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ABSTRACT Resistive RandomAccess Memories (RRAM) have recently shown outstanding characteristics
such as high-scalability, high-speed, high-density, and low-energy operation. A simple and accurate model
is crucial for rapid design and verification when using RRAM devices at the circuit level. The appropriate
model selection gives insight into the behavior of RRAM as well as the efficient use of its unique properties.
This work intends to guide the circuit designers in selecting the most appropriate RRAM model for their
applications. We introduce a complete set of evaluation criteria for memristor models: type of model, type
of switching, genericity, complexity, compatibility with actual physical switching mechanisms, linearity,
symmetry, voltage/current control, hard set/soft reset, support electroforming, support for high programming
signal frequencies, existence of a threshold, voltage level, timing dependence, temperature dependence and
variability. This study compares the main existing RRAM models and summarizes the results in a table
showing the main features and limitations of each model. Through extensive simulations and comparisons
with experimental data, we provide an analysis and a validation of the reviewed models within the same
simulation environment, ranging from individual elementary cells to large memory arrays. Furthermore, we
provide a single and unique Verilog-A code integrating all the compared models.

INDEX TERMS Resistive random access memory (RRAM), memristor models, Verilog-A, model compar-
ison, models assessment, simulation, experimental validation.

I. INTRODUCTION
The end of lithographic scaling of conventional memory
technologies such as SRAM, DRAM, and NAND flash has
been an eminent call for the past few years, with many
touting the emergence of newmemory technologies including
spin-torque-transfer random access memory (STT-RAM),
phase-change memory (PCM), and resistive random access
memory (RRAM). Recently, RRAM devices received con-
siderable attention given their fast programming and high
scalability. In its primitive form, a resistive memory element
relies on a Metal/Insulator/Metal (MIM) stack acting as a
resistive switch. This concept also matches the core behavior
of the so-called memristor devices discovered by Chua [1].

A critical requirement for using RRAMs in circuits is a
predictive model for the device behavior that can guide the
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circuit designers in their different applications. An appro-
priate choice of the model will not only lead to a better
understanding of the memory cell’s behavior but also results
in a better exploitation of its unique properties in novel
systems and architectures combining data storage and data
processing in the same physical location such as neuromor-
phic applications, memory computing, etc.

The motivation of this work is to provide designers with a
guide to select the most appropriate RRAM model for their
applications. Multiple reviews on RRAM device modeling
have appeared in the literature [2]–[4]; however, to the best
of the authors’ knowledge, this paper is the first work that
presents a complete set of evaluation criteria and an experi-
mentally validated comparative analysis for RRAM models.
In this study, we provide a comparative analysis of several
popular RRAM models tested within the same simulation
environment. We also introduce a unique implementation of
all the models in Verilog-A. The different RRAM models
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used in this work include the Linear Ion Drift Model [5],
Non-Linear Ion Drift Model [6], Simmons Tunnel Barrier
Model [7], TEAM Model [8], VTEAM model [9], Stanford
model [10], SPICE model [11], and IM2NP model [12].
The manuscript is organized as follows. Section II gives an

overview of RRAM technology. Section III reviews various
previously published RRAM device models and novel mod-
eling techniques. Section IV presents the simulation results
of the various models at the cell level in different configu-
rations. Section V is a comparative analysis of the different
models with experimental validation. Section VI includes the
validation and assessment of the models at the circuit level.
Concluding remarks are in Section VII.

II. RRAM TECHNOLOGY
In RRAM the data is stored as two (or multiple) resis-
tance states of the resistive switching device. After an initial
electroforming process, the RRAM device resistance state
can switch from low (ON or LRS state) to high (OFF or
HRS state) and vice versa. The switching process is mainly
due to the formation and dissolution of the Conductive
Filament (CF) [13] as oxygen vacancies are created and ions
are redistributed under the influence of the local electric field
and temperature distribution. The electroforming process cor-
responds to the first switching of the RRAM device from a
virgin state (very high resistance) to a conductive state (low
resistance) by applying a high voltage. In the case of bipolar
switching, bipolar voltage sweeps are required to switch the
memory element, as shown in Figure 1.

