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ABSTRACT In view of the growing contradiction between the intensive computation demands and the
resource limitations of mobile users, mobile edge computing (MEC) and simultaneous wireless information
and power transfer (SWIPT) have emerged as new paradigms towards 5G communication. However,
coordinating the communication and computation between users and edge servers proves to be challenging
forMEC. In this paper, we propose a novel multi-user full-duplex (FD) communication system that combines
MEC and SWIPT technology in order to take the advantage of high-speedmobile computing and long-lasting
self-sustainability. Through MEC technology, users are able to calculate local computation tasks using
their batteries, and can offload partial computation tasks to the base station (BS) to reduce their energy
shortage. Moreover, users can refill their batteries while receiving the computation result sent by the BS,
thus benefiting from SWIPT technology. The FD mode can potentially increase the system performance by
allowing the simultaneous transmitting and receiving of computation tasks. Our work aims to minimize the
energy consumption of the system, while formulating resource allocation as a joint non-linear optimization
problem. We decouple the original non-convex problem into two subproblems and solve them using a
proposed algorithm that applies group iterative optimization. Numerical results prove that the proposed
algorithm is superior to other two comparison schemes and can significantly reduce the system energy
consumption and the latency.

INDEX TERMS Full-duplex, mobile edge computing, offload, simultaneous wireless information and power
transfer, group iterative optimization.

I. INTRODUCTION
The era of the Internet of Things (IoT) has brought about a
dramatic surge in data. In 2016, Cisco reported that global
mobile traffic will increase by more than seven times over
the period of 2015-2020, while network connection speeds
will almost quadruple by 2020. In addition, terminal con-
nection types and service scenarios have also exhibited an
exponential growth. Ultra-low delay and ultra-high effi-
ciency, reliability and density connections have become nec-
essary requirements of future mobile communication systems
[1]–[3], while also accelerating the development and imple-
mentation of 5G systems [4].Many new application scenarios
have emerged, including artificial intelligence/virtual reality
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(AR/VR) [5]–[7], automatic driving, industrial Internet, vehi-
cle networking, smart cities, and smart agriculture [8], [9].
Therefore, a novel network framework and corresponding
resource management scheme are urgently required to take
on the rapid development in technology that is currently
observed [10].

Since the limited computing capability of users does
not generally match the explosion of data traffic, mobile
edge computing (MEC) [11] has become an attractive
scheme. MEC is regarded as a promising technology for
computation-sensitive scenarios, as it enables mobile devices
to offload their tasks to the edge cloud for processing. MEC
plays an important role in quality of service (QoS), as it is
particularly capable of significantly improving the latency
performance of mobile devices when offloading computation
tasks to the MEC server [12].
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Moreover, with the rapid development of mobile device
performance and computing loads, the energy consumption
of mobile devices has significantly grown. In order to over-
come such mobile device sustainability challenges, wireless
energy harvesting (WEH) is proposed for the self-sustained
communication through wireless charging [13]. Simultane-
ous wireless information and power transfer (SWIPT) [14]
arose as a breakthrough technology that divides radio fre-
quency (RF) signals into two parts, information transmis-
sion and energy collection, providing a feasible solution for
excessive network energy consumption [15], [16]. SWIPT
is able to apply two different receiver architectures; time
switching (TS) periodically switches between information
decoding (ID) and energy harvesting (EH), and power split-
ting (PS) simultaneously executes ID and EH [17].

Developed on the basis of high spectrum efficiency,
full-duplex (FD) technology [18], which can transmit and
receive information simultaneously, was introduced to extend
the potential capabilities of devices. FD nodes support
amplification and forwarding transmission technology, and
can effectively improve communication capabilities with-
out increasing memory occupation and latency [19], [20].
Strengthened by improvements of self-interference (SI) can-
cellation technology [21]–[23], the FD technology is widely
applied in relay, small cellular networks (SCNs) and device-
to-device (D2D) communications to ensure QoS [24], [25].
In the real communication environments, channels are
time varying and wireless devices are not ideal. Thus,
the application of FD technology with heterogeneous ser-
vices in imperfect channels has attracted much attention for
QoS [26].

