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ABSTRACT Nowadays, vulnerability attacks occur frequently. Due to the information asymmetry between
attackers and defenders, vulnerabilities can be divided into known and unknown. Existing researches
mainly focus on the risk assessment of known vulnerabilities. However, unknown vulnerabilities are more
threatening and harder to detect. Therefore, unknown vulnerability risk assessment deserves the widespread
attention. To model the exploit process, directed graph models are applied to vulnerability risk assessment.
And security metrics are used to quantify the exploitability of vulnerabilities. In this paper, according to
the data source of nodes, related works of unknown vulnerability risk assessment based on directed graph
models are divided into two types. One is based on network-level data, the other is based on system-level
data. The former is to visualize the network status, while the latter is to reflect the running process of the
system. The concept and purpose of these directed graph models are given at first. Then, these models are
analyzed from three aspects, including advantages, flaws and solutions. After that, challenges and solutions
of unknown vulnerability risk assessment based on directed graph models are given. Meantime, security
metrics for unknown vulnerability risk assessment based on directed graph models are summarized and
classified. Finally, future work directions of unknown vulnerability risk assessment are discussed from the
perspective of techniques and application trends. Consequently, this paper can fill in the lack of current
survey on unknown vulnerability risk assessment based on directed graph models.

INDEX TERMS Directed graph model, risk assessment, security metric, unknown vulnerability.

I. INTRODUCTION
With the continuous expansion of network scale, current
network has the characteristics of large number of nodes,
complicated structure, diversified protocols and data enrich-
ment. Under this circumstance, network security is facing
unprecedented challenges. To improve the integrity and sta-
bility of the network, risk assessment is proposed to evaluate
the possible risks and provide a basis for network security.
Data from HACKMAGEDDON [1] shows that vulnerability
attack becomes one of the top 10 attack techniques. Directed
Graph Model (DGM) is a major method for vulnerability
risk assessment because it can visualize the network status
and provide decisions for network hardening [2]. Meantime,
DGM can reflect the running process of the system.
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Vulnerability risk assessment based on directed graph
models needs to accomplish both qualitative and quantitative
tasks. For Known Vulnerability Risk Assessment (KVRA),
vulnerability information can be obtained by vulnerability
scanners, such as Nessus, Nmap, etc. Directed graphs can
be generated automatically by existing tools. Meantime, stan-
dards such as CommonVulnerability Scoring System (CVSS)
[3] can be directly used to quantify the exploitability of each
known vulnerability. However, KVRA does not consider the
situation that defenders may have less or no prior knowledge
on vulnerabilities.

To solve this problem, the technology of Unknown Vul-
nerability Risk Assessment (UVRA) is proposed and should
be given more attention because unknown (zero-day) vul-
nerabilities are harder to detect. Moreover, the threat and
loss caused by this kind of attack are far more serious than
known vulnerabilities. For UVRA, current researches often
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set a time point to divide known vulnerabilities into known
and unknown vulnerabilities because the latter is difficult to
obtain in reality [4], [5].

Due to the reason that KVRA only focuses on known
vulnerabilities, the major task of UVRA is to propose new
directed graphmodels or improve existing models to simulate
zero-day exploits. Meantime, for unknown vulnerabilities,
there is no existing standard to convert vulnerability scores.
Therefore, another major task of UVRA is to propose new
security metrics to quantify the exploitability of zero-day
vulnerabilities. In this paper, security metrics are divided
into standard and specific metrics based on their versatility.
Vulnerability risk assessment based on directed graph models
requires the quantification of nodes and paths. So, specific
metrics are further divided into three aspects, including node
metrics, path metrics and probabilistic metrics. And they will
be discussed later.

In this paper, according to the data source of nodes,
related works of UVRA based on directed graph models
are divided into two types. One is based on network-level
data, the other is based on system-level data. The concept
and purpose of these directed graph models are given at
first. Then, these models are analyzed from three aspects,
including advantages, flaws and solutions. Meantime, cor-
responding examples are given to facilitate understanding,
and security metrics for UVRA based on directed graph
models are summarized and classified. Next, challenges and
solutions of UVRA based on directed graphmodels are given.
At last, future work directions of unknown vulnerability risk
assessment are discussed from the perspective of techniques
and application trends. Directed graph models for UVRA
are often inspired or extended from the models for KVRA.
Therefore, if a directed graph model has related works on
KVRA, and this model or its extension can be applied to
UVRA, the development process of this model on KVRAwill
also be introduced.

The rest of this paper is organized as follows. In Sect. II,
a brief introduction of Unknown Vulnerability Risk Assess-
ment (UVRA) based on Directed Graph Model (DGM) is
given. In Sect. III, DGM for UVRA based on network-level
data is given. In Sect. IV, DGM for UVRA based on system-
level data is given. In Sect. V, challenges and solutions of
UVRA based on DGM are discussed. In Sect. VI, future
work directions of unknown vulnerability risk assessment
are discussed from the perspective of techniques and appli-
cation trends. Finally, the conclusion of this paper is given
in Sect. VII.

II. PRELIMINARY
Network security refers to systems that protect Internet con-
nections, such as hardware, software, and data from security
attacks [6]. Risk assessment is used to identify potential
hazards/threats, which often describes risks in a quantitative
manner and appropriately represents uncertainty [7]. The
ultimate goal of risk assessment is to improve the integrity
and stability of the network.

Vulnerability risk assessment is one of the techniques for
network security. As mentioned above, vulnerability risk
assessment can be divided into KVRA and UVRA. KVRA
only focuses on known vulnerabilities. On the basis of
KVRA,URVAconsiders the information asymmetry between
attackers and defenders, and it focuses on the risk caused
by zero-day exploits. The definitions of zero-day (unknown)
vulnerability and zero-day exploit are given as follows.
Zero-day Vulnerability [5]: The detail of a zero-day vul-

nerability is unknown except that its exploitation potentially
yields any privilege on the destination host and depends on
three assumptions:
• Network connection exists between source and destina-
tion host;

• Existing privilege on the source host;
• Destination host opens a remote access service.
Zero-day Exploit [5]: Given a network composed of a set

of hosts H, for each h ∈ H and x ∈ (serv(h) ∪ priv(h)),
a zero-day vulnerability is denoted by vx . A zero-day exploit
is the triple < vs, h, h′ > where < h, h′ > ∈ conn and
s ∈ serv(h′), or < vp, h, h > where p ∈ priv(h). serv(h)
and priv(h) respectively denote the services and privileges of
hosts.

The commonalities of zero-day vulnerabilities must meet
one of the following conditions [8], [9]:
• Excluded by vulnerability scanners, such as Nessus,
Nmap, etc.;

• Attackers know it, however, vulnerability databases such
as National Vulnerability Database (NVD) have no
record about it.