FIGURE 1. A typical I-V curve of bipolar switching RRAM cell.

The resistance state switching occurs by applying a spe-
cific voltage to the structure (i.e., VSET and VRESET ). Based
on the I-V characteristic shown in Figure 1, four RRAM crit-
ical reliability parameters can be considered: VSET , VRESET ,
ROFF , and RON . From a design point of view, these param-
eters are critical since VSET and VRESET are the program-
ming thresholds and RON /ROFF ratio guarantees the memory
function.

Several other parameters play an important role at the
design level, such as the maximum current during switch-
ing (namely IOFFand ION ). To allow for low power and
reliable SET and RESET operations, Burr et al. introduced
a 1T/1R memory cell (one MOS transistor in series with
one resistor) [14]. In this configuration, the MOS transistor
compliance allows control of the maximum available current
during transitions. In terms of performance, the programming
speed, which is the time required to SET (TSET ) or RESET
(TRESET ) the resistive device, is one of the most critical
parameters [15]. Table 1 summarizes the main RRAM cell
parameters.

TABLE 1. RRAM cell parameters.

Although RRAM-based devices have shown promising
properties, some challenges remain, among which the device
variability (or reproducibility) is the main one. Therefore,
both design and modeling community are giving increasing
attention to the impact of variability on the RRAM cell
parameters [16]. Another important marker of RRAM is the
variation of SET/RESET/FORMING thresholds versus tem-
perature [17].
Modeling and accurate characterization of the SET/RESET

mechanisms remain a significant challenge [18], [19]. Many
details are still under discussion, such as the origin of the
nonlinear switching kinetics [20]. In memory devices relying
on a resistance change, complex physical mechanisms are
responsible for the reversible switching of the electrical
conductivity between high and low resistance states. The
resistivity change is generally attributed to the formation and
dissolution of conductive paths between metallic electrodes.
Various mechanisms may explain the resistance change
(oxygen vacancy migration, oxidation-reduction processes,
thermal diffusion, etc.). RRAM models exploit the vari-
ous resistance change mechanisms to evaluate the impact
of external stimulus on the cell parameters during pro-
gramming operations. Moreover, RRAM models’ complex-
ity should not be high to allow an implementation into
electrical simulators and assess cell performances at the
circuit level.

III. GENERAL OVERVIEW OF RRAM MODELS
A. LINEAR ION DRIFT MODEL
Developed by R.SWilliams at HP labs [5], this model was the
first physical model of memristor. This model, assumes an
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FIGURE 2. Linear ion drift model.

average ion mobility, uniform field and ohmic conductance
for the memristor device.
As shown in Figure 2, in the memristive element (widthD)

there are two regions: doped region (width w) with positive
oxygen ions (commonly TiO2) that has a limited resistance
and then higher conductivity; and a second region that is
undoped.

B. NON-LINEAR ION DRIFT MODEL
After the fabrication of memristive devices, Strukov and
Williams [6] demonstrated that they exhibit high non-
linearity behavior. Therefore, the HP laboratory developed
the first nonlinear ion drift model. The non-linearity of
the device assumed in this model is voltage-dependent
(nonlinear dependence between the internal state derivative
and the voltage). The state variable w is a standardized
parameter varying from 0 to 1. By setting the appropri-
ate values of the model parameters, this model accurately
describes both the static electric conduction as well as
the dynamic switching behaviors and fits the experimen-
tal data well. Logic gates are the primary application of
this model.

C. SIMMONS TUNNEL BARRIER MODEL
Pickett et al. proposed a complex memristor physical model
with higher accuracy in [7]. As shown in Figure 3, it rep-
resents the memristor as an electron tunnel barrier in
series with a resistor. Nonlinear and asymmetric switch-
ing of the memristor is also assumed. The Simmons tun-
nel barrier width [21] is considered as the state variable
x, which is the oxide region width. Therefore, the oxygen
vacancy drift velocity can be deduced from the state variable
derivative.