In this paper, we investigate a multi-input multi-output
(MIMO) [27] FD-enabled wireless communication system
integrated with MEC and SWIPT technologies, which intend
to meet the requirements of great computation capabil-
ity, long battery lifetime, high spectral efficiency and low
latency for the explosive expanding communications. Certain
works [28]–[30] have started research on the related frame-
work and they already proved that it is a feasible and practical
solution to combine FD with MEC and SWIPT technology.
To the best of our knowledge, jointly considering and man-
aging the power control, computing offloading policies and
resource allocation of our framework has not been the subject
of research thus far. Moreover, determining the optimization
of this complex resource allocation problem is highly chal-
lenging. The contributions of this paper are summarized as
follows:

1) We design a novel MEC framework with a MIMO
FD-enabled base station (BS) and several SWIPT-enabled
mobile users. Mobile users can offload computation tasks to
the MEC server implemented via the BS. The BS can receive
the offloading tasks and transmit the computation results from
the MEC server to other users simultaneously based on the
FD technology. On receiving the computation result, the users
will additionally receive information and harvest energy by
using SWIPT technology.

2)We formulate a joint optimization problem where the
transmitted power, the CPU frequency, the transmission
rate, and the uploaded computation task size are taken into
account. The problem aims to minimize the total system
energy consumption over a time block while guaranteeing the
QoS constraints of the system.

3) An efficient algorithm to solve the optimization prob-
lem is proposed. Since the original problem is non-convex,
we transform it into two subproblems. The closed-form solu-
tion of the CPU frequency is obtained through local com-
puting optimization of the first subproblem. In the second
subproblem, we divide the variables into two groups and
transform the non-convex optimization problem into the con-
vex optimization problem, which can be solved using the
classical interior point algorithm. Owing to this characteris-
tic, an group iterative optimization is proposed to effectively
solve this subproblem with low computation complexity.

4) Numerical results are determined under varying scenar-
ios and parameters. Simulation results demonstrate that the
proposed algorithm shows the best energy consumption and
latency performance compared with the two bench schemes.

The remainder of our paper is organized as follows.
Section II discusses related works on wireless powered
MEC systems with the different technologies. Section III
details the system model, and Section IV presents the algo-
rithm used to determine the optimal solution of the problem
model. Section V provides numerical simulation results and
Section VI concludes our work.

II. RELATED WORKS
Wireless poweredMEC systems have recently attractedmuch
interest as a promising technology [31]. Due to its abil-
ity to prolong the system lifetime, EH has been combined
with MEC to provide a sustainable computation process for
users [32]–[34]. In order to tackle the explosive growth of
data traffic, non-orthogonal multiple access (NOMA) [35]
has been proposed to attain higher spectral efficiency. NOMA
based MEC systems have been proposed whereby users
offload computation tasks to the BS using NOMA, while the
BS simultaneously decodes information in [36] and [37].

Moreover, as EH partially occupies non-negligible band-
width, FD technology can combine WEH and MEC with
NOMA to optimize the allocation of communication, com-
puting and energy resources in the Internet of Things. In addi-
tion, relay technology [38] was widely applied to reduce the
impact of transmission latency in both half-duplex (HD) and
FD protocols. The FD protocol, which generally receives
more attention due to its capability to simultaneously trans-
mit and receive information, can be summarized as follows.
During the uplink, after receiving the computation bits from
the user with a beamforming filter, the relay transmits the
computation tasks to the BS. Following the processing of
the computation tasks, the user downloads the computation
results and energy using SWIPT. The user then decodes infor-
mation and collects energy through the power splitting (PS)
receiver.
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The software-defined virtual cellular network (SDVCN)
has been defined as an extension in [39], [40]. Through
different mobile virtual network operators (MVNOs), users
can offload computation tasks to access points (BSwithMEC
servers) using three pathways: the direct transmission of
computing tasks to the access point (AP), the transmission of
computing tasks to the AP through relay, and the transmission
of computing tasks to the AP through virtual users. These
virtual users and relays work in full duplex mode.

Task offloading mechanism and resource allocation are
crucial problems in MEC systems [41]. In [42], a joint
optimization of computing mode selection and the system
transmission time allocation were presented to achieve the
maximal computation rate. The works shown in [43] con-
sidered a three-node MEC system and pursued a joint com-
putation and communication cooperation approach. In [44],
a multi-antenna NOMA-enabled computation task offload-
ing scheme was proposed for multi-user MEC systems.
A weighted sum energy consumption minimization problem
was formulated to implement the communication and com-
putation resources allocation in partial and binary offloading
cases.

