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ABSTRACT The existing three-way decision-making methods are classified into two classes-a single one-
step three-way decision-making and a sequential, multi-step three-way decision-making, and this paper
studies the latter. In multi-granularity model, sequential thresholds are used to represent its multi-level
granularity. Firstly, the concept of similarity is introduced and tolerance-based fuzzy decision theory rough
set is proposed to obtain the upper and lower approximation of decision class and the three-way decisions
of the whole decision class. Secondly, the tolerance-based sequential three-way decision is extended to the
case of multi-granularity, and the concepts of upper and lower approximation and its three-way decision
in optimistic and pessimistic situations are proposed, and some related properties are verified. By adopting
the aggressive and conservative strategy, we put forward the concepts of upper and lower approximation
and related properties under pessimistic-optimistic conditions as well as sequential three-way decision,
the validity of thesemethods is verified by an example. In optimistic-pessimistic situations, a counterexample
is given to prove that it is unable to make decisions. On this basis, uncertainty measures, precision and
roughness, are introduced, and some properties of them are studied. Finally, the paper analyses and proves
the relationship between the above three models.

INDEX TERMS Decision class, lower approximation, multi-granularity, sequential three-way decision,
tolerance-based fuzzy decision theory rough set, upper approximation.

I. INTRODUCTION
Three-way decision was originally proposed by
Yao [1], [2], [3] to describe three regions of rough set.
Yao [3] formalized a more general framework of three-
way decision called the trisecting-and-acting model, which
divides a universal set into three pair-wise disjoint parts and
performs effective strategies on some or all of the parts.
In three-way decision, three regions are called positive,
negative and boundary regions, and can be interpreted in
terms of decision rules, namely rules for acceptance, rules
for non-commitment, and rules for rejection. Objects sat-
isfying acceptance rules are put into positive region, non-
commitment rules into boundary region and rejection rules
into negative region [4]. In recent years, there have been some
successful applications in many fields, such as investment
management [5], cluster analysis [6], [7], face recognition [8],
recommendation [9] and the others [10]– [12].

Sequential three-way decision is a cost-effective decision-
making method [13]. Its goal is to get the required

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhan Bu .

accuracy level at the minimum cost, especially for multi-
granularity problems. The most classical sequential three-
way decision [13] is mainly aimed at a series of attributes,
using the multi-granularity structure of the universe
to achieve a sequential, multi-step three-way decision.
Qian et al. [14], [15] studied the sequential three-way deci-
sion based on multi-granularity on multiple thresholds and
discussed the multi-granularity sequential three-way deci-
sion. Zhang et al. [16] studied the automatic encoder function
of sequential three-way decision on multi-granularity model.

Fuzzy rough sets study the uncertainty and fuzziness of
data sets. The combination of Zadeh’s fuzzy set [17] and
rough set provides a key way for the uncertainty reasoning
of real data. The concept of fuzzy rough set surpasses the
shortcomings of classical rough set method in every aspect.
Nanda and Majumdar [18] specialize in the study of fuzzy
rough sets. Skowron and Stepaniuk [19] studied the toler-
ance approximation space. Dubois and Prade [20], [21] dis-
cussed rough fuzzy sets and fuzzy rough sets and studied
them together. Huang et al. [22] studied the intuitionistic
fuzzy multi-granularity rough set. Under the dominance rela-
tion, Huang et al. [23] studied the rough set model in the
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intuitionistic fuzzy information system. Jensen and Shen [24]
discussed the feature selection of fuzzy rough sets based
on tolerance relation. Liang and Liu [25] studied three-way
decision of intuitionistic fuzzy decision theory rough set.
Anoop et al. [26] studied the attribute reductionmethod based
on tolerance intuitionistic fuzzy rough sets.

Multi-granularity rough set was first proposed by
Qian et al. [27] in 2010. Subsequently, more and more
research in this area has attracted wide attention. Multi-
granularity rough set model uses many different binary
relations. Qian et al. [28] and Yang et al. [29] discussed
incomplete multi-granularity rough set, Xu et al. [30], [31]
constructed and discussed two types of multi-granularity
tolerance rough set model, and constructed multi-granularity
fuzzy rough set based on fuzzy approximation space.
Qian and Liang [32] studiedmulti-granularity decision theory
rough set. In the covering approximation space, Lin et al. [33]
studied the multi-granularity covering fuzzy rough set.
In [34],the generalized multi granularity and two quantity
decision theory rough set is proposed. In [35] and [36],
the dynamic game model has certain reference value for the
study of this paper.

However, although there are many studies on sequential
three-way decision, fuzzy rough set and multi-granularity
rough set, there are not many studies combining them. In this
paper, we combine fuzzy rough set with multi-granularity
rough set under tolreance relation to study the sequential
three-way decision. We discuss the optimistic multi-
granularity sequential three-way decision-making, the pes-
simistic multi-granularity sequential three-way decision and
study the pessimistic-optimistic multi-granularity sequential
three-way decision by using appropriate aggregation strategy.
The biggest difference with the previous research is that
the multi-granularity model can not make three decisions
under the optimistic-pessimistic situation. Finally, the rela-
tionship between these models and some properties are
discussed.

The rest of the paper is organized as follows. Section 2
briefly introduces the preliminary notions considered in
this study. Section 3 three-way decision of sequence based
on tolerance relation is proposed. On this basis, com-
bined with multi-granularity rough set, three-way decision
of sequence based on tolerance multi-granularity fuzzy
rough set is proposed, which includes optimistic, pessimistic
and pessimistic-optimistic models, and some correlations
between uncertainty measurement: accuracy and roughness
are studied. Section 4 analyses the relationship among the
three models mentioned above. Section 5 concludes this
paper.

II. PRELIMINARIES
A. FUZZY DECISION SYSTEM
A Fuzzy decision system (FDS) is a quadruple (U ,C

⋃
D,

VF , F), where U is a finite non-empty set of objects, C is
a finite non-empty set of conditional attributes, D is a set
of decision attributes, and C

⋂
D = ∅, VF is the collection

of all fuzzy values, F is an information function that maps
an object x in U to exactly one value v in VF , such that
F(x, a) = µa(x), where µa(x) is a membership grade of the
object x for an attribute a.

B. TOLERANCE-BASED FUZZY-ROUGH SET
Let FDS is a fuzzy decision system. One of the widely used
fuzzy similarity relation is defined as:

SIMa(xi, xj) = 1−
| µa(xi)− µa(xj) |
| µamax − µamin |

where µa(xi), µa(xj) are membership grades of objects xi, xj
and µamax , µamin are maximum and minimum membership
grades for an attribute a.
For a subset of attributes A, (xi, xj) ∈ SIM δ

A iff∏
a∈A

SIMa(xi, xj) ≥ δ.