D. THRESHOLD ADAPTIVE MEMRISTOR
MODEL (TEAM)
The ThrEshold Adaptive Memristor model [8] has been
developed to overcome the complexity and limited compu-
tational efficiency of the Simmons tunnel barrier model. This
model preserves the same physics principle, but using simpler
mathematical equations. This model developed two main
contributions (1) the state variable does not change unless the
applied current exceeds a certain threshold. (2) The equations
relating the current to the internal state derivative use polyno-
mials rather than exponentials. This model is simple, general,
and computationally efficient.

FIGURE 3. Representation of the Simmons tunnel barrier model.

E. VOLTAGE THRESHOLD ADAPTIVE MEMRISTOR
MODEL (VTEAM)
VTEAM model [9] is a modified version of the TEAM
model, where a threshold voltage is used rather than a
threshold current. This model is appropriate for certain logic
and memory applications.

F. STANFORD MODEL
This SPICE-compatible compact model characterizes the
Metal-Oxide RRAM bipolar switching behavior [10].
Jiang et al. abbreviated the ions/vacancies migration

complicated process into the progress of a unique pri-
mary filament that preserves the main switching physics.
The dominant variable determining the device resistance
is g the tunneling gap size that represents the distance
from the filament tip to the opposite electrode, as shown
in Figure 4. An exponential relation between the tunnel-
ing gap distance and the current conduction is assumed.
The tunneling gap distance is deduced after calculating
the gap progress taking into account the local temper-
ature (Joule heating), the electric field, and oxygen ion
migration (temperature-enhanced). Furthermore, this model
includes temperature-dependent and stochastic filament
movement (δ g).

G. SPICE MODEL
The SPICE model [11] assumes a memristance controlled by
a voltage source. The memristive system considered in this

FIGURE 4. Stanford-PKU RRAM model illustration.
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FIGURE 5. SPICE model representation.

model is a subcircuit, shown in Figure 5, including a resistor
R, a current source B, and capacitor C . The capacitor voltage
(Vx between the capacitor and the current source) defines the
resistance of R.

H. IM2NP RRAM MODEL
The IM2NP Eldo model is a compact model that describes
well the SET and RESET operations in bipolar resistive
switching in Oxide-based memory devises. The model takes
into account the conductive filament (CF) electric field-
induced creation and dissolution as well, by including in
a unique equation of electrochemical reaction and thermal
mechanism. This model is also the first that includes the
electroforming process of RRAM devices. The model has
been calibrated on dynamic and quasi-static experimental
data [12]. Figure 6 gives a representation of the model and
its main parameters.

FIGURE 6. IM2NP RRAM model illustration.

I. OTHER MODELING TECHNIQUES
A different modeling technique proposed in [22] includes
truncated-cone shaped filaments which are known to be
close to the real conductive filament (CF) geometry and a
detailed thermal approach, where two temperatures are con-
sidered to describe the rupture process at the CF’s narrowest
part and also the main CF body’s electrical conductivity
variations.
Another interesting advanced 3D physical modeling tech-

nique to predict correctly the switching phenomena has been
developed recently in [23] focusing on the promising silicon-
rich silica (SiOx) RRAMs. This technique provides new
insight on RRAM physics; however, it is not included in
this work since it does not explicitly provide the modeling
equations.

Additionally, a SPICE model developed in [24] exhibits
a voltage threshold. This model appears to match well the
characterization data of different memristors.
New SPICE models with simpler analytical approxima-

tions have been developed to overcome the complexity of the
memristor physical processes implementation. Bayat et al.
proposed a TiO2 memristor SPICE model based on Simmons
Tunnel Barrier Model, but with improved accuracy and lower
numerical simulation cost [25]. However, in this model, only
mathematical approximations of measured characteristics are
used with no qualitative insight.
Alternatively, several behavioral models (e.g., those by

Biolek et al. [26], [27]) simplify the physical memristor
mechanism to some useful abstractions fitted to the exper-
imentally observed behaviors to maximize the size of the
memristive networks.