We share the similar reasonable framework with sev-
eral aforementioned works. In [28], a FD-MEC system
with NOMA and energy harvesting technology was consid-
ered. They aimed at minimizing the total energy consump-
tion of the system via power control, time scheduling and
computation capacity allocation. The work shown in [29]
provided a novel energy-efficient scheduling in wireless pow-
ered FD-MEC systems. In [30], a MIMO FD relay based
SWIPT-MEC system and an energy efficient problem were
formulated to minimize the system energy consumption.

In summary, these studies essentially focused on how to
improve the computation capability of mobile terminals, how
to reduce energy consumption and how to improve spectral
efficiency, with the ultimate goal of achieving maximum
energy efficiency. Different from [28] and [29], we apply
multiple antennas for the base station (BS), which can provide
performance gain as we will discuss in Section V. Also,
there is no relay node in our framework, which makes the
offloading process and resource allocation totally different
from [30]. Based on this, we propose a resource optimization
for an architecture with a FD-MEC equipped BS and SWIPT
equipped users. Simulation results demonstrate the advantage
of our proposed algorithm both in energy consumption and
latency.

III. SYSTEM MODEL
Consider a multi-user wireless powered FD-MEC system
with K single-antenna users and a M -antenna BS, as shown
in Fig. 1. Each user is equipped with a power splitting (PS)
receiver and the BS integrated with a MEC server located
in the wireless cellular network in proximity to mobile sub-
scribers. As demonstrated in Fig. 1, the PS receiver can
operate in both energy harvesting (EH) state and information

FIGURE 1. System model of multi-user FD-MEC system.

FIGURE 2. The three system operation processes of the FD-MEC system.

decoding (ID) state, according to the conversion coefficient
β (0 ≤ β ≤ 1).
As shown in Fig. 2, the time block with duration T is

divided into K phases marked as ti (i ∈ {1, . . . ,K }, 0 ≤ ti ≤
T ), whereby we assume that each computation task can be
divided into two parts of arbitrary size by the user [45], and
the computation task should be completed within each time
block ti. We set Li as the total computation task size (in bits)
of the user Ui, and Lui as the computation task size (in bits)
thatUi uploads to the BS. Accordingly, Li−Lui represents the
remaining computation bits executed locally, while Li and Lui
should satisfy

Lui = αLi, (1)

where 0 ≤ α ≤ 1 is a weight factor. Based on the above
settings, the three system operation processes are depicted
in Fig. 2.

1) During the uplink process, Ui (i ∈ {1, . . . ,K } ) uploads
the computation task Lui to the BS. After receiving the com-
putation bits, the MEC server deployed at the BS initiates
computation of the task. Note that the computation latency
is negligible due to the powerful computation capability of
the MEC server.

2) During the downlink process, which has the same
frequency as uplink, the BS simultaneously downloads the
computation result Lrj from the MEC server to the user
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Uj (j ∈ {1, . . . ,K }, j 6= i ). As soon as Uj receives the com-
putation result, it will harvest energy and receive information
from the radio frequency (RF) signal.

3) Local computing is performed by Ui during t locali .
These three processes will be described in more detail in

the following analysis.
Rayleigh fading channel models are applied here, with

channel coefficients from Ui to BS, and BS to Ui
denoted as Hu

i ∈ CM×1 and Hd
j ∈ C1×M respec-

tively. The self-interference (SI) channel coefficient induced
by the simultaneously transmission and reception of the
BS is denoted as H0 ∈ CM×M . In addition, Hu

=

[Hu
1,H

u
2, ...,H

u
K ]

T ,Hd
= [(Hd

1 )
T , (Hd

2 )
T , ..., (Hd

K )
T ]T ). (.)T

is the transposition operation.

A. UPLINK MODEL
In the uplink, users upload computation tasks to the BS in
chronological order {U1,U2, ...,UK }. Without loss of gener-
ality, during tui , Ui uploads computation task Lui to the BS
while the BS simultaneously downloads computation result
Lrj to Uj at the same frequency, where i ∈ {1, . . . ,K }, j ∈
{1, . . . ,K }, i 6= j. Hence, the received signal at the BS is as
follows

yui =
√
puiH

u
i s
u
i +H0(

√
pdj s

d
j )+ nB, (2)

where pui is the uplink transmitted power of user Ui, which
can be regarded as the transmit precoder of Ui. The uplink
transmitted signal sui and the downlink transmitted signal sdj
are assumed with normalized power, which satisfy |sui |

