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ABSTRACT Anomaly detection in video surveillance is challenging due to the variety of anomaly types
and definitions, which limit the use of supervised techniques. As such, auto-encoder structures, a type
of classical unsupervised method, have recently been utilized in this field. These structures consist of an
encoder followed by a decoder and are typically adopted to restructure a current input frame or predict a
future frame. However, regardless of whether a 2D or 3D autoencoder structure is adopted, only single-scale
information from the previous layer is typically used in the decoding process. This can result in a loss of
detail that could potentially be used to predict or reconstruct video frames. As such, this study proposes
a novel spatio–temporal U-Net for frame prediction using normal events and abnormality detection using
prediction error. This framework combines the benefits of U-Nets in representing spatial information with
the capabilities of ConvLSTM for modeling temporal motion data. In addition, we propose a new regular
score function, consisting of a prediction error for not only the current frame but also future frames, to further
improve the accuracy of anomaly detection. Extensive experiments on common anomaly datasets, including
UCSD (98 video clips in total) and CUHK Avenue (30 video clips in total), validated the performance of the
proposed technique and we achieved 96.5% AUC for the Ped2 dataset, which is much better than existing
autoencoder-based and U-Net-based methods.

INDEX TERMS Anomaly detection, U-Net, ConvLSTM, video.

I. INTRODUCTION
High-precision anomaly detection remains a challenging but
important task in automated video surveillance. In contrast
to other computer vision problems, abnormal events occur
far less often than regular events, producing a serious imbal-
ance between positive and negative samples. In addition,
abnormal events are often unbounded and occur with sparse
yet unpredictable regularity. As a result, training sets often
include only normal events, which complicates the use of
conventional machine learning algorithms. The majority of
conventional approaches use a training model to represent
regular events in video sequences, considering any outliers
to be abnormal events [1]. Some studies have focused on
the extraction of hand-crafted features, used to precisely
represent appearance and motion in video frames. These
algorithms include HOG/HOF [2], the 3D spatio-temporal
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gradient [3], and optical flow features [4]. However, these
hand-crafted features only provide a limited representation of
complex motion, restricting the use of conventional machine
learning.

Deep learning has successfully been used in a variety of
computer vision tasks, including video anomaly detection.
Among those video anomaly detection methods based on
deep learning, autoencoder structures based on CNNs have
been widely used to analyze video data. These structures
consist of an encoder followed by a decoder, trained only with
positive samples, which are used to restructure the current
frame or predict a future frame.When abnormal events occur,
the restructure error or prediction error in the autoencoder is
higher than that of normal events. As a result, these unsuper-
vised methods are highly suitable for video anomaly detec-
tion problems in which only positive samples are available
in the training set. However, regardless of whether a 2D [5]
or 3D [6] autoencoder structure is adopted, only single scale
information from the previous layer is used in the decoding
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process, leading to a loss of detailed information that could
be used to predict or reconstruct video frames.

To resolve this issue, Liu et al. [7] proposed using a U-Net
with multi-scale information, instead of an autoencoder,
to predict future frames. Inspired by this approach, we pro-
pose a novel spatio-temporal U-Net for video anomaly detec-
tion. This technique combines U-Net [7] with ConvLSTM
which has advantages in modeling temporal information
in time series data [9]. In addition, RGB differences from
motion loss were used to replace the optical flow motion loss
used by Liu et al. This resulted in a similar accuracy but
significantly reduced the runtime required for motion loss
calculation. Finally, unlike existing methods, the proposed
technique calculates regular scores from not only the current
video frame, but also the future frames, which produced
higher detection accuracy. Our contributions are as follows:

1. A novel spatio-temporal U-Net for frame prediction is
proposed. The new framework combines the benefits
of U-Nets in representing spatial information [8] with
the capabilities of ConvLSTM for modeling temporal
motion data, whichmakes it more suitable formodeling
image sequences.

2. The RGB differences are first used as motion loss
to replace the optical flow motion loss used by
Liu et al. [7] which significantly reduced the runtime
required for motion loss calculation.

3. Unlike existing methods, a new regular score function
including not only the current video frame but also
the future frames is proposed which produced a higher
detection accuracy.

The remainder of this paper is organized as follows.
Section II briefly discusses related work in anomaly
detection. Section III provides a detailed description of our
proposed framework. Section IV includes an experimental
validation of our method applied to two major public datasets
and Section V concludes the paper.