IV. MODELS SIMULATION RESULTS
For a fair comparison between the several models listed in
Section III, we created an identical Cadence simulation envi-
ronment. Moreover, to help the design community selecting
themost suitable model for their applications without wasting
time reading each model publication separately and writing
the corresponding code, a Verilog-A code of all the listed
models is presented in Appendix-A. In this implementation,
a ‘‘num_model’’ parameter should be set to target a specific
RRAM model.
The TEAM, VTEAM, Simmons Tunnel Barrier Model,

Linear Ion Drift Model, and Non-Linear Ion Drift models are
implemented in Verilog-A within the same code [28], [29].
Stanford, IM2NP and SPICE models developed initially in
Verilog, Eldo, and Pspice respectively are added.

A. SIMULATION SETUP
The design is implemented using ST-Microelectronics
HCMOS9 (130nm) technology under a supply voltage of
VDD = 1.8. In transient simulations, we apply to the
Top/Bottom electrodes a pulse wave of 1MHz frequency,
1.8V peak-to-peak, 100ns period, and 1ns rise/fall time.
In the 1T1R configuration, we selected an NMOS transis-

tor since it provides more current for a given L andW than a
PMOS device.

B. 1R CONFIGURATION
A single RRAM device (Figure 7) is simulated using each
model. The transient I-V characteristics of the different sim-
ulated models using this configuration have been published
in our previous work [30]; and the results are explained in
Section V.

C. 1T1R CONFIGURATION
As shown in Figure 8, the 1T1R structure is composed of one
memristor (RRAM cell) and one transistor.
TE the Top electrode of the memristor is connected to the

Bit Line (BL) of the RRAM and the bottom electrode BE is
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FIGURE 7. (a) 1R RRAM cell; (b) cell cross-section view.

FIGURE 8. (a) 1T1R RRAM cell (b) cell cross-section view.

connected to the transistor drain. WL is the word line, and SL
is the source line of the RRAM memory.
The transistor is used to access the selected cell and isolate

it from unselected ones. Another primary reason for using
the transistor is to limit the write current (set the compli-
ance). However, the choice of the transistor dimensions is
fundamental since it determines the area of the cell and
consequently, the density of cells and the possible final device
applications.
The major issue of the 1T1R topology is that a single

device used as a switch cannot pass well both high and low
voltages: NMOS devices are good at passing low voltages,
while PMOS devices high voltages.
We decided to keep the transistor width and length to their

minimum values: W=240nm and L=180nm, and to connect
the transistor gate to 1.8V or 0V; the compliance current
is hence around 100uA. Figure 9 shows the transient I-V
characteristics of the different simulated models.

V. MODEL COMPARISON
We performed the simulations of all the studied models
under the same Cadence environment and the same ini-
tial conditions; then, we compared the extracted parameters
to the experimental data [31]. The experimental reference
is an RRAM device of 10 nm thickness that consists of
TiN/Ti/HfO2/TiN structure with a 3-nm-thick HfO2 layer;
tested under input voltage between [−1.8V, 1.8V] at very high
frequency. We selected [31] as a reference since it matches
best our simulation conditions and settings. Table 2 presents

FIGURE 9. Models I-V characteristics in 1T1R configuration.

the extracted parameters of all the simulated models at 1T1R
configuration. For easier comparison, Figure 10 compares the
measured parameters (VSET , VRESET , TSET , and TRESET ) to
the experimental data [31] shown in red.
According to the simulation results presented in Table 2,

we performed a ranking of the models based on the number of
parameters that match the experimental data [31]. The results
are shown in Figure 11. The weight of each parameter is
determined regarding its importance and impact at a design
level; in decreasing order VSET /VRESET , the resistance ratio
(ROFF/RON ) and TSET /TRESET .

A. COMPARISON METRICS
Many review papers and comparative studies in the litera-
ture tried to classify the RRAM models but with no clear
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TABLE 2. 1T1R cell all models extracted parameters compared to
experimental measurements [31].

FIGURE 10. Comparison between the experimental data [31] (RED
columns) and the parameters of each simulated model VSET , VRESET ,
TSET , and TRESET .

FIGURE 11. Models ranking based on the number of parameters that
match the experimental data [31].

evaluation criteria. The study suggested in [32] is the first
work to introduce three main evaluation criteria of the mod-
els: plausibility of the I-V characteristics, nonlinearity of the
switching kinetics, and the correct prediction of two anti-
serially connected devices behavior. However, these met-
rics are still incomplete to compare the different models

thoroughly. In the purpose of performing a fair comparison
between the several studied models, we introduce the follow-
ing complete set of metrics:

• Type of the model: whether it is a compact, analytical,
or physics-based model.