In UVRA, directed graph models provide the qualitative
method to reflect network status. More specifically, they can
find out the possible associations between vulnerabilities in
a managed network. Moreover, they also help provide deci-
sions for security solutions and hardening [2]. The definition
of directed graph is given as follows.
Directed Graph: Directed graph G = (V ,E), where V

denotes the set of vertexes, E indicates the set of edges,
and each edge represents the correlation between vertexes.
|V | denotes the number of vertexes in G, where V =

{v1, v2, . . . , vn}. |E| indicates the number of edges in G,
where E = {(u, v)|u ∈ V , v ∈ V }.
Technologies for KVRA cannot meet the requirement of

zero-day vulnerabilities, which is mainly caused by three
reasons. First, for zero-day vulnerabilities, the information
owned by attackers and defenders is asymmetric. That is,
attackers often know the existence of a zero-day vulnerability
in advance. However, defenders will only know it after the
attack occurs. Second, directed graph models for KVRAmay
need appropriate changes to adapt UVRA. Third, existing
databases such as NVD ignore the impact of unknown net-
work attacks. Therefore, they cannot accurately evaluate the
security improvement in network hardening.

Nevertheless, directed graph models used in UVRA are
often the extension of models applied to KVRA. Meanwhile,
it has been mentioned in Sect. I that unknown vulnerabilities
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TABLE 1. Comparisons between network and system level data.

may be divided from the set of known vulnerabilities by
setting a time point. The benefit of this method is that the
information of these zero-day vulnerabilities can be used to
verify the correctness of risk assessment because they are
actually from known vulnerabilities. That is, UVRA based
on directed graph models is inspired from KVRA. Therefore,
if a directed graph model, which is used in KVRA at first, can
be applied to UVRA after appropriate extension, the develop-
ment process of both known and unknown vulnerability risk
assessment will be given to explain the changes in this model.

According to the data source of nodes, related works of
UVRA based on directed graph models are divided into two
types. One is based on network-level data, the other is based
on system-level data. Comparisons between these two data
sources are given in Table 1.
Network-level data such as vulnerability information can

be easily obtained from existing vulnerability databases.
However, system-level data such as system call comes from
the kernel of hosts and does not depend on network connec-
tivity. In other words, it is hard to build a unified database
for system-level data. Therefore, the acquisition process of
network-level data is easier than system-level data. For vul-
nerability databases such as NVD, there exists dedicated
communities or teams to provide support. However, system-
level data often comes from a managed network, which may
be only supported by the system administrator. In terms of
tamper protection, network-level data can be crawled and
parsed, so it is likely to be tampered maliciously. However,
system-level data comes from hosts, which is the underlying
data. Therefore, it is difficult to be tampered.

III. DGM FOR UVRA BASED ON NETWORK-LEVEL DATA
This section introduces directed graph models for Unknown
Vulnerability Risk Assessment (UVRA) whose nodes are
constructed by network-level data. Directed graph models
that rely on network-level data include attack graph, resource
graph and Bayesian network. Extended models of these
directed graphs will also be discussed.

The rest of this section is arranged as follows. First,
the concepts of these models are given, including the defi-
nitions and purposes. Next, the general process of applying
these directed graphs to UVRA is given, and related works of
these directed graph models will be analyzed. Finally, these
directed graph models will be discussed from three aspects,
including advantages, flaws and solutions.

A. ATTACK GRAPH (AG)
AG is used to find all attack paths that can reach the attack tar-
get by simulating the process of network attacks. In addition

FIGURE 1. An example of original AG.

to the network connectivity provided by default, to construct
an attack graph, the open services of each host in a managed
network are required. Network connectivity between hosts
belongs to the network layer of Open System Interconnection
(OSI) model. And most open services of hosts such as ftp and
http belong to the application layer of OSI model. Attackers
often use vulnerability scanners to obtain vulnerabilities from
these open services at first, and then use these vulnerabilities
to achieve attack intention.

According to the specific meaning of nodes and edges,
attack graphs are divided into state-based representation
attack graphs and logical attack graphs. In state-based rep-
resentation attack graphs (or called state-enumeration attack
graphs), each node denotes a state, and each edge indicates
the condition of state transition. In logical attack graphs, each
node represents an exploit, and each edge denotes the corre-
lation between exploits. Logical attack graphs are also called
exploit dependency attack graphs. Risk flow attack graph
and zero-day attack graph are the extended models of attack
graphs. They both belong to logical attack graphs. These
models will be analyzed in detail later. Here the definition
of attack graph is given below at first.
Attack Graph [10]: An attack graph G is a directed bipar-

tite graph G = (E ∪ C,Rr ∪ Ri), where E and C are the
sets of exploits and security conditions, and the edges Rr ⊆
C × E and Ri ⊆ E × C respectively denote require and
imply relations. More specifically, require relation denotes
that the exploit cannot be successful unless corresponding
condition is satisfied. And imply relation represents executing
the exploit will satisfy corresponding condition.

AG is first officially applied to vulnerability risk assess-
ment in [11], and an example of original AG is given in Fig. 1.
Each node denotes the state of a host, where Sg indicates the
goal state to reach. And Si shows the state before reaching the
goal, where i = 1, 2, . . . , n. Each edge represents the condi-
tion required for state transition. Although this work is the
basis of vulnerability risk assessment based on attack graph,
there still exists several problems, which are summarized as
follows:
• Poor scalability and analysis complexity;
• Ignorance of the dependency between vulnerabilities,
which may cause misleading results;

• The probability of measuring the success of a state tran-
sition depends on expert knowledge, in other words, this
quantitative method is subjective.

To solve the poor scalability and analysis complexity
of [11], in literature [12], the assumption of monotonicity is
used to obtain a concise, scalable graph-based representation,
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which indicates that the successful application of another
exploit will never invalid the precondition of a given exploit.

In literature [13], [14], the problem of ignoring the depen-
dency between vulnerabilities in [11] is solved by apply-
ing Bayesian network to attack graph. This model is called
Bayesian Attack Graph (BAG). However, the general quan-
tization method is not given in [13], [14], but it can be
founded in [10]. The example of KVRA based on BAG will
be introduced in Sect. III-C. The graph generation complexity
of method proposed in [14] is O(N 3), where N means the
number of branches. Marginal Probabilities (MP) computing
complexity is O(2n), where n indicates the number of vari-
ables. Genetic Algorithm (GA) complexity is O(GN logN ),
where G represents the number of generations, and N means
the population size. In literature [10], Common Vulnerabil-
ity Scoring System (CVSS) is introduced to quantify the
exploitability of vulnerabilities, which tries to solve the sub-
jectivity problem of quantification in [11].