II. RELATED WORK
Video anomaly detection methods can be categorized as
manual feature-based or deep learning network-based mod-
els. Most feature models include three steps: 1) extract-
ing appearance and motion features, 2) training a model to
represent regular events in video sequences, and 3) iden-
tifying outliers (anomalous events) in the trained model.
Leyva et al. [2] extracted foreground occupancy and opti-
cal flow features, including optical flow energy and an
HOF descriptor. They also established GMM, dictionary, and
Markov models for anomaly detection. SanMiguel et al. [10]
developed novel feature descriptors, including target size,
shape, and speed. Anomalies were then detected using a two-
state Markov chain. Wang et al. [11] proposed ULGP-OF
features consisting of local gradient and optical flow informa-
tion. An extreme learning machine (ELM) was then used to
detect anomalies. However, because the manual features are
designed artificially according to specific abnormal objects

or videos scenarios—which is a limited representation—
traditional machine learning algorithms are not suitable for
anomaly detection in complex video surveillance scenes.

Deep learning methods exhibit obvious advantages in
feature extraction and have proven to be highly effective for a
variety of video analysis tasks. In addition, unsupervised deep
learning models based on autoencoder structures have suc-
cessfully been used for anomaly detection. Hasan et al. [12]
extracted manual features and constructed a fully convolu-
tional autoencoder to learn both local features and classi-
fiers. However, because only convolution is used for feature
extraction, this structure lacked ability to model temporal
information in a video sequence. As such, Luo et al. [13]
and Medel et al. [14] added convolutional long-term and
short-term memory (ConvLSTM) layers to the autoencoder.
This approach not only considered spatial features but also
modeled temporal features from the input data, making it
more suitable for video analysis. Zhao et al. [6] constructed a
spatio-temporal convolution autoencoder that extracted fea-
tures from both spatial and temporal dimensions by perform-
ing 3D convolutions. However, both 2D and 3D autoencoders
use only single scale information from the previous layer
in the decoding process, which can lead to a loss of detail.
Thus, Liu et al. [7] proposed the use of a U-Net to pre-
dict future frames. This skip connection between high- and
low-level layers with the same resolution allows multi-scale
feature information which contains both high-level semantic
information and low-level surface information to be used in
the decoding process. However, single U-Nets also lack the
modeling of temporal features. Based on the context provided
by previous research [7], [13], [14], we propose adding the
ConvLSTM layers to the U-Net to construct spatio-temporal
U-Net for improved video anomaly detection.

III. APPORCH
As shown in Fig. 1, our framework can be divided into two
parts: future frame prediction and abnormal event detection.
The first step involves training a generator model to pre-
dict the next frame. This was done using a GAN module
that included both discriminative and generator networks to
increase the accuracy of predicted frames [7]. The origi-
nal generator network was then replaced with our proposed
spatio-temporal U-Net. This approach not only uses multi-
scale spatial information in the decoding process, but also
models temporal data between frames. The comprehensive
application of both spatial and temporal information makes
this module more suitable for video processing. In addition,
a new loss function called RGB differences was introduced
to further constrain the training process. This function rep-
resents motion loss in a fashion similar to optical flow but
significantly reduces the required calculation time, compared
to optical flow extraction. In the second step, PSNR was used
to assess the quality of the prediction (I∗t+1), by comparing
it with the real future frame (It+1) [7], [15]. We propose
a new function based on PSNR to calculate the regular
score of all test frames. In contrast to existing functions,
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FIGURE 1. The workflow for our proposed framework.

this proposed technique considers the correlation between
frames. This includes not only current (PSNR (It+1)) but
also future frame prediction errors (PSNR (It+2), PSNR
(It+3), . . ., PSNR (It+T)).
Fig. 1 shows the workflow for our proposed technique.

In the training process, the framework input consists of
continuous training frames and the output is comprised of
predicted future frames generated by the proposed spatio-
temporal U-Net. A discriminative network and loss func-
tion were used to optimize the spatio-temporal U-Net and
generate realistic future frames. During the testing pro-
cess, for the input continuous testing frames, our trained
spatio-temporal U-Net predicts its subsequent future frame.
The prediction error and regular score were determined by
the Euclidean distance between predicted and actual future
frames. Higher regular scores for test frames corresponded
to lower anomaly probabilities. The following subsection
discusses this proposed framework in detail.