Where δ is a similarity threshold, which required level of
similarity for inclusion within tolerance classes. Tolerance
classes are defined by fuzzy similarity relation as follows:

SIM δ
A(xi) = {xj ∈ U | (xi, xj) ∈ SIM

δ
A}

For a decision classDj ∈ πD,πD is the partition of decision
classes. The lower and upper approximations of Dj with
repect to a cover CA are defined as follows:

Aδ(Dj) = {xi | SIM δ
A(xi) ⊆ Dj}

= {xi | P(Dj | SIM δ
A(xi)) = 1}

Aδ(Dj) = {xi | SIM δ
A(xi)

⋂
Dj 6= ∅}

= {xi | P(Dj | SIM δ
A(xi)) > 0}

The lower and upper approximations of the partition πD
are the families of the lower and upper approximations of all
the similarity classes of πD.

Aδ(πD) = {Aδ(D1),Aδ(D2) · · ·Aδ(Dm)}

Aδ(πD) = {Aδ(D1),Aδ(D2) · · ·Aδ(Dm)}

We have the lower and upper approximations for each
decision class, a position, boundary, negative region of a
partition πD with respect to a cover CA is defined as follow:

POS(πD) =
⋃

1≤j≤m

Aδ(Dj)

BND(πD) =
⋃

1≤j≤m

(Aδ(Dj)− Aδ(Dj))

NEG(πD) = U −
⋃

1≤j≤m

Aδ(Dj)

C. TOLERANCE-BASED MULTI-GRANULARITY
FUZZY-ROUGH SET
Definition 1: Let A1, A2 · · ·An are n granular struc-
tures and ∀X ⊆ U , tolerance-based optimistic multi-
granularity fuzzy lower and upper approximation are defined
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as follows,
n∑
i=1

AOi (X ) = {x ∈ U |
n∨
i=1

SIM δ
Ai (x) ⊆ X}

n∑
i=1

AOi (X ) = ∼
n∑
i=1

AOi (∼ X )

The pair<
n∑
i=1

AOi (X ),
n∑
i=1

AOi (X ) > is called the tolerance-

based optimistic multi-granularity fuzzy rough sets of X .
Definition 2: Let A1, A2 · · ·An are n granular structures and
∀X ⊆ U , tolerance-based pessimistic multi-granularity fuzzy
lower and upper approximation are defined as follows,

n∑
i=1

APi (X ) = {x ∈ U |
n∧
i=1

SIM δ
Ai (x) ⊆ X}

n∑
i=1

APi (X ) = ∼
n∑
i=1

APi (∼ X )

The pair <
n∑
i=1

APi (X ),
n∑
i=1

APi (X ) > is called the tolerance-

based pessimistic multi-granularity fuzzy rough sets of X .

D. TOLERANCE-BASED FUZZY DECISION-THEORETIC
ROUGH SETS
Suppose the set of states � = {X ,∼ X}, A = {aP, aB, aN }
is the set of actions, where aP, aB, aN represent the three
actions in classifying an object x, deciding x ∈ POS(X ),
deciding x ∈ BND(X ), and deciding x ∈ NEG(X ). λPP,
λBP and λNP denote when an object belongs to X , the loss
incurred for taking actions of aP, aB and aN . Similarly, λNN ,
λBN and λPN denote the losses incurred for taking the corre-
sponding actions when the object belongs to ∼ X . By using
the conditional probability, the Bayesian decision procedure
can decide how to assign x to these three disjoint regions.
The expected loss R(a∗ | SIM δ

A(x)) associated with taking the
individual action can be expressed as

R(aP | SIM δ
A(x)) = λPPP(X | SIM

δ
A(x))

+λPNP(∼ X | SIM δ
A(x))

R(aN | SIM δ
A(x)) = λNPP(X | SIM

δ
A(x))

+λNNP(∼ X | SIM δ
A(x))

R(aB | SIM δ
A(x)) = λBPP(X | SIM

δ
A(x))

+λBNP(∼ X | SIM δ
A(x))

When 0 ≤ λPP ≤ λBP < λNP and 0 ≤ λNN ≤ λBN < λPN ,
the Bayesian decision procedure leads to the following three
minimum-risk decision rules:

(P1) If P(X | SIM δ
A(x)) ≥ α and P(X | SIM δ

A(x)) ≥ β,
decide x ∈ POS(x).
(N1) If P(X | SIM δ

A(x)) ≤ γ and P(X | SIM δ
A(x)) ≤ β,

decide x ∈ NEG(x).

(B1) If P(X | SIM δ
A(x)) ≤ α and P(X | SIM δ

A(x)) ≥ β,
decide x ∈ BND(x).
where

α =
λPN − λBN

(λPN − λBN )+ (λBP − λPP
)

β =
λBN − λNN

(λBN − λNN )+ (λNP − λBP
)

γ =
λPN − λNN

(λPN − λNN )+ (λNP − λPP
)

If a loss function also satisfies the condition (λPN −
λBN )(λNP − λBP) > (λBP − λPP)(λBN − λNN ), then
α ≥ γ ≥ β.
When α > β, we have α > γ > β. (P1) − (B1) can be

re-expressed as follows:
(P2) If P(X | SIM δ

A(x)) ≥ α, decide x ∈ POS(x).
(N2) If P(X | SIM δ

A(x)) ≤ β, decide x ∈ NEG(x).
(B2) If β < P(X | SIM δ

A(x)) < α, decide x ∈ BND(x).
Using these decision rules, the probabilistic lower and

upper approximations of a decision class Dj with respect to a
cover CA can be defined by:

Aδ, (α, β)(Dj) = {x ∈ U | P(Dj | SIM δ
A(x)) ≥ α}

Aδ, (α, β)(Dj) = {x ∈ U | P(Dj | SIM δ
A(x)) > β}

In tolerance-based fuzzy decision-therotic rough set mod-
els, three probabilistic regions of a partition πD with respect
to a cover CA can be defined as follows:

POSα, β (πD) =
m⋃
j=1

Aδ, (α, β)(Dj)

BNDα, β (πD) =
m⋃
j=1

(Aδ, (α, β)(Dj)− Aδ, (α, β)(Dj))

NEGα, β (πD) = U −
m⋃
j=1

Aδ, (α, β)(Dj)