Besides Bayesian network, in literature [15], another prob-
abilistic directed graph model, called Hidden Markov Model
(HMM), is used to construct probabilistic mapping between
network observation and attack status. The definition of
HMM is given after (2). The exploitability of each vulner-
ability (Dvi ) is calculated by (1):

Dvi = AV × AC × Au (1)

where AV denotes Attack Vector , AC indicates Attack
Complexity, and Au represents Authentication. AV , AC and
Au are the base metrics of CVSS. The probability distribution
matrix of state transition is given in (2):

A = {aij} =


Ij∑N
p=1 Ip

, if Si
vi
→ Sj

0, otherwise
(2)

where Ij denotes the weight that state Si is converted to Sj via
exploiting vulnerability vi. The complexity of method in [15]
is O(N 2T ), where N indicates the length of hidden states set,
and T represents a constant.
Hidden Markov Model [15]: A HMM (λ) is a probabilis-

tic model of time series, which is determined by probability
matrix of state transition (A), probability matrix of observa-
tions (B), and probability vector of initial states (π). And it
can be defined as λ = (A,B, π), where
• Q = {q1, q2, . . . , qN }, V = {v1, v2, . . . , vM }, where
Q is a set of all possible states, V is a set of all possible
observations, N indicates the number of possible states,
and M represents the number of possible observations.

• I = {i1, i2, . . . , iT }, O = {o1, o2, . . . , oT }, where I is
a state sequence, O is the corresponding observation
sequence, and T represents the length of sequence.

• A is a probability matrix of state transition.

A = [aij]N×N , (3)

aij = P(it+1 = qj|it = qi), (4)

where i = 1, 2, . . . ,N, and j = 1, 2, . . . ,N. aij is
a probability of converting from state qi at time t to
state qj at time t + 1.

• B is a probability matrix of observations.

B = [bj(k)]N×M , (5)

bj(k) = P(ot = vk |it = qj), (6)

where k = 1, 2, . . . ,M, and j = 1, 2, . . . ,N. bj(k)
is a probability of generating observation vk under the
condition of state qj at time t.

• π is a probability vector of initial state.

π = (πi), (7)

πi = P(i1 = qi), (8)

where i = 1, 2, . . . ,N. πi is a probability of being in
state qi at time t = 1.

In literature [16], the problem of ignorance on the depen-
dency between vulnerabilities in [11] is also taken into con-
sideration. Different from the idea of applying probabilis-
tic directed graph models to attack graph, a model called
Risk Flow Attack Graph (RFAG) is proposed to model net-
work security by risk flow. The definition of RFAG is given
below.
Risk Flow Attack Graph [16]: A RFAG can be defined as

a tuple RFAG = {N ,E, τ, v,C,F}, where
• N = Ns ∪Ng ∪Nm stands for the set of nodes, where Ns
indicates the initial capabilities of attackers, Ng repre-
sents the ultimate goal an attacker aims to achieve, and
Nm denotes the multi-set of nodes ηi for which ∃ε1, ε2 ∈
E|[(ηi ∈ pre(ε1) ∧ (ηi ∈ post(ε2))], pre() and post()
respectively stand for the set of pre- and post-conditions.
Each element in the node set has a value of true or false.

• E ⊂ (Ns × Nm)→ (Nm × Ng) is the set of edges, which
represents exploits in network.

• τ ⊆ N × N. An ordered pair (Npre,Npost ) ∈ τ if there
exists an exploit edge ε ∈ E that Npre ∈ pre(ε)∧Npost ∈
post(ε).

• v : E → Vuls is a mapping from an edge to its
corresponding vulnerability. In a RFAG, an edge ε ∈
E represents an exploit which is related to a certain
vulnerability Vul(ε). The metrics of the vulnerability will
help determine the risk capacity and risk flow on edge.

• C is the risk capacity set of constants defined on E.
The value of risk capacity c(ε) is given by the CVSS
base score of the vulnerability related to ε, that is,
c(ε) = Calc(Vul(ε)|Tmetric(AV ,AC,Au,C, I ,A)) and
c(ε) ∈ [0, 10]. According to CVSS specifications, c(ε)
defines the maximum risk brought to the system once the
correlated vulnerability is exploited.

• F is the risk flow set defined on E. Given an edge
ε ∈ E, fe ∈ F denotes the amount of risk flow on
edge ε, which indicates the actual risk when an exploit
take place.
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In this work, the attack payoff and effort values of each
path are calculated by (9) and (10):

payoff (p) =
∑
ε∈p

[1− (1− CI )(1− II )(1− AI )] (9)

where CI denotes Confidentiality Impact , II indicates
Integrity Impact , and AI represents Availability Impact . They
are also the base metrics of CVSS. p means an attack path.

effort(p) =
∑
ε∈p

[20(AV ∗ AC ∗ Au)] (10)

where AV denotes Attack Vector , AC indicates Attack
Complexity, and Au represents Authentication.
If risk assessment depends on two or more factors, com-

prehensive evaluation method can be used to obtain more
accurate result. First, a single-factor evaluation matrix should
be calculated, which denotes the fuzzy relationship between
risk factors and the final risk severity. Then, each factor will
be assigned a weight to form a vector A = {a1, a2, . . . , an},
where 0 < ai < 1, and

∑n
i=1 ai = 1. At last, the final

evaluation result B is computed by (11):

B = A× R (11)

where A is a weight vector, and R represents a single-factor
evaluation matrix. The complexity of [16] is O(Nch · Ns · P),
where Ns indicates source nodes, Nch means the children
nodes of Ns, and P represents paths.
The idea of attack graph with risk flow to model network

security is also applied to industrial Internet of Things (IoT).
In literature [17], attack graph is applied to industrial IoT to
solve two problems, including the quantification and finding
on attack paths. Graph generation complexity of this work
is O(nep · np), where nep represents the number of elements
in the set of attack instances, and np denotes the number of
elements of the reachable precursor property. Attack reward
IMP (or called attack payoff in [16]) is calculated by (12):

IMP(e) = 10.41 ∗ [1− (1− CI )(1− II )(1− AI )] (12)

where e represents the edge of an attack path. The equation
to compute attack cost EXP (or called attack effort in [16])
is the same as (10). Equation (13), (14) and (15) are used to
calculate the maximum loss flow:

lc(e) = IMP(e)− EXP(e) (13)

where lc(e) represents the difference between IMP(e) and
EXP(e).

dm(p) =
∑
p∈P

lf − (14)

where dm indicates the max flow loss in the preceding attack,
p denotes an attack path, and lf − represents the potential loss
to next node.

γ =
dm(p)∑
e∈p lc(e)

(15)

FIGURE 2. KVAR based on AG.