A. FEARURE FRAME PREDICTION
1) SPATIO-TEMPORAL U-NET
In contrast to conventional autoencoder structures, the U-Net
proposed by Ronneberger et al. [16] included a skip con-
nection between high- and low-level layers with the same
resolution, achieving a combination of high-level semantic
features and low-level surface information. Although single
U-Nets produce accurate spatial modeling results, they lack
an ability to model temporal features. Inspired by the work
of Liu et al. [7] and the success of ConvLSTM, we pro-
pose a novel spatio-temporal U-Net for modeling changes in
sequential data [17], [18]. Since videos contain both spatial
and temporal motion information, a ConvLSTM layer was
added to a conventional U-Net. This approach combines the
spatial advantages of a U-Net and the temporal advantages of
ConvLSTM.

This framework, shown in Fig. 2, consists of three crit-
ical components. First, the encoder includes a series of
convolution layers and maximum pooling layers, used to

FIGURE 2. The proposed spatio-temporal U-Net. The encoder and decoder
included stacking convolution layers with 64, 128, and 256 feature maps.
The kernel size of all convolution operations was set to 3 × 3. The size of
the max pooling layers and up-pooling layers was set to 2 × 2. ConvLSTM
layers were stacked with 512 feature maps (3 × 3 kernel size).

extract important spatial information from input frames.
Three ConvLSTM layers were then added at the end of
the encoding process to memorize semantic feature changes
after pre-encoding. Inputting pre-encoded features improved
ConvLSTM efficiency by reducing interference and redun-
dancy. The decoder also included a series of un-pooling
layers and convolution layers used to decode feature maps
and predict future frames. Unlike in autoencoders, a contact
operation was applied between the encoder and decoder to
help repair target details.

More specifically, the input mode for our network differs
from existing algorithms that typically stack T consecu-
tive frames and input them to an autoencoder or U-Net
[7], [12]. Instead, we individually input T frames to a con-
volution encoder. This approach prevents the collapse of
temporal information after the first convolution layer, since
2D operations only consider spatial data. Conventionally,
the T input frames are connected to each channel in the
first output feature map, which rarely preserves temporal
information [6]. To solve this problem, we input T frames to
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the convolution encoder and produced T feature maps con-
taining only high-level spatial information. The ConvLSTM
layers then allowed these T feature maps to be modeled in
temporal space, preserving both spatial and temporal infor-
mation in consecutive input frames.

As shown in Fig. 2, T consecutive frames: It−T, . . . , It−2,
It−1, It, were input to a convolution encoder to produce
T feature maps, the changes in which were memorized by
ConvLSTM layers. The output, including both high-level
spatial features and primary temporal features, was input to
the decoder to predict future frames. As the prediction of
spatial information in the next frame is primarily based on
the last frame (It), we contacted adjacent feature maps for the
T frames acquired from the encoder process. These feature
maps had the same resolution as those obtained from the
decoder step. The application of multi-scale information in
the decoding process allowed the proposed network to predict
realistic future frames. Additionally, we set T to 4 according
to previous reports [7], [12], which verified the validity of this
value experimentally.

2) LOSS FUNCTION
Loss functions are used to estimate differences between pre-
dicted and real values, with a smaller function indicating
higher robustness. Appropriate loss can constrain amodel and
improve detection results. As in previous studies [7], [15],
intensity, gradient, and motion loss were included in the
proposed framework to ensure appearance and motion accu-
racy for predicted frames. These quantities were defined as
follows:

Lint (I∗, I ) =
∥∥I∗ − I∥∥2 (1)

Lgd (I∗, I ) =
∑
i,j

∥∥∥∣∣∣I∗i,j − I∗i−1,j∣∣∣− ∣∣Ii,j − Ii−1,j∣∣∥∥∥1
+

∥∥∥∣∣∣I∗i,j − I∗i,j−1∣∣∣− ∣∣Ii,j − Ii,j−1∣∣∥∥∥1 (2)