• Efficient use in RRAMarrays: checks if the model can
be used for RRAM (1t1R and crossbar) arrays.

• Type of switching (unipolar or bipolar): checked by
applying first a unique positive voltage then a sequence
of positive and negative voltage pulses.

• Genericity: this characteristic allows the model to be
adapted to different memristor technologies.

• Complexity: A model is considered complex if the
equations use hyperbolic sine and exponents rather than
polynomials [33]. This metric is determined from the
model equations and double-checked by measuring the
simulation runtime of the different models.

• Compatibility with the actual physical switch-
ing mechanism (creation and destruction of con-
ductive filaments): checked from the equations of
the model.

• Non-Linearity: it should be in the model equations
and reflected in the I-V characteristic. The origin of
this nonlinearity has been attributed to the nonlin-
ear drift of the ionic defects accelerated by Joule
heating [34].

• Symmetry of the modeled SET/RESET processes. This
feature appears in the simulated I-V characteristic of the
model.

• Voltage-controlled or current controlled
• Hard set/soft reset, presented in the literature for
actual memristive devices as the ratio between reset
time and set time [35], a high ratio means a hard
set and a soft reset. This metric is checked from
the I-V characteristic and time parameters measured
in Table 2.

• Electroforming: A voltage higher than the regular oper-
ation should applied to the device to construct an initial
filament between top and bottom electrodes. An explicit
electroforming equation should be provided in themodel
description.

• Support for high programming signal frequencies:
A model should support a wide range of working
frequencies to make possible the simulation of novel
fabricated devices that present very fast switching
times [36]. For each model, a frequency sweep is per-
formed to check whether it supports high frequencies
or not.

• Existence of a threshold: physical memristor devices
demonstrate a threshold voltage where hysteresis only
appears when the voltage across the memristor exceeds
the threshold [37].

• Pulse-programming Voltage dependence: A simula-
tion is performed using a sweep on the amplitude of the
applied pulsed voltage to confirm this dependence.
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• Pulse-programming Timing dependence: The same
simulation is performed using a square signal by varying
the pulse width to check if the duration of the applied
voltage affects the model parameters.

• Temperature dependence: A temperature sweep is
applied to check if the temperature affects the model
parameters.

• Variability dependence [38]. It includes Device-to-
device variability and Cycle-to-cycle variability. A sim-
ulation is performed by changing a variability parameter
dx (Appendix A) to check this dependence.

• Random Telegraph Noise (RTN) [39] is another
important source of variability in RRAM devices.
The RTN fluctuations are not included in the stud-
ied models; however, Puglisi et al. [39] developed a
Verilog-A physics-based compact model of the RTN
that can be easily plugged in any existing RRAM
device models.

• Retention/endurance: the endurance characteristic
is measured by performing a series of consecutive
set/read/reset/read cycles [40]. The retention measures
the stability of HRS and LRS over time under a given
temperature. Several models have been proposed to
explain retention losses [41]–[43]. The compared mod-
els in this work do not include the retention feature; how-
ever, an updated version of the Stanford model proposed
in [44] includes a resistance retention failure mechanism
modeled in Verilog-A.

Linear [5] and nonlinear [6] models are intuitive and straight-
forward, based on the same assumption of two resistors in
series, yet they present the lowest accuracy compared to
other models [32]. Besides, these models are not generic.
The Simmons tunnel barrier model [7] is known to be an
accurate physical model [45] however, compared to the first
two models; it is not generic and fits best for only specific
memristor devices based on TiO2 stacks. That’s why the error
between our experimental reference (HfOx based) [31] and
this model is high. This model is also complicated, as the
relationship between current and voltage is not explicit and
computationally inefficient.
Moreover, the Linear Ion Drift Model [5], the non-