FIGURE 3. An example of MP graph.

where γ represents the ratio of dm to the sum of loss capacity
in the preceding attack. The impact of time measurement
group and environment measurement group on quantization
is not taken into consideration in this work.

The process of Known Vulnerability Risk Assessment
(KVRA) based on Attack Graph (AG) can be summarized as
Fig. 2. Common vulnerability scanners used for vulnerability
risk assessment include Nessus, Nmap, etc. Detailed vulner-
ability information can be obtained from NVD.

In the early stage, attack graphs are generated by manual
construction. This method leads to high error rate and poor
scalability. In the previous studies [18], [19], Finite State
Machine (FSM) is widely used in risk assessment, which is
a kind of state-based representation attack graph. FSM can
represent the transition between a limited number of states.
However, it is not currently applied to unknown vulnerabili-
ties, so it is not analyzed in detail here.

Nowadays, some tools support generating attack graphs
automatically, such as MulVAL, TVA, Cauldron, NetSPA,
etc. They are compared in Table 2.Multiple Prerequisite (MP)
graph is a kind of attack graphs.MP graph contains three node
types, and an example of MP graph is shown in Fig. 3.

First, each state node indicates the access level of attacker
on a specific host. Second, each prerequisite node denotes
an accessibility group or a credential. Third, each vulner-
ability instance node represents a specific vulnerability on
a particular port. Each edge in MP graph indicates the
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TABLE 2. Attack graph generation tools.

TABLE 3. Development process of KVRA based on AG.

relationship between nodes. These three node types are
respectively represented as circles, rectangles and triangles
in Fig. 3.

Comparisons of above works are shown in Table 3. From
Table 3, it can be discovered that in KVRA based on attack
graph, the elimination of cycles is often implemented by
the assumption of monotonicity. In addition, the applica-
tion of vulnerability risk assessment is gradually shifting
from traditional network to enterprise network and industrial
IoT. For example, the size of an enterprise network deter-
mines the complexity of assigning corresponding permissions
and services to each host. In this condition, the vulnera-
bilities generated by the improper configuration of hosts
may be exploited by attackers. Vulnerability risk assess-
ment based on attack graph can visualize the network con-
dition. Further, it provides the decision for optimal network
hardening.

Researches mentioned above make a great contribution
to network security, but they do not consider the attacks
caused by unknown vulnerabilities. To solve this problem,
an extended model of attack graph, called zero-day attack
graph [4], [5], is proposed to compose with both known and
zero-day exploits. Each path in this model is called zero-
day attack path. A zero-day attack path is a multi-step attack
path that includes one or more zero-day exploits [20]. The
definition of zero-day attack graph is given below.
Zero-day Attack Graph [5]: Given the set of exploits of

zero-day vulnerabilities E0 and their pre- and post-conditions
C0, the set of exploits of known vulnerabilities E1 and their
pre- and post-conditions C1, let E = E0 ∪ E1, C = C0 ∪ C1,
and extend pre(.) and post(.) to E → C (as the union of
relations). The directed graph G =< E ∪ C, {< x, y >: (y ∈
E ∧ x ∈ pre(y)) ∨ (x ∈ E ∧ y ∈ post(x))} > is called a
zero-day attack graph.

Next, the way to apply attack graph to UVRA will be pre-
sented. Then, related works on vulnerabilities risk assessment
based on AG will be given.

FIGURE 4. UVRA based on AG.

1) APPLYING AG TO UVRA
Unknown Vulnerability Risk Assessment (UVRA) based on
attack graph is shown in Fig. 4. Compared with Fig. 2,
it can be discovered that both KVRA and UVRA based on
AG contain three steps, including information acquisition,
graph generation, and vulnerability quantification.

The first step can be implemented with security tools,
including vulnerability scanners like Nessus, and security
sensors like Intrusion Detection System (IDS)/Intrusion Pre-
vention System (IPS). The purpose of this step is to obtain
necessary information as input to construct attack graph,
including services and privileges of hosts, connectivity and
vulnerability information.

Different from KVRA, the second step of UVRA based
on AG is setting a time point to divide known vulnerabili-
ties into known vulnerabilities and zero-day vulnerabilities
because zero-day vulnerabilities are difficult to obtain in
reality [4], [5]. For example, if the time point is set
as 2018/12/31, vulnerabilities before 2018/12/31 are used
as known vulnerabilities, and vulnerabilities after this time
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TABLE 4. Previous works on the classification of security metrics.

point are regarded as zero-day vulnerabilities. Except for this
method, in literature [21], suspicious activities whose signa-
tures are not defined previously in Snort IDS/IPS are regarded
as zero-day exploits. The former focuses on software or web
applications, and the latter focuses on network packets.

The second difference between KVRA and UVRA based
on AG is that for unknown vulnerabilities, there is no existing
standard to convert vulnerability scores. Zero-day vulnerabil-
ities are hard to measure because the process of discovering
and exploiting vulnerabilities is less predictable [4]. To solve
this problem, novel network security metrics are proposed,
such as k-zero day safety [4], [5]. Further analysis of these
related works will be introduced later.

In the domain of vulnerability risk assessment, security
metrics are important because they are used to quantify the
exploitability of vulnerabilities.

For known vulnerabilities, two kinds of scores need to
be calculated, including individual score and cumulative
score [22], [23]. Individual score represents intrinsic prob-
ability of an exploit being executed. It can be obtained by
existing standards, such as CVSS, Common Configuration
Scoring System (CCSS) [24] and Common Weakness Scor-
ing System (CWSS) [25]. CVSS score is used in most current
studies to measure the probability that a vulnerability is suc-
cessfully exploited [10], [17], [26], [27].

Besides CVSS, in literature [28], a metric suite for attack
graph is proposed, which is given in Table 4. In literature [29],
to overcome shortcomings of path metrics, a complimentary
suite of attack graph-based security metrics is proposed,
including the Shortest Path (SP), the Number of Paths (NP)
and the Mean of Path Lengths (MPL). In literature [30],
model-based quantitative network security metrics based on
attack graph are divided into five aspects. In literature [31],
a systematic classification of existing security metrics based
on network reachability information is proposed. Although
these works make the contribution on the classification of
security metrics, which are summarized in Table 4, the clas-
sification of security metrics for UVRA is still a blank.

Therefore, the supplementary work is made in our paper,
which can be seen in Table 7.
In literature [32], the calculation formulas of topol-

ogy metrics (connectivity, cycle, and depth) are given
below:

Connectivity metric = 10(1−
w− 1
d − 1

) (16)

where w is the number of subgraphs in the graph, and d
indicates the total number of nodes in the graph.

Cycles metric = 10(1−
c− 1
d − 1

) (17)

where c represents the number of cycles in the graph.