III. SEQUENTIAL THREE-WAY DECISIONS OF
TOLERANCE-BASED MULTI-GRANULARITY
FUZZY-ROUGH SET
A. TOLERANCE-BASED SEQUENTIAL THREE-WAY
DECISIONS
In [15], the author discusses the sequential three-way
decisions based on equivalence relation. In this section,
we discuss sequential three-way decisions based on tolerance
relation and give some properties.
Definition 3: For a fuzzy decision system F , a given

decision class Dlj , the dynamic threshold parameter sequence
(α, β)l = {(α1, β1), (α2, β2), · · · , (αl, β l)}, for a granular
structure A ⊆ C , C is a finite non-empty set of condi-
tional attributes. the (αl, β l) lower approximation and upper
approximation are defined by

Aδ, (α
l , β l )(Dlj) = {x ∈ U

l
| P(Dlj | SIM

δ
A(x)) ≥ α

l
}

Aδ, (αl , β l )(Dlj) = {x ∈ U
l
| P(Dlj | SIM

δ
A(x)) > β l}
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TABLE 1. Fuzzy decision system.

where U1
= U ,U l+1

= BND(αl , β l )
Aδ (Dlj) is the gradually

reduced universe.
The pair < Aδ, (α

l , β l )(Dj), Aδ, (α
l , β l )(Dj) > is called the

lth-level lower and upper approximations induced by A with
respect to Dlj in U

l . Thus, we can obtain positive, boundary
and negative regions as follows

POS(α
l , β l )

Aδ (Dlj) = {x ∈ U
l
| P(Dlj | SIM

δ
A(x)) ≥ α

l
}

BND(αl , β l )
Aδ (Dlj) = {x ∈ U

l
| β l < P(Dlj | SIM

δ
A(x)) < αl}

NEG(αl , β l )
Aδ (Dlj) = {x ∈ U

l
| P(Dlj | SIM

δ
A(x)) ≤ β

l
}

when αl > β l , we can obtain the decision rules tie-broke:
If P(Dlj | SIM

δ
A(x)) ≥ α

l , decision x ∈ POS(α
l , β l )

Aδ (Dlj)

If P(Dlj | SIM
δ
A(x)) ≤ β

l , decision x ∈ NEG(αl , β l )
Aδ (Dlj)

If β l < P(Dlj | SIM δ
A(x)) < αl , decision x ∈

BND(αl , β l )
Aδ (Dlj)

Proposition 1 Given (αl, β l)-lower approximation
Aδ,(α

l ,β l )(Dj) and (αl, β l)-upper approximation Aδ, (αl , β l )

(Dj), then

(1) Aδ, (α
l , β l )(Dlj) ⊆ Aδ, (αl , β l )(Dlj)

(2) Aδ, (α
l , β l )(U ) = Aδ, (αl , β l )(U ) = U

Note: Aδ, (α
l , β l )(Dlj) * Dlj .

The following example shows that there is no inclusion
relationship between them.
Example 1. Give a fuzzy decision system.
U = {x1, x2, x3, x4, x5, x6}, a decision class D1

1 =

{x1, x3, x4, x6},A = {a1}, let δ = 0.57, (α, β)2 =
{(0.75, 0.5), (0.7, 0.68)}

SIMa1 (x1, x1) = 1, SIMa1 (x1, x2) =
5
7
,

SIMa1 (x1, x3) =
4
7
, SIMa1 (x1, x4) =

6
7
,

SIMa1 (x1, x5) =
5
7
, SIMa1 (x1, x6) =

2
7
,

SIMa1 (x2, x2) = 1, SIMa1 (x2, x3) =
6
7
,

SIMa1 (x2, x4) =
4
7
, SIMa1 (x2, x5) =

3
7
,

SIMa1 (x2, x6) =
4
7
, SIMa1 (x3, x3) = 1,

SIMa1 (x3, x4) =
3
7
, SIMa1 (x3, x5) =

2
7
,

SIMa1 (x3, x6) =
5
7
, SIMa1 (x4, x4) = 1,

SIMa1 (x4, x5) =
3
7
, SIMa1 (x4, x6) =

1
7
,

SIMa1 (x5, x5) = 1, SIMa1 (x5, x6) = 0,

SIMa1 (x6, x6) = 1, then

SIM δ
a1 (x1) = {x1, x2, x3, x4, x5}

SIM δ
a1 (x2) = {x1, x2, x3, x4, x6}

SIM δ
a1 (x3) = {x1, x2, x3, x6}

SIM δ
a1 (x4) = {x1, x2, x4}

SIM δ
a1 (x5) = {x1, x5}

SIM δ
a1 (x6) = {x2, x3, x6}

we can obtain the conditional probabilities under a granular
structure a1 are computed as.

P(D1
1 | SIM

δ
a1 (x1)) =

3
5

P(D1
1 | SIM

δ
a1 (x2)) =

4
5

P(D1
1 | SIM

δ
a1 (x3)) =

3
4

P(D1
1 | SIM

δ
a1 (x4)) =

2
3

P(D1
1 | SIM

δ
a1 (x5)) =

1
2

P(D1
1 | SIM

δ
a1 (x6)) =

2
3

then A0.57,(0.75
1,0.51)(D1

1) = {x2, x3} " D1
1.

Example 2. (Continued example 1)

U1
= U ,D1

1 = {x1, x3, x4, x6}

POS(α
1, β1)

a1 (D1
1) = {x2, x3},

BND(α1, β1)
a1 (D1

1) = {x1, x4, x6},

NEG(α1, β1)
a1 (D1

1) = {x5}

U2
= {x1, x4, x6},D2

1 = {x1, x4, x6}

P(D2
1 | SIM

δ
a1 (x1)) =

2
5

P(D2
1 | SIM

δ
a1 (x4)) =

1
3

P(D2
1 | SIM

δ
a1 (x6)) =

2
3

POS(α
2, β2)

a1 (D2
1) = ∅,

BND(α2, β2)
a1 (D2

1) = ∅,

NEG(α2, β2)
a1 (D2

1) = {x1, x4, x6}

ThenPOS(α, β)
2

a1 (D1) = POS(α
1, β1)

a1 (D1
1))

⋃
POS(α

2, β2)
a1 (D2

1) = {x2, x3}

NEG(α, β)2
a1 (D1) = NEG(α1, β1)

a1 (D1
1)

⋃
NEG(α2, β2)

a1 (D2
1) = {x1, x4, x5, x6}

BND(α, β)2
a1 (D1) = ∅
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The POS(α, β)
2

a1 (D1),NEG
(α, β)2
a1 (D1),BND

(α, β)2
a1 (D1) are

sequential three-way decisions of D1 under a single
attribute a1.