Linear Ion Drift Model [6] and the Simmons Tunnel Barrier
Model [7] do not contain any threshold, which means that
their resistance varies for any voltage or current value.
The TEAM [8] and VTEAM [9] models are simpler ver-

sions of the Simmons model, generic, more computationally
efficient and include threshold current and threshold voltage
respectively; however, they are not physical models.
The SPICEmodel [10] is simple; it fits all the experimental

parameters [31] except the current since the current-voltage
relationship is not physics-based. The model does not match
the actual memristive behavior, and its state variable has no
physical explanation.
The Stanford [10] and IM2NP [12] are two physics-based

compact models for bipolar RRAMmemristive devices; they

are the only models to take into consideration temperature
effects, timing effects and variability observed in many actual
RRAM cells.
For easier use and understanding, we summarized the com-

parison results in Appendix A.

B. THERMAL EFFECT ANALYSIS
The Stanfordmodel [10] and the IM2NPmodel [12] as almost
all the models, which include the thermal effect [22], [23],
[26], [46], [47], are based on the filament dissolution model
proposed in [48], [49]. In this model, the conductive filament
rupture, or dissolution occurs under the effect of a significant
change in temperature based on the fundamental concept of
Joule heating [50]. During the RESET process and by increas-
ing the applied voltage, the temperature steadily rises until a
value called the critical temperature. Above this critical tem-
perature, the conductive filament dissolution/rupture takes
place at a fast rate inducing a High Resistance State (HRS)
of the device.
During the SET process, the temperature rises due to the

increase in the CF radius.
In the Stanford model [10], the applied voltage, as shown

in Figure 12, directly affects the temperature change in the
CF radius. A temperature peak is observed at each SET and
RESET sequence.

FIGURE 12. Stanford model simulated temperature evolution as a
function of the applied voltage [51].

For the IM2NP model, both VSET and VRESET are not
much affected by the ambient temperature (almost 50mV
variation in the given range) as shown in Figure 13. However,
the electroforming voltage is highly activated by the ambient
temperature.

C. ACCURACY
The accuracy of the three models, that best match the exper-
imental results, is evaluated by comparison of the simulation
results and the measured data on silicon at cell level, provided
by ST-Microelectronics [31]. The mean error between the
simulated I-V curves of each model and measured data is
given in Table 3.
The smallest error observed is between the Stanford model

and the experimental data. Figure 14 shows the simulated I-V
curves of three selected models along with the experimental
I-V curve [31].
In conclusion, only two physics-based models (Stanford

and IM2NP) fulfill most of the essential evaluation criteria
with reasonable accuracy.
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FIGURE 13. IM2NP model experimental and simulation results of
switching voltage as a function of temperature [52].

TABLE 3. Mean error.

FIGURE 14. I-V characteristics of the models that best match the
experimental data [31].

VI. MODEL VALIDATION AND ASSESSMENT
AT THE CIRCUIT LEVEL
A. 1-K BIT RRAM ARRAY SIMULATION
In the previous sections, we have exhaustively evaluated the
dynamic behavior of each model at a single RRAM cell
level. Nevertheless, to validate the model comparison at the
circuit level, the models’ functionality has been evaluated
by simulating numerous RRAM cells connected in a 1T1R
memory array. Using the physics-based models for simula-
tions of large memristor arrays remains challenging because
of the enormous computing resources required. For example,
to simulate a 400 Mb memristor array, it may take about
a year [53] using a complex physics-based model with a

FIGURE 15. Schematic of the simulated 1T1R memory array (n=1K) with
decoders.

SPICE simulator. For our analysis, we use a 1K-bit RRAM
array to keep a reasonable simulation time and get significant
results at the same time. The complete simulated memory
array is shown in Figure 15. It consists of, a Bit Line decoder,
a Source Line decoder and aWord Line decoder connected to
the different 1T1R cells.
First, all the RRAM cells are RESET (set to high resis-

tance state). Then, two cycles are required to perform the
programming of the memory array. First, all memory cells
are set (logical ‘‘1’’), then the memory array is reset (logical
‘‘0’’). Simulation results are consistent with those of single-
cell operation and confirm the data provided in Appendix A,
though not included here for brevity.
Some models of the simulated models (linear, non-linear,

TEAM, and VTEAM models) presented convergence prob-
lems and are not capable of large-scale circuit simulation.
A solution for the encountered problems of each model is
presented in [54].
An additional critical concern when using the RRAM

model for simulations of large arrays is the huge computing
resources required. Table 4 gives the simulation run time and
the computationmemory usage for themodels that best match
the experimental data: Stanford, IM2NP, and SPICE models.