Depth metric =
10
wd

w∑
i

ci(1−
si

ci − 1
) (18)

where ci means the number of nodes in different subgraphs,
and si denotes the depth of each subgraph. In order to consider
these three metrics comprehensively, the combined score is
given as follows:

Combined score = 10

√∑n
i=1(si)2∑
102

(19)

where n is the number of considered metrics, and si indicates
the individual score of each metric.

In literature [10], a probabilistic metric called cumu-
lative score is first proposed. The relationship between
exploits is first divided into two categories, including con-
junctive and disjunctive [22]. After that, hybrid relationship
is also taken into consideration. The definition of cumulative
score is given below, which denotes the overall probabil-
ity that an attacker can successfully reach and execute an
exploit.
Cumulative Score [10]: Given an acyclic attack graph

G(E ∪ C,Rr ∪ Ri), and any individual score assignment
function p : E ∪ C → [0, 1], the cumulative score function
P : E ∪ C → [0, 1] is defined as:
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FIGURE 5. Network configuration and AG.

• P(e) = p(e) ·
∏

c∈Rr (e) P(c)
• P(c) = p(c), if Ri(c) = φ; otherwise, P(c) = p(c) ·
⊕e∈Ri(c)P(e)where the operator⊕ is recursively defined
as ⊕P(e) = P(e) for any e ∈ E and ⊕(S1 ∪ S2) =
⊕S1+⊕S2−⊕S1 · ⊕S2 for any disjoint and non-empty
sets S1 ⊆ E and S2 ⊆ E.

An example of network configuration and Attack Graph
(AG) is shown in Fig. 5. Both host1 and host2 provide
secure shell (ssh) service, and they are in the intranet. host0
represents an attacker who wants to penetrate into the intranet
from the external network, so as to obtain the root privilege
of host2. In this attack graph, ovals represent conditions,
and rectangles denote exploits. Each condition represents a
system state, and each exploit between hosts is reflected as a
transition between system states. The decimals in rectangles,
which are calculated by the base metrics of CVSS, represent
the individual scores (or called exploitability) of vulnera-
bilities. Decimals next to rectangles denote the cumulative
score of vulnerabilities. In Fig. 5, the exploitability of ssh and
local_bof are respectively 0.4 and 0.1, where bof represents
buffer overflow. The cumulative scores of node ssh(1, 2) and
user(2) can be calculated as follows:

• P(ssh(1, 2)) = P(ssh(0, 1) × p(user(1)) = 0.4 × 0.4 =
0.16

• P(user(2)) = P(ssh(1, 2))+P(ssh(0, 2))−P(ssh(1, 2))×
P(ssh(0, 2)) = 0.16+ 0.4− 0.16× 0.4 = 0.05

However, for zero-day vulnerabilities, there is no exist-
ing standard to convert them into scores. They are hard to
measure because the process of discovering and exploiting
vulnerabilities is less predictable [4]. To solve this problem,
a novel network security metric called k-zero day safety is
proposed [4], [5]. The definition of k-zero day safety is given
below.
k-Zero Day Safety [4]: Given the set of zero-day exploits

E0, the definition can be that:

• a relation≡v⊆ E0×E0 such that e ≡v e′ indicates either
e and e′ involve the same zero-day vulnerability, or e =<
vs, h1, h2 > and e′ =< vp, h2, h2 > are true, and
exploiting s yields p. e and e′ are said distinct if e ≡/ v e′;

FIGURE 6. Network configuration and zero-day attack graph.

• a function k0d(.) : 2E0 × 2E0 → [0,∞] as
k0d(F,F ′) = max({|F ′′| : F ′′ ⊆ (F4F ′),

(∀e1,e2 ∈ F
′′)(e1 ≡/ v e2)}),

where |F ′′| denotes the cardinality, max(.) indicates the
maximum value, and F4F ′ represents the symmetric
difference (F \ F ′) ∪ (F ′ \ F); and

• for an asset a, k = k0d(a) is used for min({k0d(q ∩
E0, φ) : q ∈ seq(a)}), where min(.) denotes the minimum
value. For any k ′ ∈ [0, k), a is regarded as k ′-zero day
safe.

This metric can be regarded as a node metric. The reason
is that the core of this metric is to calculate the number of
vulnerabilities (that is, nodes in the zero-day attack graph),
which are required for compromising a network asset. For
example, Fig. 6 shows network configuration and corre-
sponding zero-day attack graph.

In Fig. 6, host2 and host3 are located in the intranet,
and they only provide ssh service. host1 is located in the
demilitarized zone (that is, the space between two firewalls).
The firewall1 allows traffic to and from host1. The firewall2
allows traffic to and from host2, but only allows connections
from host3. host0 is an attacker in the external network who
tries to obtain the root privilege of host3. For known vul-
nerabilities, both vulnerability scanner and attack graph will
lead to the same conclusion that the network configuration
in Fig. 6 is secure [20]. However, for zero-day vulnerabilities,
there are two attack paths for attackers to reach the target (that
is, the root privilege of host3) in Fig. 6, which are described
by red dotted lines. One is obtaining the user privilege of
host1 at first, and then the attacker uses the host2 as a Jump
Server to indirectly attack host3 by ssh service. The other
is that the attacker uses the ssh service of host2 and host3
to directly attack host3 after achieving the user privilege of
host1.

Here the network asset A = {< root, 3 >}. The left
attack path contains three distinct zero-day vulnerabilities.
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According to the definition, exploits of < vssh, 0, 1 >, <
vssh, 1, 2 > and < vssh, 2, 3 > in the right attack path will
be counted as one exploit because they involve the same
zero-day vulnerability (ssh). So, it can be discovered that
k0d(A) = 2, where k0d() is the function to calculate k-zero
day safety.

Although this metric makes a great contribution to evalu-
ating zero-day attacks, it has following problems at the same
time:
• This metric simply calculates the number of vulnerabil-
ities required for destroying network assets. Meantime,
the correlation between vulnerabilities and the impact
of known vulnerabilities on UVRA are not taken into
consideration;

• It is difficult to determine exact value of k;
• It assumes the existence of a complete attack graph,
however, this assumption is difficult to establish in large
networks [20].

In order to solve these problems, existing researches
mainly focus on two aspects:
• Improving the calculation ability of k-zero day safety;
• Improving the metric system of k-zero day safety.
In literature [20], the exact value of k is obtained by calcu-

lating the lower bound and upper bound of k . Corresponding
processes to calculate these two bounds are respectively sum-
marized as Fig. 7 and Fig. 8.

In Fig. 7, Ci denotes the set of initial conditions, E∗ indi-
cates the set of known and zero-day exploits, l is an integer
representing the desired lower bound of k , cg means the goal
condition, C denotes the set of conditions, E indicates the
set of exploits, Cnew represents the set of newly satisfied
conditions, π (c) means the mapping which associates each
condition with a set of attack paths leading to it, e ∈ E ,
c represents the pre- or post-condition of an exploit, and G
denotes the partial zero-day attack graph.