B. SEQUENTIAL THREE-WAY DECISIONS OF TOLERANCE-
BASED MULTI-GRANULARITY FUZZY-ROUGH SET
In the previous section, we introduced sequential three-way
decisions based on tolerance relation in single-granularity
case. In this section, we will introduce sequential three-way
decisions in multi-granularity case, optimistic, pessimistic
and pessimistic-optimistic case, and gave a counter-example
in optimistic-pessimistic case to prove that they could not
make decision.

1) TOLERANCE-BASED OPTIMISTIC MULTI-GRANULARITY
FUZZY-ROUGH SET SEQUENTIAL THREE-WAY DECISIONS
Definition 4: For a fuzzy decision system F , given n granular
structures GS = {A1,A2, · · · ,An}, a given decision class Dlj ,
and the dynamic threshold parameter sequence (α, β)l =
{(α1, β1), (α2, β2), · · · , (αl, β l)}, the lower approximation
and upper approximation of the tolerance-based optimistic
multi-granularity fuzzy-rough set sequential three-way deci-
sions are defined as follows.
n∑
i=1

A(δ,O,(α
l ,β l ))

i (Dlj) = {x ∈ U
l
|

n∨
i=1

P(Dlj | SIM
δ
Ai (x)) ≥ α

l
}

n∑
i=1

A(δ,O,(α
l ,β l ))

i (Dlj) = {x ∈ U
l
|

n∨
i=1

P(Dlj | SIM
δ
Ai (x)) > β l}

where

U1
= U ,U l+1

=

n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj)

−

n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj).

The pair

<

n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj),
n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj) >

is called the lth-level tolerance-based optimistic multi-
granularity fuzzy-rough set sequential three-way decisions.

According to the lower and upper approximations,the
tolerance-based optimistic multi-granularity fuzzy-rough set
sequential three-way decisions boundary region of Dlj is

BNDO, (α
l , β l )(Dlj) =

n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj)

−

n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj).

Proposition 2. For a fuzzy decision system F , given n
granular structures GS = {A1,A2, · · · ,An}, a given deci-
sion class Dlj , and the dynamic threshold parameter sequence

(α, β)l = {(α1, β1), (α2, β2), · · · , (αl, β l)}. then,

(1)
n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj) =
n⋃
i=1

Aδ, (α
l , β l )

i (Dlj)

(2)
n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj) =
n⋃
i=1

Aδ, (α
l , β l )

i (Dlj)

(3)
n∑
i=1

A(δ, O, (α
l , β l ))

i (U ) =
n∑
i=1

A(δ, O, (α
l , β l ))

i (U ) = U

(4) If 0 ≤ β l ≤ β l
′

< αl
′

≤ αl ≤ 1, then
n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj) ⊆
n∑
i=1

A(δ, O, (α
l′ , β l

′
))

i (Dlj)

n∑
i=1

A(δ, O, (α
l′ , β l

′ ))
i (Dlj) ⊆

n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj)

Similar to the classical three-way decisions, we can obtain
the decision rules tie-broke:

(OP) If ∃ i ∈ {1, 2, · · · , n} such that
P(Dlj | SIM

δ
Ai (x)) ≥ α

l
}, decide POSO,(α

l , β l )(Dlj)
(ON) If ∀ i ∈ {1, 2, · · · , n} such that
P(Dlj | SIM

δ
Ai (x)) ≤ β

l
}, decide NEGO,(α

l , β l )(Dlj)

(OB) Otherwise, decide BNDO,(α
l , β l )(Dlj)

Definition 5: For a fuzzy decision system F , given n
granular structures GS = {A1,A2, · · · ,An}, a given deci-
sion class Dlj , and the dynamic threshold parameter sequence
(α, β)l = {(α1, β1), (α2, β2), · · · , (αl, β l)}, the accu-
racy and roughness of the tolerance-based optimistic multi-
granularity fuzzy-rough set sequential three-way decisions
are defined as follows.

aO, δ, (α
l , β l )

n∑
i=1

Ai
(Dlj) =

|

n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj) |

|

n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj) |

ρ
O, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) = 1− αO, δ, (α

l , β l )
n∑
i=1

Ai
(Dlj)

Proposition 3. For a fuzzy decision system F , given
n granular structures GS = {A1,A2, · · · ,An}, a given
decision class Dlj , and the dynamic threshold parameter

sequence (α, β)l = {(α1, β1), (α2, β2), · · · , (αl, β l)}.
aO, δ, (α

l , β l )
n∑
i=1

Ai
(Dlj), ρ

O, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) are the accuracy and

roughness measures, then,

(1) 0 ≤ aO, δ, (α
l , β l )

n∑
i=1

Ai
(Dlj), ρ

O, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) ≤ 1

(2) aO, δ, (α
l , β l )

n∑
i=1

Ai
(Dlj) = 1⇐⇒ ρ

O, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) = 0
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(3) 0 ≤ β l ≤ β l
′

< αl
′

≤ αl ≤ 1, aO, δ, (α
l , β l )

n∑
i=1

Ai
(Dlj)

≤ aO, δ, (α
l′ , β l

′
)

n∑
i=1

Ai
(Dlj), ρ

O, δ, (αl , β l )
n∑
i=1

Ai
(Dlj)

≥ ρ
O, δ, (αl

′
, β l
′
)

n∑
i=1

Ai
(Dlj)

Proof: (1), (2) are straightforward.
(3) By αl

′

≤ αl ,
n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj) ⊆
n∑
i=1

A(δ, O, (α
l′ , β l

′
))

i (Dlj),

then

|

n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj) |≤|
n∑
i=1

A(δ, O, (α
l′ , β l

′
))

i (Dlj) | .

By

β l ≤ β l
′

,

n∑
i=1

A(δ, O, (α
l′ , β l

′ ))
i (Dlj) ⊆

n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj),

then

|

n∑
i=1

A(δ, O, (α
l′ , β l

′ ))
i (Dlj) |≤|

n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj) | .

Thus,

aO, δ, (α
l , β l )

n∑
i=1

Ai
(Dlj) ≤ a

O, δ, (αl
′
, β l
′
)

n∑
i=1

Ai
(Dlj),

so

ρ
O, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) ≥ ρ

O, δ, (αl
′
, β l
′
)

n∑
i=1

Ai
(Dlj).