B. VARIABILITY
According to section IV, Stanford and IM2NP models are the
only models that can be used to simulate variability in RRAM
cells. Appendix B includes the equations implementing the
variability of both models.

TABLE 4. Computation time and memory usage for 1k-bit array.
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TABLE 5. Comparative Analysis of the Main Models.

In this section, we provide an example of application
where we studied the two types of RRAM variability of
both models:
• Device-to-device variability describes the RRAM cell
behavior consistency inside the memory array.

• Cycle-to-cycle variability measures the RRAM cell sta-
bility over different cycles.

A B1500 semiconductor parameter analyzer is used for
measurements. Quasi-static experimental measurements are
performed to extract the memory cell main characteristics
(i.e., VSET , VRESET , etc.) by applying a 200ms triangular
pulses across the 1T1R cell.

Figure 16 shows the cumulative distributions of RON (LRS)
and ROFF (HRS) in different RRAM cells within the 1T1R

memory array using the Stanford model and the IM2NP
model compared to the experimental data [31]. The excellent
agreement between the experimental data and the simulation
data proves that both models capture very well the random-
ness of the resistance levels during the SET and RESET
processes of different RRAM cells.

Figure 17 depicts the simulated I-V curves of Stanford
model for 10 SET cycles compared to the experimental
data. The variation is mainly due to the random genera-
tion of oxygen vacancy (V0). Figure 18 shows the simu-
lated I-V curves of the IM2NP model for 10 SET cycles.
A wider range of variation is observed compared to the
Stanford model, and that matches better the experimental
results.
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TABLE 6. Verilog-A Implementation for all Memristive Models.
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TABLE 6. (Continued) Verilog-A Implementation for all Memristive Models.

VOLUME 7, 2019 168973



B. Hajri et al.: RRAM Device Models: Comparative Analysis With Experimental Validation

TABLE 6. (Continued) Verilog-A Implementation for all Memristive Models.
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TABLE 6. (Continued) Verilog-A Implementation for all Memristive Models.

VOLUME 7, 2019 168975



B. Hajri et al.: RRAM Device Models: Comparative Analysis With Experimental Validation

TABLE 6. (Continued) Verilog-A Implementation for all Memristive Models.
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FIGURE 16. Cumulative distribution of RON (LRS) and ROFF (HRS) of
Stanford model (blue), IM2NP model (yellow) compared to the
experimental data (red).

FIGURE 17. Single-cell Stanford model variability for 10 SET cycles.

FIGURE 18. Single-cell IM2NP model variability for 10 SET cycles.

By tuning the model fitting parameters, the I-V curves of
the two models can match better the experimental data as
proposed in [10] and [12]. However, the fitting procedure is
not performed here since the objective of this section is to
validate the existence of variability in two models and show
the difference between them.

VII. CONCLUSION
In this paper, we surveyed the major existing RRAM device
models. We simulated the models within the same environ-
ment and under the same conditions to fulfill the modeling
community requirement for a unified discussion on the var-
ious RRAM models. This work is the first in the modeling
community literature; it presents a complete set of evaluation
criteria and an experimentally validated comparative analysis
for all widely accepted RRAM models. We summarized the
evaluation results as a quick reference table, which represents
a tool for the designers to select the model that best matches
their applications. Furthermore, this comparative analysis is
beneficial to the modeling community since it highlights the
limitations of a given model (Appendix A); thus, it points out
the areas of improvement.

For all the models discussed in this study, we provide an
implementation in the same Verilog-A code (Appendix B),
for easier access and assessment by the designers. The
user can specify the model number and compare the
performance of the different models at the same time.
Finally, we validated our comparative analysis at the circuit
level using a 1K-bit 1T1R RRAM array, and the results
are consistent with the previously published ones at the
cell level.

APPENDIXES
APPENDIX A
See Table 5.

APPENDIX B
See Table 6.
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