In Fig. 8, Rr and Ri respectively denote require and imply
relations. More specifically, require relation denotes that the
exploit cannot be successful unless corresponding condi-
tion is satisfied. And imply relation represents executing the
exploit will satisfy corresponding condition. zdu(c) indicates
the number of required exploits for reaching initial condi-
tions, zdu(e) means the number of distinct zero-day vulner-
abilities in an edge, and u represents the upper bound of k .
The efficiency of graph generation is improved by using

on-demand method and reusing the partial attack graphs that
have been generated in the decision process. This method
can apply to large networks because it spends less than 20s
to build an attack graph of nearly 90,000 nodes. Processing
time and percentage of nodes are used as performancemetrics
of algorithms. The shortcoming is that they all focus on
improving the computational efficiency of k-zero day safety,
but no one considers the correlation between vulnerabilities.
The future development of this model is to improve the
approximate algorithm for ranking the partial solutions.

Compared with [20], in literature [4], a new heuristic
algorithm, which computes k-zero day safety as the shortest

FIGURE 7. Obtaining the lower bound of k .

FIGURE 8. Obtaining the upper bound of k .

path in a directed acyclic graph, is proposed for efficiently
computing the metrics in special cases. This work relies on
the assumption that both conjunctive relationship between
conditions and the similarity between zero-day exploits are
mostly limited to each host or each small group of hosts. The
problem of determining the value of k is converted to finding
the shortest path in the set of zero-day exploits.

To improve the security metric system of zero-day vulner-
ability, in literature [33], network diversity is modeled as a
security metric so as to evaluate the robustness of networks
against potential zero-day attacks.
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In literature [34], tolerance is defined as a metric to cap-
ture the required zero-day attack effort. However, they only
consider individual zero-day weakness under different targets
and ignore the multiple zero-day exploits.

Inspired from k-zero day safety, in literature [9], three
security metrics are proposed to improve the metric system of
k-zero day safety, including k-zero day safety of a zero-day
vulnerability, length of the k-zero day safety, and exploitabil-
ity of k-zero day safety. Length of the k-zero day safety can
be divided into node metrics because it indicates the zero-
day attack path which includes the minimum number of zero-
day vulnerabilities. k-zero day safety can be divided into
probabilistic metrics because it represents the exploitability
level of each attack path. In this work, the impact of known
vulnerabilities on evaluating the risk of zero-day attacks is
taken into consideration, and the risk of zero-day attacks can
be differentiated. The formulas used in risk assessment are as
follows:

Exploit(Path) =
1
PL
×

PL∑
i=1

Exp(Vi) (20)

where Exp(Vi) denotes the exploitability of vulnerability Vi,
and PL represents the length of the k-zero day safety path.
Equation (20) means the exploitability of each attack path
which leads to the attack goal.

Prob(vul) =
1
PL
×

1
KZS
×
Exploit(KPath)

10
(21)

whereKZS indicates the k-zero day safety, andKPath denotes
k-zero day safety path. Equation (21) represents the probabil-
ity of exploiting each vulnerability.

Risk(Vi) = Probability(Vi)× Impact(Vi). (22)

In (22), Impact(Vi) = 6.4. Exploitability of each zero-day
vulnerability is set as 10. Therefore, the shortcoming of their
work is that the exploitability and impact of each zero-day
vulnerability are set to a constant value, which cannot reflect
the actual situation well.

2) DISCUSSION ON AG FROM ADVANTAGES, FLAWS AND
SOLUTIONS
Attack graph is a powerful tool to access network security
and provide decision for network hardening. It can be used to
identify undesirable activities caused by attackers.Meantime,
it can also help security administrators understand whether
given critical resources can be compromised through multi-
step attacks. The advantage of attack graph is that it can be
automatically generated by tools.

However, as a qualitative model, attack graph also has
some flaws. First, attack graph only reflects whether a man-
aged network is secure or not, it cannot quantify the threat
level of network. Second, attack graph may include cycles,
which is inconvenient to use security metrics to quantify
later. Third, attack graph cannot deal with the uncertainty of
network attacks.

Zero-day attack graph fixes the flaw that only considering
known exploits. In this model, both known and zero-day
exploits are considered. However, in terms of complexity,
zero-day attack graph is comparable to traditional attack
graph. The reason is that the number of added zero-day
exploits (which depends on the number of remote services
and privileges) on each host should be comparable to the
number of known vulnerabilities [4]. That is, vulnerabilities
depend on the size of the network. As the network density
becomes larger, there is a greater likelihood of vulnerabilities
in the network [35].
The assumption of monotonicity is often used to eliminate

the cycles in attack graphs. Besides this method, in litera-
ture [23], cycles are divided into three types. The first type
is that cycles can be removed directly. The second type is that
cycles can be broken. The third type is that cycles can neither
be removed or broken. This method is complex in practice.
To address the uncertainty of network attacks, Bayesian

network is often applied to constructing attack graph, and the
corresponding content will be given in Sect. III-C.

B. RESOURCE GRAPH (RG)
Resource Graph (RG) is used to reflect the strategy that may
be chosen by attackers to reach the final condition (that is,
a critical network asset) with the least effort. Each node
in resource graph indicates a zero-day exploit [33]. Each
edge represents the dependency between zero-day exploits.
Resource graph focuses on remote access services, such as
http, rsh and ssh. These services all come from the application
layer of OSI model. The definition of resource graph is given
below.
Resource Graph [33]: Given a network composed of a set

of hosts H, a set of resources R with the resource mapping
res(.) : H → 2R, a set of zero-day exploits E = {<
r, hs, hd > |hs ∈ H , hd ∈ H , r ∈ res(hd )} and the collection
of their pre- and post-conditions C, a resource graph is a
directed graph G(E ∪ C,Rr ∪ Ri), where Rr ⊆ C × E
and Ri ⊆ E × C are the pre- and post-condition relations
respectively.

1) APPLYING RG TO UVRA
Resource graph is similar to attack graph in information
acquisition and graph generation. The reason is that resource
graph is syntactically equivalent to attack graph, but resource
graph aims at identifying zero-day attacks rather than known
vulnerabilities. Network diversity is used to evaluate risk
assessment, which is inspired by bio-diversity. Network
diversity can be regarded as a kind of node metrics, which
is the same as k-zero day safety. However, different from k-
zero day safety, network diversity focuses on remote access
resources.

It is a common belief that greater diversity in software
and services may help to improve the network security [4].
Network diversity is modeled as a security metric for eval-
uating the robustness of networks against potential zero-day
attacks [33].
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FIGURE 9. Network configuration and resource graph.