Example 3. (Continued example 1)
In example 1, we calculate the similarity classes and condi-

tional probabilities of x1, x2, x3, x4, x5, x6 under a1. Next,
we calculate the similarity class and conditional probability
of x1, x2, x3, x4, x5, x6 under a2.
U = {x1, x2, x3, x4, x5, x6}, a decision class D1

1 =

{x1, x3, x4, x6},A = {a2}, let δ = 0.57, (α, β)2 =

{(0.75, 0.5), (0.7, 0.68)}

SIMa2 (x1, x1) = 1, SIMa2 (x1, x2) =
4
5
,

SIMa2 (x1, x3) =
4
5
, SIMa2 (x1, x4) =

4
5
,

SIMa2 (x1, x5) =
3
5
, SIMa2 (x1, x6) =

1
5
,

SIMa2 (x2, x2) = 1, SIMa2 (x2, x3) =
3
5
,

SIMa2 (x2, x4) =
3
5
, SIMa2 (x2, x5) =

2
5
,

SIMa2 (x2, x6) = 0, SIMa2 (x3, x3) = 1,

SIMa2 (x3, x4) = 1, SIMa2 (x3, x5) =
4
5
,

SIMa2 (x3, x6) =
2
5
, SIMa2 (x4, x4) = 1,

SIMa2 (x4, x5) =
4
5
, SIMa2 (x4, x6) =

2
5
,

SIMa2 (x5, x5) = 1, SIMa2 (x5, x6) =
3
5
,

SIMa2 (x6, x6) = 1, then
SIM δ

a2 (x1) = {x1, x2, x3, x4, x5}
SIM δ

a2 (x2) = {x1, x2, x3, x4}
SIM δ

a2 (x3) = {x1, x2, x3, x4, x5}
SIM δ

a2 (x4) = {x1, x2, x3, x4, x5}
SIM δ

a2 (x5) = {x1, x3, x4, x5, x6}
SIM δ

a2 (x6) = {x5, x6}

we can obtain the conditional probabilities under a granular
structure a1 are computed as.

P(D1
1 | SIM

δ
a2 (x1)) =

3
5

P(D1
1 | SIM

δ
a2 (x2)) =

3
4

P(D1
1 | SIM

δ
a2 (x3)) =

3
5

P(D1
1 | SIM

δ
a2 (x4)) =

3
5

P(D1
1 | SIM

δ
a2 (x5)) =

4
5

P(D1
1 | SIM

δ
a2 (x6)) =

1
2

(1) U1
= U , then

2∑
i=1

A(δ, O, (α
1, β1))

i (D1
1) = {x2, x3, x5}

2∑
i=1

A(δ, O, (α
1, β1))

i (D1
1) = {x1, x2, x3, x4, x5, x6}

POSO, (α
1, β l )(D1

1) = {x2, x3, x5},

BNDO, (α
1, β l )(D1

1) = {x1, x4, x6},

NEGO, (α
1, β l )(D1

1) = ∅

(2) U2
= {x1, x4, x6},D2

1 = {x1, x4}

P(D2
1 | SIM

δ
a1 (x1)) =

2
5
,P(D2

1 | SIM
δ
a2 (x1)) =

2
5

P(D2
1 | SIM

δ
a1 (x4)) =

2
3
,P(D2

1 | SIM
δ
a2 (x4)) =

2
5

P(D2
1 | SIM

δ
a1 (x6)) = 0,P(D2

1 | SIM
δ
a2 (x6)) = 0

then
2∑
i=1

A(δ, O, (α
2, β2))

i (D2
1) = ∅

2∑
i=1

A(δ, O, (α
2, β2))

i (D2
1) = ∅

so POSO, (α
2, β2)(D2

1) = ∅,

BNDO, (α
2, β2)(D2

1) = ∅,

NEGO, (α
2, β2)(D2

1) = {x1, x4, x6}
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Then

POSO, (α, β)
2
(D1) = POSO, (α

1, β l )(D1
1))

⋃
POSO, (α

2, β2)(D2
1) = {x2, x3, x5}

NEGO, (α, β)
2
(D1) = NEGO, (α

1, β l )(D1
1)

⋃
NEGO, (α

2, β2)(D2
1) = {x1, x4, x6}

BNDO, (α, β)
2
(D1) = ∅

The POSO, (α, β)
2
(D1), NEGO, (α, β)

2
(D1),

BNDO, (α, β)
2
(D1) are optimistic sequential three-way

decisions of D1 under two attributes a1 and a2.

2) TOLERANCE-BASED PESSIMISTIC MULTI-GRANULARITY
FUZZY-ROUGH SET SEQUENTIAL THREE-WAY DECISIONS
Definition 6: For a fuzzy decision system F , given n granular
structures GS = {A1,A2, · · · ,An}, a given decision class Dlj ,
and the dynamic threshold parameter sequence (α, β)l =
{(α1, β1), (α2, β2), · · · , (αl, β l)}, the lower approximation
and upper approximation of the tolerance-based pessimistic
multi-granularity fuzzy-rough set sequential three-way deci-
sions are defined as follows.
n∑
i=1

A(δ,P,(α
l ,β l ))

i (Dlj) = {x ∈ U
l
|

n∧
i=1

P(Dlj | SIM
δ
Ai (x)) ≥ α

l
}

n∑
i=1

A(δ,P,(α
l ,β l ))

i (Dlj) = {x ∈ U
l
|

n∧
i=1

P(Dlj | SIM
δ
Ai (x)) > β l}

where

U1
= U ,U l+1

=

n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj)

−

n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj).

The pair

<

n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj),
n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj) >

is called the lth-level tolerance-based pessimistic multi-
granularity fuzzy-rough set sequential three-way decisions.

According to the lower and upper approximations,the
tolerance-based pessimistic multi-granularity fuzzy-rough
set sequential three-way decisions boundary region of Dlj is

BNDP, (α
l , β l )(Dlj) =

n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj)

−

n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj).