2
= 1

and |sdj |
2
= 1. nB ∈ CM×1 is the additive white Gaussian

noise (AWGN) with power δ2B.
As shown in (2), the signal received at the BS consists of

three components. The first component is the offloading task
sui transmitted by user Ui passing through the uplink channel
Hu
i . It is followed by the self-interference signal from the

downlink transmission, whereby the computation result sdj
from the BS to user Uj passes through the self-interference
channel H0. The final component is the AWGN at the BS.
Then, the received signal power at the BS and the signal
to interference plus noise ratio (SINR) can be respectively
expressed as:

Pui = tr{yui (y
u
i )
H
}

= pui tr{H
u
i (H

u
i )
H
}

+ pdj tr{H0HH
0 } + δ

2
B

= pui tr{H
u
i (H

u
i )
H
}

+ pdj tr{H0HH
0 } + δ

2
B, (3)

SINRui,max =
pui tr{H

u
i (H

u
i )
H
}

pdj tr{H0HH
0 } + δ

2
B

, (4)

where, tr{.} is the operation of the matrix trace. Based on
Shannon’s theorem, the theoretical maximum achievable rate
during the uplink transmission can be expressed as

Rui,max = Blog(1+ SINRui,max), (5)

where B is the signal transmission bandwidth of the system.
Let Rui represent the actual uplink transmission rate. As the
actual uplink transmission rate can not exceed the theoretical
maximum achievable rate Rui,max [46], we can get

Rui ≤ R
u
i,max . (6)

Accordingly, the latency of the offloading transmission is

tui =
Lui
Rui
. (7)

Thus, the energy consumption at the offloading phase of
Ui is expressed as

Eoffi = pui t
u
i , (8)

and the energy consumption of all users can be derived as
follows

Euo =
K∑
i=1

pui
Lui
Rui
. (9)

B. DOWNLINK MODEL
We denote pdj as the corresponding downlink transmitted
power from the BS to Uj. The received signal at Uj is given
as

ydj =
√
pdj H

d
j s
d
j + n

d
j , (10)

where, ndj is the AWGN with power δ2j at Uj.
Similar to the uplink transmission, the first component in

(10) is the transmitted signal from the BS. For simplicity, any
co-channel interference from the uplink to the downlink is
neglected.

Accordingly, the received power at Uj is described as

Pdj = pdj tr{H
d
j s
d
j (s

d
j )
H (Hd

j )
H
} + δ2j . (11)

For the received signal goes through PS receiver at Uj, β
(0 ≤ β ≤ 1) portion is used for EH, while the remaining
(1− β) portion is used for ID. Thus, the harvest energy of all
users can be written as

Euh =
K∑
j=1

βPdj t
d
j , (12)

where tdj is the downlink transmission latency, expressed as

tdj = γ t
u
i , (13)

where 0 ≤ γ ≤ 1 is a weight factor. (13) is reasonable
because of the smaller size of downlink data and fast down-
link transmission rate according to the practical applications.
And the relationship between uplink transmission rate Rui and
downlink transmission rate Rdj is αRui = γR

d
j .

Taking the sum of the energy consumption for each time
slot at the BS, we obtain the energy consumption of the BS
as follows

EBS =
K∑
j=1

pdj t
d
j . (14)
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C. LOCAL COMPUTATION MODEL
Denote t locali as the local computing latency, where t locali ≤

tui . Let C represent the CPU cycles required for computing
1-bit of data and f ni stands for the CPU frequency required
for the n− th CPU cycles,which satisfies

0 ≤ f ni ≤ f
max
i , (15)

where f maxi is the maximum CPU frequency. Thus, the corre-
sponding computing latency is described as

t locali =

C(Li−Lui )∑
i=1

1
f ni
. (16)

The local computing energy consumption can be derived
as

E locali =

C(Li−Lui )∑
n=1

κ(f ni )
2, (17)

where κ is the effective capacitance coefficient based on the
chip architecture of the user [47]. Therefore, the total local
computation consumption is expressed as

E local =
K∑
i=1

E locali . (18)

D. PROBLEM FORMULATION
We aim to minimize the total energy consumption of the
system, while ensuring that all computation tasks are com-
pleted. Based on (9), (12), (14) and (18), the total energy
consumption of the system can be expressed as

E total = EBS + Euo + E local − Euh. (19)

Finally, we formulate the following joint optimization
problem

(P1) min
fn,pu,pd ,Lu,Ru

E total

s.t.