Lop(I∗, I ) =
∥∥f (I∗t+1, It)− f (It+1, It)∥∥1 (3)

where I∗ represents a generated frame and I represents the
corresponding ground truth. The term f represents optical
flow estimation, f (I∗t+1, It) represents optical flow between
the generated frame I∗t+1 and the previous real frame It,
f (It+1, It) represents the optical flow between the ground
truth frame It+1 and its previous real frame It, ‖‖1 and
‖‖2 represent the `1- and `2-norm, respectively. Lint is the
intensity loss that guarantees the similarity of all pixels in
RGB space, Lgd is the gradient loss that can sharpen the
generated frame, and Lop is the motion loss that guarantees
the correctness of motion prediction.
Inspired by Wang et al. [23], who explored the use of

different input patterns to improve discrimination for deep
action recognition and proposed RGB differences as a type of
input; we replaced optical flow with RGB gradients as a new
type of motion loss. Since optical flow is primarily derived
from the partial derivation of pixel intensity with respect to
time, the ability of optical flow to represent motion could

be learned from variations in RGB values. This approach
significantly reduced the runtime required for optical flow
extraction. Motion losses calculated from RGB differences
were defined as follows:

Lrgb(I∗, I ) =
∥∥Diff (I∗t+1, It )− Diff (It+1, It )∥∥1

Diff (Y ∗,Y ) = Y ∗ − Y (4)

where Diff (I∗t+1, It) represents RGB differences between the
generated frame I∗t+1 and its previous real frame It.
The term Diff (It+1, It) represents RGB differences between
the ground truth frame It+1 and its previous real frame It,
which calculated the difference of each pixel in the corre-
sponding channel. Lrgb is the newmotion loss which replaced
Lop to guarantee the correctness of motion prediction.

3) ADVERSARIAL NETWORKS
In addition to the loss functions discussed above, a variation
of the conventional generative adversarial network (GAN)
was used to constrain the training process, produce realis-
tic frames, and improve model performance [7], [18], [19].
We utilized a patch discriminator, in which each output scalar
corresponded to an input image patch. The resulting dis-
criminator output scalar was classified as either class 0 or
class 1, where 0 indicated the input image to be a generated
frame and 1 indicated a real frame. The goal of the proposed
spatio-temporal U-Net was to generate a realistic prediction
frame that was not categorized as class 0 by the discriminator.
A mean square error loss function was imposed in the course
of adversarial training as follows:

Ladv(I∗) =
∑
i,j

1
2
LMSE (D(I∗)i,j, 1)

LMSE (Y ∗,Y ) = (Y ∗ − Y )2 (5)

where D denotes a discriminative network that attempts to
identify frames generated by our predictive network as class 1
(genuine labels). D(I∗)i,j is the output of the discriminative
network for frame I∗ and i, j denote spatial patch indexes.
Ladv is the adversarial loss that constrains the output frame of
the predictive network to be as similar to the genuine frame
as possible. Our proposed object function can therefore be
defined as follows:

L = wintLint + wgdLgd + wrgbLrgb + wadvLadv (6)

where w is the weight of each sub-loss. We set wint , wgd ,
wrgb, and wadv to 1, 1, 2, and 0.05, respectively, according
to previous reports [7], which verified the validity of these
values experimentally.

B. REGULAR SCORES
After training the model to represent regular events in
video sequences, anomalies could be detected using the dif-
ference between a predicted frame and its ground truth.
We propose a novel regular score function based on peak
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signal-to-noise-ratio (PSNR) for anomaly detection [20]:

PSNR(I∗, I ) = 10log10
[maxI∗ ]2

1
N

∑N

i=0
(Ii − I∗i )

2
(7)

Here, maxI∗ represents the maximum value of image
intensities, N represents the total number of pixels, and i
represents pixel index. PSNR can be normalized as:

psnr(I∗t ) =
PSNR(It, I∗t )− minPSNR
maxPSNR − minPSNR

(8)

where I∗t represents a prediction of the t th frame and It is the
corresponding ground truth. The termsminPSNR andmaxPSNR
are the minimum and maximum values of the PSNR in every
frame of each test video.