An example of network configuration and resource graph
is given in Fig. 9 [33]. In Fig. 9, host0 is an attacker in
the external network and aims to own the user privilege of
host3, host1 and host2 provide rsh service, host3 provides
ssh service, firewall1 allows the access to host1 but blocks
to host2, firewall2 allows the access from host1 or host2 to
host3. Fig. 9 shows three attack paths for attacker to obtain
the user privilege of host3, which are described by dotted
lines.

A networkG consists of a set of hostsH = {h1, h2, . . . , hn}
and resource types R = {r1, r2, . . . , rm}. The equations used
for computing metrics (d1, d2, d3) [33] are given as follows:

r(G) =
1∏n
1 pi

pi
, d1 =

r(G)
t

(23)

where t =
∑n

i=1 |res(hi)|, and pj =
|{hi:rj∈res(hi)}|

t (1 ≤
i ≤ n, 1 ≤ j ≤ m). r(G) denotes the effective richness of
resources in network, and d1 computes the number of distinct
resources inside a network and applies similarity-sensitive
bio-diversity metric to take similarity between different
resource types into consideration. For example, in Fig. 9,
H = {host0, host1, host2, host3} and R = {firewall, rsh, ssh},
t = 2+2+2+1 = 7, and p2 = 2+2+2+0

7 . Theway to calculate
{p1, p3} is the same as p2. In this way, d1 can be calculated.

d2 =
minq∈seq(cg)|R(q)|

minq′∈seq(cg)|q′|
(24)

whereC represents the set of security conditions, cg indicates
the goal condition and cg ∈ C , for each c ∈ C and q ∈ seq(c),
R(q) denotes {r : r ∈ R, r appears in q}, and min(.) returns
the minimum value in a set. This metric is based on the least
attack effort required for compromising important resources,
and considers the causal relationship between resources. For
example, in Fig. 9, the red dotted line contains three exploits,
but two exploits contain the same resource (rsh). So d2 of this
attack path is 2

3 .

d3 =
p′

p
(25)

where p represents the conditional probability of cg being
satisfied if all initial conditions are true, and p′ denotes the
minimum value of p when some edges are deleted from Rs

FIGURE 10. The impact of reusing an exploit.

(that is, edges from resources types to resource instances).
This metric reflects the average attack effort required for
compromising critical assets. For example, Fig. 10 shows the
impact of reusing an exploit (http), which is described by
the dotted lines on the right-hand side of Fig. 10. In Fig. 10,
d3 = 0.0049

0.056 .
Except for external factors, such as lack of data sets that

can represent real network, the main limitations of their work
are given as follows:
• Their proposedmodel relies on the availability and accu-
racy of inputs;

• Their work focuses on modeling diversity without con-
sidering the impact of other factors, such as the cost on
maintenance;

• They assume that the probabilities of all assets on con-
taining zero-day vulnerabilities are the same.

Based on this work, a new probabilistic model [36] is
proposed for addressing the limitations of original d3 metric.
For example, invalid result will return during simulation,
and once exploits are considered to be partially ordered,
the attack likelihood will not necessarily be the lowest when
all resources are assumed to be distinct [33]. The core idea
of this new probabilistic model is to add a new parent node
to exploits with the same resource type. An example of
redesigned model is shown in Fig. 11. The left-hand side
of Fig. 11 is from Fig. 10. The right-hand side of Fig. 11
represents the idea of resigning model for d3. The limitation
of their work is the high complexity of analyzing a resource
graph.

In order to model different resources and the causal rela-
tionship among resources, the concept of resource graph
is extended, and a labeled directed graph called extended
resource graph is proposed [37]. The definition of extended
resource graph is given as follows.
Extended Resource Graph [37]: Given a network com-

posed of
• a set of hosts H,
• a set of services S, with the service mapping serv(.) :
H → 2S ,
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FIGURE 11. An example of redesigned model.

• the collection of service pools SP = {sp(s)|s ∈ S},
• and the labelling function v(.) : E → SP, which
satisfies ∀hs ∈ S, ∀h′s ∈ S, v(< s, hs, hd >) = v(<
s, h′s, hd >) (meaning all exploits with common service
and destination host must be associated with the same
service instance)

Let E be the set of zero-day exploits {< s, hs, hd > |hs ∈
H , hd ∈ H , s ∈ serv(hd )}, and Rr ⊆ C × E and Ri ⊆ E × C
be the collection of pre and post-conditions in C. The labeled
directed graph< G(E∪C,Rr∪Ri), v > is called the extended
resource graph.

In an extended resource graph, each pair represents a
security-related condition, and each row below the rectangle
indicates different hardening option, which is available for
the condition. Each exploit node includes the information of
a service running on the destination host and source host.
The limitation of their work is that all service instances
are assumed to have the same probability to be exploited.
Therefore, they improve this work by considering the uneven
distribution of services along an attack path [38].

2) DISCUSSION ON RG FROM ADVANTAGES, FLAWS AND
SOLUTIONS
Resource Graph (RG) and traditional AG are closely
related. The reason is that RG is syntactically equivalent
to AG. For this reason, RG can be constructed by exist-
ing tools in Table 2, which are originally used to construct
traditional AG.

However, the limitations of resource graph are the exis-
tence of cycles and high complexity of analyzing a resource
graph, which are the same as traditional attack graph and
zero-day attack graph. The solutions of these two problems
can refer to the methods mentioned in attack graph. Mean-
time, this model only focuses on remote access resources
(such as services or applications that are reachable from other
hosts in the network), and the availability and accuracy of
inputs are required during the process of forming a resource
graph.

In the future, initial exploits of client-side applications,
insider attacks and user mistakes should be considered when
modeling resource graph.

C. BAYESIAN NETWORK (BN)
Bayesian Network (BN) is a Directed Acyclic Graph (DAG),
which is also called belief network. Nodes represent random

variables {x1, x2, . . . , xn}, and edges denote conditional inde-
pendences between variables. Each node has a corresponding
Conditional Probability Table (CPT), which is used to quan-
tify the effect of the parent node on child node. Data source
of nodes in BN comes from software vulnerabilities and open
services. They belong to the application layer of OSI model.