Euo + E local ≤ Euh

0 ≤ Lui ≤ Li
0 ≤ Rui ≤ R

u
i,max

Pumin ≤ p
u
i ≤ P

u
max

Pdmin ≤ p
d
j ≤ P

d
max

0 ≤ tui , t
d
j ≤ T

0 ≤ t locali ≤ tui
0 ≤ f ni ≤ f

max
i

(20)

where fn = [f n1 , f
n
2 , ..., f

n
K ], pu = [pu1, p

u
2, ..., p

u
K ],

pd = [pd1 , p
d
2 , ..., p

d
K ], Lu = [Lu1 ,L

u
2 , ...,L

u
K ], Ru

=

[Ru1,R
u
2, ...,R

u
K ], i ∈ {1, . . . ,K }, j ∈ {1, . . . ,K }.

In problem P1, constraint 1) indicates that the users’
energy consumption (local computing energy consumption
plus offloading energy consumption) must not exceed their
harvested energy. Constraints 2) and 3) imply that the offload-
ing computation bits should not be greater than the total com-
putation task bits, and that the actual achievable rate should

be no more than the maximum achievable rate respectively.
Constraint 4) indicates that Pumin and Pumax are the lower
and upper limits of each user’s transmitted power. Similarly,
constraint 5) denotes the power range transmitted by the BS.
In constraint 6), the offloading latency of each user Ui and
the downlink transmission time of the BSmust not exceed the
total time slot length T . In constraint 7), the local computing
time should not exceed the uplink transmission time, while
constraint 8) indicates that f ni should be below the maximum
frequency, in according with (15).

IV. OPTIMAL SOLUTION
Due to the non-convexity of both the objective function and
constraints, solving problem P1 proves to be highly chal-
lenging. Therefore, we divide the original problem P1 into
two subproblems, local computation optimization and group
iterative optimization. We first determine the optimal CPU
frequency fopt by local computation optimization and subse-
quently propose an iterative algorithm with low complexity
for fixed fn. Since the variables pu, pd ,Lu andRu are coupled
in the second subproblem, making the subproblem complex
to solve, we adopt the method of group iterative optimization,
where the first group of variables includes pu, pd and Ru,
while the second group of variables includes Lu and Ru.

A. LOCAL COMPUTATION OPTIMIZATION
In this section, we aim to optimize the CPU frequency fn.
Inspired by [45], the optimal CPU frequency of each time
block ti should satisfy

f 1i = f 2i = ... = f
C(Li−Lui )
i = fi (21)

where fi represents the same CPU frequency maintained in
each cycle. For the sake of brevity, let 0 = EBS +Euc−Euh,
then, the problem (P1) can be transformed into

(P1.1) min
fn,pu,pd ,Lu,Ru

0 +

K∑
i=1

C(Li − Lui )κ(fi)
2

s.t.



Euo +
K∑
i=1

C(Li − Lui )κ(fi)
2
≤ Euh

0 ≤ Lui ≤ Li
0 ≤ Rui ≤ R

u
i,max

Pumin ≤ p
u
i ≤ P

u
max

Pdmin ≤ p
d
j ≤ P

d
max

0 ≤ tui , t
d
j ≤ T

0 ≤
C(Li − Lui )

fi
≤ tui

0 ≤ fi ≤ f maxi

(22)

Clearly, in order to minimize the objective function, fi
has to be as small as possible. Thus, from the constraint
0 ≤

C(Li−Lui )
fi

≤ tui , we can determine the lower bound of
fi, the optimal CPU frequency, as follows

f opti =
C(Li − Lui )

tui
(23)
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Algorithm 1 Local Computing Optimization

Input: K ,M ,B,Hu,Hd ,H0,T ,C, κ, β, γ,L, δ2j , δ
2
B, s

u,
sd ,Pumin,P

u
max ,P

d
min,P

d
max ,L

u,pu,pd ,Ru

1: According to (22), get the optimal CPU frequency f opti =
C(Li−Lui )

tui
, and t locali = tui

2: Convert (P1.1) into (P2) by putting f opti =
C(Li−Lui )

tui
and

t locali = tui into P(1.1)
Output: f opt

Based on the above analysis, it is clear that, at each time
block, we have f opti = f 1i = f 2i = ... = f

C(Li−Lui )
i =

C(Li−Lui )
tui

. By extending to K users, the optimal local energy
consumption is executed through local computing at each
time block. Now replace f ni with

C(Li−Lui )
tui

in (16) and (17),
we get

t locali = tui (24)

E local =
K∑
i=1

κC3(Li − Lui )
3

(tui )
2 (25)

Problem (P1.1) can now be rewritten as

(P2) min
pu,pd ,Lu,Ru

E total

s.t.