Proposition 4. For a fuzzy decision system F , given n
granular structures GS = {A1,A2, · · · ,An}, a given deci-
sion class Dlj , and the dynamic threshold parameter sequence

(α, β)l = {(α1, β1), (α2, β2), · · · , (αl, β l)}. then,

(1)
n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj) =
n⋂
i=1

Aδ, (α
l , β l )

i (Dlj)

(2)
n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj) =
n⋂
i=1

Aδ, (α
l , β l )

i (Dlj)

(3)
n∑
i=1

A(δ, P, (α
l , β l ))

i (U ) =
n∑
i=1

A(δ, P, (α
l , β l ))

i (U ) = U

(4) If 0 ≤ β l ≤ β l
′

< αl
′

≤ αl ≤ 1, then
n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj) ⊆
n∑
i=1

A(δ, P, (α
l′ , β l

′
))

i (Dlj)

n∑
i=1

A(δ, P, (α
l′ , β l

′ ))
i (Dlj) ⊆

n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj)

Similar to the classical three-way decisions, we can obtain
the decision rules tie-broke:

(OP) If ∀ i ∈ {1, 2, · · · , n} such that P(Dlj | SIM
δ
Ai (x)) ≥

αl}, decide POSP,(α
l , β l )(Dlj)

(ON) If ∃ i ∈ {1, 2, · · · , n} such that P(Dlj | SIM
δ
Ai (x)) ≤

β l}, decide NEGP,(α
l , β l )(Dlj)

(OB) Otherwise, decide BNDP,(α
l , β l )(Dlj)

Definition 7: For a fuzzy decision system F , given n
granular structures GS = {A1,A2, · · · ,An}, a given deci-
sion class Dlj , and the dynamic threshold parameter sequence
(α, β)l = {(α1, β1), (α2, β2), · · · , (αl, β l)}, the accu-
racy and roughness of the tolerance-based pessimistic multi-
granularity fuzzy-rough set sequential three-way decisions
are defined as follows.

aP, δ, (α
l , β l )

n∑
i=1

Ai
(Dlj) =

|

n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj) |

|

n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj) |

ρ
P, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) = 1− αP, δ, (α

l , β l )
n∑
i=1

Ai
(Dlj)

Proposition 5. For a fuzzy decision system F , given
n granular structures GS = {A1,A2, · · · ,An}, a given
decision class Dlj , and the dynamic threshold parameter
sequence (α, β)l = {(α1, β1), (α2, β2), · · · , (αl, β l)}.
aP, δ, (α

l , β l )
n∑
i=1

Ai
(Dlj), ρ

P, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) are the accuracy and

roughness measures, then,

(1) 0 ≤ aP, δ, (α
l , β l )

n∑
i=1

Ai
(Dlj), ρ

P, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) ≤ 1

(2) aP, δ, (α
l , β l )

n∑
i=1

Ai
(Dlj) = 1⇐⇒ ρ

P, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) = 0
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(3) 0 ≤ β l ≤ β l
′

< αl
′

≤ αl ≤ 1, aP, δ, (α
l , β l )

n∑
i=1

Ai
(Dlj)

≤ aP, δ, (α
l′ , β l

′
)

n∑
i=1

Ai
(Dlj), ρ

P, δ, (αl , β l )
n∑
i=1

Ai
(Dlj)

≥ ρ
P, δ, (αl

′
, β l
′
)

n∑
i=1

Ai
(Dlj)

Proof: (1), (2) are straightforward.
(3) By αl

′

≤ αl ,
n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj) ⊆
n∑
i=1

A(δ, P, (α
l′ , β l

′
))

i (Dlj),

then

|

n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj) |≤|
n∑
i=1

A(δ, P, (α
l′ , β l

′
))

i (Dlj) | .

By

β l ≤ β l
′

,

n∑
i=1

A(δ, P, (α
l′ , β l

′ ))
i (Dlj) ⊆

n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj),

then

|

n∑
i=1

A(δ, P, (α
l′ , β l

′ ))
i (Dlj) |≤|

n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj) | .

Thus,

aP, δ, (α
l , β l )

n∑
i=1

Ai
(Dlj) ≤ a

P, δ, (αl
′
, β l
′
)

n∑
i=1

Ai
(Dlj),

so

ρ
P, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) ≥ ρ

P, δ, (αl
′
, β l
′
)

n∑
i=1

Ai
(Dlj).

Example 4 calculates the sequential three-way decisions
under pessimistic circumstances.
Example 4. (Continued example 3)

(1) U1
= U , then

2∑
i=1

A(δ, P, (α
1, β1))

i (D1
1) = {x2}

2∑
i=1

A(δ, P, (α
1, β1))

i (D1
1) = {x1, x2, x3, x4}

POSP, (α
1, β l (D1

1) = {x2},BND
P, (α1, β l (D1

1) = {x1, x4, x6},

NEGP, (α
1, β l (D1

1) = {x5, x6}

(2) U2
= {x1, x3, x4},D2

1 = {x1, x3, x4}

P(D2
1 | SIM

δ
a1 (x1)) =

3
5
,P(D2

1 | SIM
δ
a2 (x1)) =

3
5

P(D2
1 | SIM

δ
a1 (x3)) =

1
2
,P(D2

1 | SIM
δ
a2 (x3)) =

3
5

P(D2
1 | SIM

δ
a1 (x4)) =

2
3
,P(D2

1 | SIM
δ
a2 (x4)) =

3
5

then
2∑
i=1

A(δ, P, (α
2, β2))

i (D2
1) = ∅

2∑
i=1

A(δ, P, (α
2, β2))

i (D2
1) = ∅

so POSP, (α
2, β2)(D2

1) = ∅,

BNDP, (α
2, β2)(D2

1) = ∅,

NEGP, (α
2, β2)(D2

1) = {x1, x3, x4}
Then POSP, (α, β)

2
(D1) = POSP, (α

1, β l )(D1
1))

⋃
POSP, (α

2, β2)(D2
1) = {x2}

NEGP, (α, β)
2
(D1) = NEGP, (α

1, β l )(D1
1)

⋃
NEGP, (α

2, β2)(D2
1) = {x1, x3, x4, x5, x6}

BNDP, (α, β)
2
(D1) = ∅

3) TOLERANCE-BASED PESSIMISTIC OPTIMISTIC
MULTI-GRANULARITY FUZZY-ROUGH SET SEQUENTIAL
THREE-WAY DECISIONS
For the optimistic and pessimistic three-way decisions,
we can adopt the conservative strategy for the lower approx-
imation and use the aggressive strategy for the upper
approximations.
Definition 8: For a fuzzy decision system F , given n granu-

lar structures GS = {A1,A2, · · · ,An}, a given decision class
Dlj , and the dynamic threshold parameter sequence (α, β)l =
{(α1, β1), (α2, β2), · · · , (αl, β l)}, the lower approximation
and upper approximation of the tolerance-based pessimistic-
optimistic multi-granularity fuzzy-rough set sequential three-
way decisions are defined as follows.
n∑
i=1

A(δ,PO,(α
l ,β l ))

i (Dlj)= {x ∈ U
l
|

n∧
i=1

P(Dlj | SIM
δ
Ai (x))≥α

l
}

n∑
i=1

A(δ,PO,(α
l ,β l ))

i (Dlj)= {x ∈ U
l
|

n∨
i=1

P(Dlj | SIM
δ
Ai (x))>β

l
}

where

U1
= U ,U l+1

=

n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj)

−

n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj).

