the ω−languages accepted by the two Büchi automata shown
in Fig. 14, i.e.

S(SF) = lim[L(SF)] ∩ S(F1) ∩ S(F2).

The plant under control must satisfy a number of specifi-
cations.

1) It should prevent buffer overflows. Namely, two occur-
rences of βi should be separated by an occurrence
of γi (S1).

2) Because Mi (i = 1, 2) employ the same resources,
they must not be allowed to operate simultaneously
(S2). Namely, αi should not occur between successive
occurrences of αj and βj.

3) Because the ‘‘mutual exclusion’’ requirement (S2)
raises the possibility that one machine may continually
preempt the other, we add a liveness specification that
each machine operates infinitely often. Namely, each αi
should occur infinitely often.

Specifications (S1) and (S2) are represented by automata
BUFSPECi (i = 1, 2) and MUXSPEC shown in Fig. 15.
They describe finite behavioral requirements on the system,
and thus are considered as safety specifications. LetEs denote
the overall safety specification, i.e.

Es = L(BUFSPEC1) ∩ L(BUFSPEC2)

∩ L(MUXSPEC).

FIGURE 16. Maximal legal liveness specification represented by a Büchi
automaton.

FIGURE 17. Transition graph of SFf ∗ and SUP∗.

(S3) is represented by Büchi automaton MAXSPEC shown
in Fig. 16, and considered as the maximal legal liveness
specification, i.e.

El = S(MAXSPEC).

We assume that the minimal acceptable liveness specification
is empty, i.e.

A = ∅.

B. SUPERVISOR SYNTHESIS
There are two types of specifications imposed on the system
SF: safety specification Es and liveness specifications El
and A.

For the safety specification, by the algorithm presented
in [5], [8], we compute supervisor SUP∗ := (X∗, 6, ξ∗, x∗0 )
as displayed in Fig. 17, which has 8 states and 14 transitions.
The controlled behavior of SF under the control of SUP∗ is
represented by Büchi automaton SFf

∗

, i.e.

L(SFf
∗

) = L(SF) ∩ L(SUP∗),

S(SFf
∗

) = S(SF) ∩ lim(L(SUP∗)).

SFf
∗

has the same transition graph with SUP∗, and the Büchi
acceptance criterion accepting language S(SFf

∗

) is BX∗ =
{0, 1, 2, 3, 4}.
It is easily verified that the safety specifications (S1) and

(S2) are both satisfied, i.e.

L(SFf
∗

) = sup C∗(Es ∩ L(SF)) ⊆ Es.
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FIGURE 18. Transition graph of RBA.

However, there may exist the case that one of machines, e.g.
M1, may work recursively all the time. In other words, M1
may preempt the start of M2 infinitely, thereby violating the
liveness specification (S3).

For maximal legal liveness specification El and mini-
mal acceptable liveness specification A, we treat SFf

∗

as
the new plant to be controlled. For the supervisor synthe-
sis, we first construct a Rabin-Büchi automaton RBA :=
(Q′, 6, δ′, q′0, {(R

′
p, I
′
p) : p ∈ P′}) with 27 states and

48 transitions, as displayed in Fig. 18, where Q′ =
{0, 1, · · · , 26}, the Büchi acceptance criterion is BQ′ =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 17, 18}, and the Rabin acceptance
criterion is {(R′1 = {6, 7, 9, 14}, I

′

1 = Q′)}.
By inspecting the transition graph of RBA, it is

easily found that there are four bad loops (1, 3, 5)	,
(2, 4, 8)	, (12, 18, 24)	, and (11, 17, 23)	. By applying
Algorithm Maxclo to it, we remove four corresponding tran-
sitions (5

α1
−→ 1), (8

α2
−→ 2), (18

α1
−→ 24), and (17

α2
−→ 23),

and thus obtain Büchi automaton SUPω1 with the Büchi
acceptance criterion {1, 2, 3, 4, 5, 6, 7, 8, 9, 14}, as displayed
in Fig. 19, which has 25 states and 40 transitions. It is eas-
ily verified that S(SUPω1 ) is ω−controllable and ω−closed
with respect to the new plant SFf

∗

. Thus, the corresponding
∗−automaton SUP1 implements a complete and deadlock-
free supervisor f ω1 : L(SF

f ∗ )→ 0, i.e.

L([SFf
∗

]
f ω1 ) = L(SFf

∗

) ∩ L(SUP1),

S(SUPω1 ) = S([SFf
∗

]
f ω1 ) = S(SFf

∗

) ∩ lim(SUP1).

By the Thistle’s supervisor synthesis approach, another
Büchi automaton SUPω2 with the Büchi acceptance cri-
terion {1, 2, 3, 4, 5, 6, 7, 8, 9, 14} is obtained, as displayed
in Fig. 20, which has 23 states and 32 transitions. Also,
the corresponding ∗−automaton SUP2 implements another
complete and deadlock-free supervisor f ω2 : L(SF

f ∗ ) → 0,

FIGURE 19. Transition graph of SUPω1 .

FIGURE 20. Transition graph of SUPω2 .

i.e.

L([SFf
∗

]
f ω2 ) = L(SFf

∗

) ∩ L(SUP2),

S(SUPω2 ) = S([SFf
∗

]
f ω2 ) = S(SFf

∗

) ∩ lim(SUP2).

It is easily verified that both of the controlled behavior
satisfy the given liveness specifications, i.e.

A ⊆ S([SFf
∗

]f
ω
1 ) ⊆ El,

A ⊆ S([SFf
∗

]f
ω
2 ) ⊆ El .

It is also verified that S(SUPω2 ) ⊆ S(SUPω1 ), which means
that the controlled plant behavior of the supervisor synthe-
sized by our approach is more permissive than that of the
Thistle’s supervisor synthesis approach. The reason for this
difference is as follows.
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TABLE 2. Calculation of CA.

By inspecting the transition graph of RBA, according to
the definition of φAi,j,k,l : C

A
i,j,k,l → C (as described in

the proof of Theorem 8.15 in [6]), at state 15 the enable-
ment of event α1 and that of event γ2 belong to two
different control patterns, say φ1 and φ2, respectively.
According to the Thistle’s supervisor synthesis approach,
only one of the control patterns is selected. In this example,
φ2 is selected; thus only event γ2 is enabled by supervisor
SUPω2 . However, by our approach, both of events α1 and γ2
are enabled, because the control patterns are closed under
union.

Physically, at state 15, a workpiece in buffer B1 has
been taken out for further processing, and a workpiece from
M2 has been put into buffer B2. At this state, it is legal (with-
out violating liveness specification (S3)) to enable event α1
(i.e. M1 starts a new work cycle) if the supervisor can dis-
able event 11 after one more work cycle (i.e. at state 18
of SUPω1 ). Certainly, it is legal to disable event α1 as
in SUPω2 (by the Thistle’s supervisor synthesis approach);
however, in that case the plant behavior will be more
restrictive.

VI. CONCLUSION
We have first proposed an algorithm to compute the maxi-
mal subautomaton by deleting all bad loops in the transition
graph of the automaton representing a given ω−language
of a specification. Then, based on this algorithm we have
proposed a new approach to construct a supervisor for a
specification language even if it is not ω−closed, and proven
that the constructed supervisor is often more permissive
than the one computed by the Thistle’s supervisor synthe-
sis approach. In future work, we shall extend the proposed
algorithm to study the supervisor synthesis approach for the
nonblocking and deadlock-free supervisory control of DESs
with infinite behavior.

APPENDIX
See Table 2.
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