Euo +
K∑
i=1

κC3(Li − Lui )
3

(tui )
2 ≤ Euh

0 ≤ Lui ≤ Li
0 ≤ Rui ≤ R

u
i,max

Pumin ≤ p
u
i ≤ P

u
max

Pdmin ≤ p
d
j ≤ P

d
max

0 ≤ tui , t
d
j ≤ T

(26)

This algorithm is depicted in Algorithm 1.

B. GROUP ITERATIVE OPTIMIZATION
In order to solve the non-convex problem (P2), we first con-
vert it into the following equivalent problem

(P2.1) min
pu,pd ,Lu,Ru

K∑
i=1

pui t
u
i +

K∑
i=1

C3(Li − Lui )
3

(tui )
2

+

K∑
j=1

pdj (γ t
u
i )−

K∑
j=1

βf (pdj )
d (γ tui )

s.t.



K∑
i=1

pui t
u
i +

K∑
i=1

C3(Li − Lui )
3

(tui )
2

≤

K∑
j=1

βf (pdj )(γ t
u
i )

0 ≤ Lui ≤ Li
0 ≤ Rui ≤ R

u
i,max

Pumin ≤ p
u
i ≤ P

u
max

Pdmin ≤ p
d
j ≤ P

d
max

0 ≤ tui ≤ T

(27)

where f (pdj ) = Pdj , f (p
d
j ) is a linear function of pdj as (11).

And since tdj = γ t
u
i , 0 ≤ γ ≤ 1, constraint 0 ≤ tui , t

d
j ≤ T

can be transformed into 0 ≤ tui ≤ T .
As problem (P2.1) is still a non-convex problem, we pro-

pose an asymptotic algorithm that divides all variables into
two groups for iterative optimization. The first group is
(pu,pd ,Ru), while the second group is (Lu,Ru). After opti-
mizing the first set of variables, we bring the optimal solution
to the second set of variables.

Thus convex problem (P2.2), coupled with tuple
<pu,pd ,Ru>, is expressed as

(P2.2) min
pu,pd ,Ru

K∑
i=1

Lui
pui
Rui
+

K∑
i=1

C3(Li − Lui )
3

(
Lui
Rui
)
2

+

K∑
j=1

γLui
pdj
Rui
−

K∑
j=1

βf (pdj )γ
Lui
Rui

s.t.



K∑
i=1

Lui
pui
Rui
+

K∑
i=1

C3(Li − Lui )
3

(
Lui
Rui
)
2

≤

K∑
j=1

βf (pdj )γ
Lui
Rui

0 ≤ Lui ≤ Li
0 ≤ Rui ≤ R

u
i,max

Pumin ≤ p
u
i ≤ P

u
max

Pdmin ≤ p
d
j ≤ P

d
max

0 ≤
Lui
Rui
≤ T

(28)

where Lui , i ∈ {1, . . . ,K } is fixed.
Proof: Let vi = 1

Rui
and qi = (Rui )

2, we can obtain an
optimal model with five variables as described below

(P2.3) min
pu,pd ,Ru,v,q

K∑
i=1

Lui p
u
i vi +

K∑
i=1

C3(Li − Lui )
3

(Lui )
2 qi

+

K∑
j=1

γLui p
d
j vi −

K∑
j=1

βf (pdj )γL
u
i vi

s.t.



K∑
i=1

Lui p
u
i vi +

K∑
i=1

C3(Li − Lui )
3

(Lui )
2 qi

≤

K∑
j=1

βf (pdj )γL
u
i vi

0 ≤ Lui ≤ Li
0 ≤ Rui ≤ R

u
i,max

Pumin ≤ p
u
i ≤ P

u
max

Pdmin ≤ p
d
j ≤ P

d
max

0 ≤ Lui vi ≤ T

(29)

where, v = [v1, v2, ..., vK ],q = [q1, q2, ..., qK ].
For problem (P2.3), the second-order derivative of each

variable in the objective function equals zero. In addition, all
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constraints are linear. Therefore, problem (P2.2) is a convex
optimization problem that can be solved using standard inte-
rior point algorithm.