In previous studies, the regular score is typically calculated
from the prediction error of the current frame: scores(I∗t ) =
psnr(I∗t ) [6], [7], [12]–[14]. Larger regular scores indicate
lower abnormality probability. However, in the early stages
of anomaly occurrence, abnormal targets only appear in the
corners of a video scene. The regular score of such a frame
is still high compared with that of frames in the middle of
an abnormal occurrence because the target occupies very few
pixels. As a result, the predicted error for early-sequence
abnormal frames, calculated using the difference between
a predicted frame and its ground truth, is comparable to a
frame calculated under normal conditions. Therefore, if only
the prediction error from the current frame is considered in
the regular score, the performance of the proposed method
would be limited to the boundary where the abnormal event
occurs. To solve this problem, we propose a novel regular
score function based on PSNR in both the current frame and
future frames:

scores(I∗t ) =
1
T 2

T∑
i=0

(T − i)psnr(I∗t+i) (9)

Here, the t th frame regular score scores(I∗t ) consists of the
current normalized PSNR psnr(I∗t ) and the normalized PSNR
(psnr(I∗t+i), i = 0, 1, . . . ,T ) in T future frames. As such,
if the current frame is in the initial stages of an abnormal
occurrence with high PSNR, the regular score will be low-
ered by the PSNR of several future frames in the middle of
abnormal events. The value of T here is same as the value
of inputted consecutive T frames of prediction network. The
value of T is 4 in our work.

IV. EXPERIMENTAL VALIDATION
This section evaluates the proposed method using publicly
available anomaly detection datasets, including the CUHK
Avenue [21] and UCSD Pedestrian dataset [22].

A. DATA
The UCSD pedestrian set includes two different scenes:
Ped1 and Ped2, in which non-pedestrian targets are consid-
ered abnormalities. Ped1 includes 34 short training clips and

FIGURE 3. The regular score for a video sequence from the Ped2 dataset,
which decreased when anomalous events occurred. The red dotted line
represents the ground truth abnormal frames.

36 testing clips. Ped 2 includes 16 training and 12 testing
clips. The CUHK avenue dataset was collected on Campus
Avenue at the Chinese University of Hong Kong. It contains
14 unusual events such as running, throwing objects, and
loitering. The set includes 16 training videos and 21 testing
videos.

B. EVALUATION METRIC
As the model was trained using only regular data, video
sequences consisting of regular events exhibited a higher
score than anomalous sequences. As shown in Fig. 3, the reg-
ular score of Ped2 video clips decreased when anomalies
occurred (i.e., bicycle intrusion). The red dotted line denotes
a ground truth label, 0 denotes a normal frame, and 1 indicates
an abnormal frame. Our proposed method was evaluated
quantitatively using a series of common assessment metrics.
ROC curves were produced by varying the threshold and
calculating both the true positive rate (TPR) and false positive
rate (FPR):

TPR =
TP

TP+ FN
(10)

FPR =
FP

FP+ TN
(11)

where TP represents true positive samples; TN represents true
negative samples; FP represents false positive samples; FN
represents false negative samples.

Conventional anomaly detection algorithms were com-
pared to our method using area under ROC curve (AUC)
and equal error rate (EER), the error occurring when the
false positive rate is equal to the miss rate (i.e., FPR when
FPR = 1 − TPR). In this study, higher AUC values
and lower EER values indicated better anomaly detection
performance.

C. ANOMALY EVENT DETECTION
Several experiments were conducted using the two common
datasets to evaluate our proposed prediction network, RGB
difference motion loss, and the regular score function.
We also compared our proposed technique to multiple
conventional algorithms [1], [5]–[7], [12], [13].
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TABLE 1. AUC values for different prediction networks applied to the
Ped1 and Ped2 datasets.

TABLE 2. AUC and EER values for different motion loss algorithms.

TABLE 3. Required runtimes for different motion loss algorithms.

1) EFFECT OF PREDICTION FRAMEWORK
The performance of the proposed spatio-temporal U-Net was
evaluated through a comparison with a conventional U-Net,
keeping all other conditions consistent. As shown in Table 1,
our proposed technique achieved a higher AUC (∼1% for
Ped1 and Ped2) and a lower EER (∼2% for Ped1 and Ped2)
than a single U-Net-based prediction network. This suggests
the extraction of spatial and temporal information is more
suitable for anomaly detection.

2) EFFECT OF RGB DIFFERENCES ON MOTION LOSS
The performance of RGB difference motion loss, in terms
of regression accuracy and training speed, was evaluated
through a comparison with optical flow. As shown in Table 2,
this adjusted motion loss constrained the model and achieved
slightly better results for Ped2 and the Avenue datasets.
Although the results of Ped1 dataset are slightly lower, the
average time required for RGB difference calculation using
batch data was reduced from 0.5333 (s/batch) to 0.0041
(s/batch) in all datasets, as shown in Table 3 (our framework
was implemented with a NVIDIA GeForce GTX 1070 GPU
and an Intel R© Core TM i7-7700 CPU@ 3.60 GHz×8).
This demonstrates that replacing optical flow with RGB
differences can significantly reduce training time while
maintaining model performance.