The pair

<

n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj),
n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj) >

is called the lth-level tolerance-based pessimistic-optimistic
multi-granularity fuzzy-rough set sequential three-way
decisions.

According to the lower and upper approximations,the
tolerance-based pessimistic-optimistic multi-granularity
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fuzzy-rough set sequential three-way decisions boundary
region of Dlj is

BNDPO, (α
l , β l )
=

n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj)

−

n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj).

Proposition 6. For a fuzzy decision system F , given n
granular structures GS = {A1,A2, · · · ,An}, a given deci-
sion class Dlj , and the dynamic threshold parameter sequence
(α, β)l = {(α1, β1), (α2, β2), · · · , (αl, β l)}. then,

(1)
n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj) =
n⋂
i=1

Aδ, (α
l , β l )

i (Dli)

(2)
n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj) =
n⋃
i=1

Aδ, (α
l , β l )

i (Dli)

(3)
n∑
i=1

A(δ, PO, (α
l , β l ))

i (U ) =
n∑
i=1

A(δ, PO, (α
l , β l ))

i (U ) = U

(4) If 0 ≤ β l ≤ β l
′

< αl
′

≤ αl ≤ 1, then
n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj) ⊆
n∑
i=1

A(δ, PO, (α
l′ , β l

′
))

i (Dlj)

n∑
i=1

A(δ, PO, (α
l′ , β l

′ ))
i (Dlj) ⊆

n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj)

Similar to the classical three-way decisions, we can obtain
the decision rules tie-broke:

(OP) If ∀ i ∈ {1, 2, · · · , n} such that P(Dlj | SIM
δ
Ai (x)) ≥

αl}, decide POSPO,(α
l , β l )(Dlj)

(ON) If ∀ i ∈ {1, 2, · · · , n} such that P(Dlj | SIM
δ
Ai (x)) ≤

β l}, decide NEGPO,(α
l , β l )(Dlj)

(OB) Otherwise, decide BNDPO,(α
l , β l )(Dlj)

Definition 9: For a fuzzy decision system F , given n
granular structures GS = {A1,A2, · · · ,An}, a given deci-
sion class Dlj , and the dynamic threshold parameter sequence
(α, β)l = {(α1, β1), (α2, β2), · · · , (αl, β l)}, the accuracy
and roughness of the tolerance-based pessimistic-optimistic
multi-granularity fuzzy-rough set sequential three-way deci-
sions are defined as follows.

aPO, δ, (α
l , β l )

n∑
i=1

Ai
(Dlj) =

|

n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj) |

|

n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj) |

ρ
O, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) = 1− αPO, δ, (α

l , β l )
n∑
i=1

Ai
(Dlj)

Proposition 7. For a fuzzy decision system F , given
n granular structures GS = {A1,A2, · · · ,An}, a given

decision class Dlj , and the dynamic threshold parameter
sequence (α, β)l = {(α1, β1), (α2, β2), · · · , (αl, β l)}.
aPO, δ, (α

l , β l )
n∑
i=1

Ai
(Dlj), ρ

PO, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) are the accuracy and

roughness measures, then,

(1) 0 ≤ aPO, δ, (α
l , β l )

n∑
i=1

Ai
(Dlj), ρ

PO, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) ≤ 1

(2) aO, δ, (α
l , β l )

n∑
i=1

Ai
(Dlj) = 1⇐⇒ ρ

PO, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) = 0

(3) 0 ≤ β l ≤ β l
′

< αl
′

≤ αl ≤ 1,

aPO, δ, (α
l , β l )

n∑
i=1

Ai
(Dlj) ≤ a

PO, δ, (αl
′
, β l
′
)

n∑
i=1

Ai
(Dlj)

ρ
PO, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) ≥ ρ

PO, δ, (αl
′
, β l
′
)

n∑
i=1

Ai
(Dlj)

Proof: (1), (2) are straightforward.
(3) By αl

′

≤ αl ,
n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj) ⊆
n∑
i=1

A(δ, PO, (α
l′ , β l

′
))

i (Dlj),

then

|

n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj) |≤|
n∑
i=1

A(δ, PO, (α
l′ , β l

′
))

i (Dlj) | .

By β l ≤ β l
′

,

n∑
i=1

A(δ, PO, (α
l′ , β l

′ ))
i (Dlj) ⊆

n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj),

then

|

n∑
i=1

A(δ, PO, (α
l′ , β l

′ ))
i (Dlj) ≤

n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj) | .

Thus,

aPO, δ, (α
l , β l )

n∑
i=1

Ai
(Dlj) ≤ a

PO, δ, (αl
′
, β l
′
)

n∑
i=1

Ai
(Dlj),

so

ρ
PO, δ, (αl , β l )
n∑
i=1

Ai
(Dlj) ≥ ρ

PO, δ, (αl
′
, β l
′
)

n∑
i=1

Ai
(Dlj).

Example 5. (Continued example 3)

(1) U1
= U , then

2∑
i=1

A(δ, PO, (α
1, β1))

i (D1
1) = {x2}

2∑
i=1

A(δ, PO, (α
1, β1))

i (D1
1) = {x1, x2, x3, x4, x5, x6}
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FIGURE 1. Optimistic multi-granulation three-way decisions.

POSPO, (α
1, β l (D1

1) = {x2},BND
PO, (α1, β l (D1

1)

= {x1, x3, x4, x5x6},

NEGPO, (α
1, β l (D1

1) = ∅

(2) U2
= {x1, x3, x4, x5, x6},D2

1 = {x1, x3, x4, x6}

P(D2
1 | SIM

δ
a1 (x1)) =

3
5
,P(D2

1 | SIM
δ
a2 (x1)) =

3
5

P(D2
1 | SIM

δ
a1 (x3)) =

3
4
,P(D2

1 | SIM
δ
a2 (x3)) =

3
5

P(D2
1 | SIM

δ
a1 (x4)) =

2
3
,P(D2

1 | SIM
δ
a2 (x4)) =

3
5

P(D2
1 | SIM

δ
a1 (x5)) =

1
2
,P(D2

1 | SIM
δ
a2 (x5)) =

4
5

P(D2
1 | SIM

δ
a1 (x6)) =

2
3
,P(D2

1 | SIM
δ
a2 (x6)) =

1
2

then
2∑
i=1

A(δ, PO, (α
2, β2))

i (D2
1) = ∅

2∑
i=1

A(δ, PO, (α
2, β2))

i (D2
1) = {x3, x5}

so POSPO, (α
2, β2)(D2

1) = ∅,

BNDPO, (α
2, β2)(D2

1) = {x3, x5},

NEGPO, (α
1, β l )(D2

1) = {x1, x4, x6}

Then POSPO, (α, β)
2
(D1) = POSPO, (α

1, β l )(D1
1))

⋃
POSPO, (α

2, β2)(D2
1) = {x2}

NEGPO, (α, β)
2
(D1) = NEGPO, (α

1, β l )(D1
1)

⋃
NEGPO, (α

2, β2)(D2
1) = {x1, x4, x6}

BNDPO, (α, β)
2
(D1) = {x3, x5}

Similarly, we seem to use the aggregative strategy for the
lower approximation and use the conservative strategy for the

upper approximation. we define optimistic-pessimistic multi-
granulation sequential three-way decisions in [34].