We continue to optimize the second set of variables
<Lu,Ru> with fixed variables pu,pd . Problem (P2.2) is then
transformed to the following

(P3) min
Lu,Ru

K∑
i=1

Lui
pui
Rui
+

K∑
i=1

C3(Li − Lui )
3

(
Lui
Rui
)
2

+

K∑
j=1

γLui
pdj
Rui
−

K∑
j=1

βf (pdj )γ
Lui
Rui

s.t.



K∑
i=1

Lui
pui
Rui
+

K∑
i=1

C3(Li − Lui )
3

(
Lui
Rui
)
2

≤

K∑
j=1

βf (pdj )γ
Lui
Rui

0 ≤ Lui ≤ Li
0 ≤ Rui ≤ R

u
i,max

Pumin ≤ p
u
i ≤ P

u
max

Pdmin ≤ p
d
j ≤ P

d
max

0 ≤
Lui
Rui
≤ T

(30)

where pui , p
d
j , i ∈ {1, . . . ,K }, j ∈ {1, . . . ,K } are fixed, and

the problem (P3) is also convex.
Proof: Let vi = 1

Rui
, qi = (Rui )

2, ei = 1
Lui
, xi = 1

(Lui )
2 , and

consider the following problem comprising of four variables

(P3.1) min
Lu,v,q,e,x

K∑
i=1

pui L
u
i vi +

K∑
j=1

γ pdj L
u
i vi

+

K∑
i=1

3−

K∑
j=1

βf (pdj )γL
u
i vi

s.t.



K∑
i=1

Lui p
u
i vi +

K∑
i=1

3

≤

K∑
j=1

βf (pdj )γL
u
i vi

0 ≤ Lui ≤ Li
0 ≤ Rui ≤ R

u
i,max

Pumin ≤ p
u
i ≤ P

u
max

Pdmin ≤ p
d
j ≤ P

d
max

0 ≤ Lui vi ≤ T

(31)

where v = [v1, v2, ..., vK ], q = [q1, q2, ..., qK ],
e = [e1, e2, ..., eK ], x = [x1, x2, ..., xK ], 3 =
C3

γ 2
(L3i x − 3L2i e− L

u
i + 3Li)qi.

We determine the second derivative of each variable in
the objective function of (P3.1). Again, the second-order
derivative is zero, which proves that the objective function
is convex. The constraints also indicate convexity. We use the
interior point algorithm to obtain the final optimal solution.

Based on the above characteristics, we propose an algo-
rithm to effectively solve subproblem (P2), with the main
steps summarized in Algorithm 2.

Algorithm 2 Group Iterative Optimization

Input: K ,M ,B,Hu,Hd ,H0,T ,C, κ, β, γ,L, δ2j , δ
2
B, s

u,
sd ,Pumin,P

u
max ,P

d
min,P

d
max ,L

u(0),pu(0),pd(0),Ru(0)

1: Set the initial value Luini = Lu(0),puini = pu(0),pdini =
pd(0),Ru

ini = Ru(0), and iteration number n = 1
2: repeat
3: Solve problem (P2.2) with fixed Lu(n−1), while puini =

pu(n−1),pdini = pd(n−1),Ru
ini = Ru(n−1), to achieve the

optimal (pu(n),pd(n),Ru(n));
4: Solve problem (P3) with fixed (pu(n),pd(n)), while

Ru
ini = Ru(n), to achieve the optimal (Lu(n),Ru(n))

5: Set n = n+ 1;
6: until the cost function of problem (P2) convergences.

Output: Luopt ,p
u
opt ,p

d
opt ,R

u
opt

V. NUMERICAL RESULTS
In this section we present the numerical results in order to
demonstrate the superiority of the proposed algorithm. For
comparisons, we propose two benchmark schemes:

1) The fixed-variable scheme, whereby variables
pu,pd ,Lu, and Ru are fixed on their initial values, i.e.,

Lu = Luini = θL, (32)

pu = puini, (33)

pd = pdini, (34)

Ru
= Ru

ini = Ru
max , (35)

where 0 ≤ θ ≤ 1 is the offloading ratio.
2) The full-offloading scheme, whereby all users upload

their total computation tasks to the BS. Thus, no local com-
putation is required and the optimal CPU frequency of local
compution equals zero. By solving problems (P2.2) and (P3),
the optimal transmitted power (puopt ,p

d
opt ) and the optimal

transmission rate (Ru
opt ) can be obtained with Lu = L,

fopt = [0, 0, . . . , 0].
The simulation parameters are summarized in Table 1.