3) EFFECT OF PROPOSED REGULAR SCORES FUNCTION
The novel regular score function proposed in this study is
based on the prediction error of both current and future video
frames. It was evaluated by comparing its anomaly detection
performancewith that of other algorithms, including common

TABLE 4. The gap(1s), AUC AND EER values for different regular score
functions.

score functions produced by either normalizing the prediction
error of current frames or a combination of the prediction
error from multiple frames.

In addition to AUC and EER, we utilized gaps between
the average scores of normal and abnormal frames (denoted
as 1s) to further illustrate the quantitative effects of our
proposed function. Larger 1s values indicate the framework
is more capable of distinguishing normal and abnormal pat-
terns. As shown in Table 4, our proposed function increased
the AUC by ∼0.3% with almost the same EER. The 1s
increased by ∼0.02 in the Ped1, Ped2, and Avenue datasets.

4) COMPARISON WITH EXITING METHODS
A comparison of our approach with several conventional
methods, including an autoencoder and a U-Net, is shown for
the Ped1, Ped2, and Avenue datasets in Table 5. The proposed
approach achieved an AUC of 96.5% and an EER of 8.7%
for Ped2, outperforming comparable algorithms. Results for
the Avenue dataset (AUC of 84.5%) were only slightly below
the best performing model, which demonstrates the effective-
ness of our method. AUC and EER values for our technique
applied to Ped1 were 83.8% and 22.3%, respectively. This
was higher than every other methodology except that of
Zhao et al. [6], which produced a lower AUC for both the
Ped2 and Avenue datasets. The limited performance of our
method for Ped1 may be due to an inability to distinguish
non-obvious abnormalities filtered out during the encoding
process, as these structures would not have been modeled
in temporal space or detected after decoding. The anomalies
ignored by ourmethodwere detected by Zhao et al., who used
3D convolutions to extract spatial and temporal information
directly from original video frames. The 2D convolution
operations used in our method were much simpler than com-
plex 3D convolutions in terms of the algorithmic complexity.
In addition, our method outperformed other models for the
Ped2 and Avenue datasets.

Fig. 4 shows similar abnormal events (skateboarder and
cyclist) in Ped1 and Ped2 for the same video scenario. It is
evident that spatial characteristics for the same event differ
quite significantly between the two sets, due to unique cam-
era angles. Compared with Ped1, captured at a downward
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TABLE 5. AUC and EER values for different algorithms applied on the PRD1, Ped2 and avenue datasets.

FIGURE 4. The same abnormal events (skateboard and cyclists) in the
(a) Ped1 and (b) Ped2 datasets. Ped2 offers a less restricted view.

angle, Ped2 exhibits clearer spatial characteristics that are
beneficial for predicting realistic future frames. For example,
the skateboard is clearly visible under the skateboarder’s feet
in Fig. 4(b), but is difficult to see in Fig. 4(a) due to the
angle. After analyzing the experimental data, we found that
our method often failed to perform well in frames with these
types of ambiguous spatial features. As such, future study
is merited to improve the detection of obscure anomalous
targets, by focusing on corresponding spatial characteristics
or improving target tracking.

V. CONCLUSION
We proposed a novel spatio-temporal framework for anomaly
detection by combing a U-Net with ConvLSTM to pro-
cess video sequences. A new regular score function was
also developed to improve the accuracy of anomaly detec-
tion. Qualitative analysis and quantitative comparisons were
performed using the USDC (Ped1 and Ped2) and Avenue
datasets, with results demonstrating that our proposed frame-
work performed well on both, which achieved 96.5% AUC
for Ped2 and 84.5% AUC for Avenue. The proposed method
achieved the highest AUC on Ped2 and relatively high
results on Ped1 and Avenue. Although the AUC measured
on ped1 was slightly lower than previously achieved with a
3D autoencoder, our 2D convolution operations were simpler
than complex 3D convolutions in terms of the algorithmic
complexity. Future research will focus on improving the
proposed framework by detecting non-obvious anomalies.
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