In [37], the author have been illustrated the optimistic-
pessimistic multi-granulation sequential three-way decisions
is right in the multi-granulation Pawlak rough set models.
However, in tolerance-based multi-granularity fuzzy-rough
set models, the model is not hold. Because for an object x
satisfying P(Dli | SIM

δ
Ai ) ≥ αl for some Ai ⊆ C and

P(Dli | SIM
δ
Ai ) ≤ β l for some Aj ⊆ C , we can not judge

that x ∈ POSOP, (α
l , β l )(Dli) or x ∈ NEG

OP, (αl , β l )(Dli)
Then, the following simple example to illustrate.
Example 6. (Continued example 2)

U1
= U ,D1

1 = {x1, x3, x4, x6}, we can compute

POSOP, (α
1, β1)(D1

1) = {x2, x3, x5},

BNDOP, (α
1, β1)(D1

1) = {x1, x4},

NEGOP, (α
1, β1)(D1

1) = {x5, x6}

we can obtain x5 belong both POSOP, (α
1, β1)(D1

1) and
NEGOP, (α

1, β1)(D1
1)

In order to make readers understand the above theory more
intuitively, Figure 1, Figure 2 and Figure 3 respectively show
the positive and negative regions of multi-granularity three-
way decision under optimistic, pessimistic and pessimistic-
optimistic situations.

4) THE RELATIONSHIP AMONG THE THREE MODELS
In this section, we discuss the relationship among the
three types of multi-granulation sequential three-way deci-
sions, respectively, the optimistic multi-granulation sequen-
tial three-way decisions, the pessimistic multi-granulation
sequential three-way decisions, and the pessimistic-
optimistic multi-granulation sequential three-way
decisions.
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FIGURE 2. Pessimistic multi-granulation three-way decisions.

FIGURE 3. Pessimistic-Optimistic multi-granulation three-way decisions.

Theorem 1. For a fuzzy decision system F , let
A1,A2, · · · ,An are n granular structures a decision class Dlj ,
and the dynamic threshold parameter sequence (α, β)l =
{(α1, β1), (α2, β2), · · · , (αl, β l)}, where 0 ≤ β l < αl ≤ 1.
we have

(1)
n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj) =
n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj)

⊆

n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj).

(2)
n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj) ⊆
n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj)

=

n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj)

Proof: (1) By Definitions 5 and 6, we can easily obtain
n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj) =
n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj)

Furthermore, we proof
n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj) ⊆
n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj).

∀x ∈
n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj)⇐⇒ x ∈ {x ∈ U l
:

P(Dlj | SIM
δ
A1 (x)) ≥ α

l
∧

P(Dlj | SIM
δ
A2 (x)) ≥ α

l
∧

· · ·

∧
P(Dlj | SIM

δ
An (x)) ≥ α

l
}

H⇒ x ∈ {x ∈ U l
: P(Dlj | SIM

δ
A1 (x)) ≥ α

l
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∨
P(Dlj | SIM

δ
A2 (x))≥α

l
∨
· · ·

∨
P(Dlj | SIM

δ
An (x))≥α

l
}

H⇒ x ∈
n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj).

from which we can obtain
n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj) ⊆
n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj).

(2) ∀x ∈
n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj)⇐⇒ x ∈ {x ∈ U l
:

P(Dlj | SIM
δ
A1 (x)) > β l

∧
P(Dlj | SIM

δ
A2 (x)) > β l∧

· · ·

∧
P(Dlj | SIM

δ
An (x)) > β l}

H⇒ x ∈ {x ∈ U l
: P(Dlj | SIM

δ
A1 (x)) > β l∨

P(Dlj | SIM
δ
A2 (x))>β

l
∨
· · ·

∨
P(Dlj | SIM

δ
An (x))>β

l
}

H⇒ x ∈
n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj)

from which we can obtain
n∑
i=1

A(δ, P, (α
l , β l ))

i (Dlj) ⊆
n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj)

By Definitions 4 and 6, we can easily obtain

n∑
i=1

A(δ, PO, (α
l , β l ))

i (Dlj) =
n∑
i=1

A(δ, O, (α
l , β l ))

i (Dlj).

Theorem 2. For a fuzzy decision system F , let
A1,A2, · · · ,An are n granular structures and the dynamic
threshold parameter sequence (α, β)l = {(α1, β1), (α2, β2),
· · · , (αl, β l)}, a decision partition πD, we have

(1) POSP, (α, β)
l
(πD) = POSPO, (α, β)

l
(πD)

⊆ POSO, (α, β)
l
(πD)

(2) NEGPO, (α, β)
l
(πD) = NEGO, (α, β)

l
(πD)

⊆ NEGP, (α, β)
l
(πD)

(3) BNDO, (α, β)
l
(πD) ⊆ BNDPO, (α, β)

l
(πD)

BNDP, (α, β)
l
(πD) ⊆ BNDPO, (α, β)

l
(πD)

Proof: we can obtain them by lower and upper approxi-
mations of the optimistic multi-granulation sequential three-
way decisions, the pessimistic multi-granulation sequential
three-way decisions and the pessimistic-optimistic multi-
granulation sequential three-way decisions.

IV. CONCLUSION
In this paper, we propose sequence three-way decision
method based on tolerance relation of multi-granularity fuzzy
rough sets. On this basis, the upper and lower approxima-
tion of decision class and its sequence three-way decision
under optimistic, pessimistic and pessimistic-optimistic mod-
els are proposed, and some related properties of precision and

roughness are studied. For each model, an example is given
to verify its validity.For the optimistic-pessimistic model,
counter-examples are given to show that it can not make
decisions. Finally, the relationship and properties of the three
models are analyzed.
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