For accuracy, we run over 1000 Monte-Carlo simulations to
average the optimization results.

Fig. 3 demonstrates that the proposed algorithm con-
verges after four runs under varying computation task sizes.
This indicates the effectiveness of the proposed algorithm.
Fig. 4 presents the average energy consumption of the system
versus computation task size L when K = 2 and M = 6.
The average energy consumption increases with computa-
tion task size L under all scenarios. For the fixed-variable
scheme, it is seen when θ increases from 0.1 to 1, more
offloading tasks cause more energy consumption. Moreover,
the proposed algorithm is superior to the two benchmark
schemes, the fixed-variable scheme and the full-offloading
scheme. In addition, it is clear that the full-offloading scheme
which includes power allocation optimization achieves a
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TABLE 1. Simulation parameters.

FIGURE 3. Convergence behavior of the proposed algorithm.

FIGURE 4. The sum energy consumption of the system versus the
computation task size L.

much better performance compared to the fixed-variable
scheme which excludes power allocation optimization. This
implies that power allocation optimization results in greater
improvements to system performance.

FIGURE 5. The sum energy consumption of the system versus the
computation task size L under different number of BS antennas (M).

FIGURE 6. The sum energy consumption of the system versus the
computation task size L under different number of users (K ).

Fig. 5 compares the system energy consumption versus
computation task size L under different number of the BS
antennas M . For the fixed-variable scheme, the number of
antennas has least influence on energy consumption. How-
ever, for the full-offloading scheme and our proposed algo-
rithm, the system energy consumption is greatly reduced
when M = 8 compared with M = 1 scenario. Thus, as the
number of the BS antennas increases, our algorithm exhibits
greater decline in energy consumption. As a result, we con-
clude that a greater amount of BS antennas will provide an
improved system performance for our system.

Fig. 6 shows that the total energy consumption increases
with number of users K under different computation task
sizes. This can be attributed to more offloading data when
the number of users increases, resulting in higher energy
consumption of the system. In addition, the proposed algo-
rithm performs the best in energy consumption compared
with the other two schemes, demonstrating the suitability of
the proposed algorithm in multi-user senarios.
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FIGURE 7. The sum energy consumption of the system versus PS receiver
coefficient β.

FIGURE 8. The sum energy consumption of the system versus the
downlink time weight factor γ .

Fig. 7 compares the energy consumption of the three
schemes under different PS receiver coefficient β. The energy
consumption decreases with β in all three schemes. This
is because β represents the users’ capability of energy har-
vesting. When β increases, it means more harvested energy,
in other words users can consume less of their own energy to
finish the computing tasks. The relations between the system
energy consumption and the downlink time weight factor γ
is illustrated in Fig. 8. It is clear that the sum energy con-
sumption increases with γ . This implies that it is beneficial to
decrease the downlink transmission time such that the system
energy consumption will be reduced.

Fig.9 illustrates the offloading delay of the uplink users
for the three schemes. The fixed-variable scheme shows a
small superiority than the full-offloading scheme because the
simulation of the fixed-variable scheme runs at the offloading
ratio θ = 0.1, which means smaller offloading task than
the full-offloading scheme. The proposed algorithm shows
the best latency performance among the three schemes which
indicates the great advantage of our scheme not only in the
energy efficiency but also in the latency performance.

FIGURE 9. The offloading delay versus the computation task size L.

VI. CONCLUSION
We investigated a novel resource allocation model that
combined MEC and SWIPT technologies for a MIMO
FD-enabled cellular communication system to reduce the
burden of users’ intensive computation tasks and the energy
consumption of the multi-user FD-MEC cellular network.
We formulate a jointly optimization problem for CPU fre-
quency, transmitted power, transmission rate, and offloading
computation size. Furthermore, we decomposed the original
problem into two subproblems, and the group iterative opti-
mization algorithm was proposed to solve these problems.
Numerical results demonstrate that our optimization scheme
converges to the optimal solution within a minimal number
of iterations and clearly outperforms the current baseline
schemes both in energy consumption and latency.
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