The model constructed by applying the BN to attack graph
is called Bayesian Attack Graph (BAG). Detailed analysis of
this model will be carried out with an example. Meantime,
the extended models of BN, including Dynamic Bayesian
Networks (DBN), Bayesian Decision Network (BDN), and
Fuzzy Probability Bayesian Network (FPBN) will also be
analyzed in detail when introducing the development process
of BN. Here the definition of BN is given below at first.
Bayesian Network [39]: Given a set of random variables

X = {x1, x2, . . . , xn} in a Bayesian network, the joint prob-
ability of all variables is given by a chain rule with the
following equation:

P(x1, x2, . . . , xn) =
n∏
i=1

P(xi|Pa(xi)), (26)

where Pa(xi) indicates that the specific value of the variable
is in the parent node xi. Bayesian network, also known as
Bayesian belief network, is based on Bayes theory. The theo-
rem equation is given as follows:

P(X | Y ) =
P(X )P(Y | X )

P(Y )
, (27)

where P(X | Y ) represents the posterior probability, P(X )
denotes the prior probability, P(Y | X ) means the probability
that event Y occurs under the condition of event X, and
P(Y ) represents the probability that event Y occurs without
condition limitation.

In literature [40], to provide a more compact representation
of attack paths, the concept of Bayesian Attack Graph (BAG)
is first proposed and applied to probabilistic analysis of risk
assessment. However, the formal definition of BAG is not
given, which can be found in [14]. Vulnerability risk assess-
ment based on BAG is shown in Fig. 12. And the definition
of BAG is given after Fig. 12. This model depends on two
assumptions. First, given a node Xi, each parent node of Xi
can independently influence the state of Xi. Second, once
reaching a compromised state, an attacker will never need
backtrack (that is, the assumption of monotonicity mentioned
in attack graph). The local conditional probability distribution
at node i is computed by (28):

p(xi = 1|pai) = 1−
∏
j

(1− p(xi = 1|xj)) (28)

where xi = 1 is a true state, which denotes a host with a
compromised state, and pai indicates the parent node of xi
in BAG.
Bayesian Attack Graph [14]: Let S be a set of attributes

and A be the set of atomic attacks defined on S. A Bayesian
Attack Graph is a tuple BAG = (S, τ, ε,P), where
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FIGURE 12. Vulnerability risk assessment based on BAG.

• S = Ninternal ∪ Nexternal ∪ Nterminal . Nexternal denotes
the set of attributes Si for which @a ∈ A|Si =
post(a). Ninternal denotes the set of attributes Sj for which
∃a1, a2 ∈ A|[Sj = pre(a1) and Sj = post(a2)]. Nterminal
denotes the set of attributes Sk for which @a ∈ A|Sk =
pre(a).

• τ ⊆ S × S. An ordered pair (Spre, Spost ) ∈ τ if
Spre 7→ Spost ∈ A. Further, for Si ∈ S, the set Pa[Si] =
Sj ∈ S|(Sj, Si) ∈ τ is called the parent set of Si.

• ε is a set of decomposition tuples of the form < Sj, dj >
defined for all Sj ∈ Ninternal ∪ Nterminal and dj ∈
{AND,OR}. dj is AND if Sj = 1⇒ ∀Si ∈ Pa[Sj], Si = 1.
dj is OR if Sj = 1⇒ ∃Si ∈ Pa[Sj], Si = 1.

• P is a set of discrete conditional probability distribu-
tion functions. Each attribute Sj ∈ Ninternal ∪ Nterminal
has a discrete local conditional probability distribution
(LCPD) representing the values of Pr(Sj|Pa[Sj]).

An example of applying Bayesian network to calculate the
probability that an attacker can reach each state (condition)
is shown in Fig. 13. To calculate the conditional probability
distributions p(Xi | pai) [41], which represent the probabili-
ties that an attacker reaches security state Xi when given the
observations of the set of preconditions pai. Two possible
cases should be considered, including logical AND and logi-
cal OR, which are similar to the idea of cumulative score in
attack graph. They belong to probabilistic metrics, and their
calculation formulas are given respectively in (29) and (30):

p(Xi | pai) =

{
0, ∃Xj ∈ pai | Xj = F∏

j:Xj pvj , otherwise
(29)

p(Xi | pai) =

{
0, ∀Xj∈pai | Xj=F
1−

∏
j:Xj (1−pvj ), otherwise

(30)

where pvj denotes the probability that an attacker successfully
exploits a vulnerability vj.

For example, the probability of node user(2) in Fig. 13
belongs to the logicalOR case. So the probability of this node
is:
• P(user(2)) = 1 − (1 − P(rsh(0, 2))(1 − P(rsh(1, 2)) =
P(rsh(0, 2)) + P(rsh(1, 2)) − P(rsh(0, 2)) ×
P(rsh(1, 2)) = 1 − (1 − 0.675)(1 − 0.9) = 0.675 +
0.9− 0.675× 0.9 = 0.9675

FIGURE 13. Unconditional probabilities for BAG with compromised
evidence of node trust(1, 2).

Different from [40], in literature [42], the probabilities of
successful exploits are assigned to nodes rather than edges.
The advantage of this method is that it can effectively com-
bine the standard measurement such as CVSS to quantify
the exploitability of each node. Moreover, in literature [42],
Dynamic Bayesian Network (DBN), which can incorporate
temporal factors into attack graph-based security metrics,
is used to capture the evolving nature of vulnerabilities.
In literature [43], DBN is also used to perform dynamic
risk assessment. Their work has strong subjectivity because
CPTs in their model are based on expert knowledge. Fuzzy
comprehensive evaluation methods can be used to improve
the objectivity of risk assessment. The definition of DBN is
given below.
Dynamic Bayesian Network [44]: A Dynamic Bayesian

Network (DBN) is an extended model of Bayesian Network
and models probability distributions over semi-infinite col-
lection of random variable variables, Z1,Z2, . . .. Variables
are typically partition into Zt = (Ut ,Xt ,Yt ) to separately
represent the input, hidden and output variables of a state-
space model. The index t is increased by one every time a new
observation arrived. The observation represents something
has changed, which makes a model of a discrete-event system.
DBN is defined to be a pair, (B1,B→), where B1 is a BN

which defines the prior P(Z1), and B→ is a two-slice tempo-
ral Bayesian network (2TBN) which defines P(Zt |Zt−1.) by
means of a Directed Acyclic Graph (DAG) as follows:

P(Zt |Zt−1) =
N∏
i=1

P(Z it |Pa(Z
i
t )) (31)

where Z it is the ith node at time t, which could be a component
of Xt ,Yt or Ut , and Pa(Z it ) are the parents of Z

i
t in the graph.

The nodes in the first slice of a 2TBN do not have any
parameters associated with them, but each node in the second
slice of the 2TBN has an associated conditional probability
distribution (CPD), which defines P(Z it |Pa(Z

i
t )) for all t > 1.

In literature [45], Bayesian network is used to capture the
uncertainty in attack structures, attacker actions and alerts.
To capture the uncertainty in attack structure, CVSS metrics
such as Access Complexity (AC) and Exploitability (E) are
used to derive the CPT parameters.
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FIGURE 14. Local observation model.

TABLE 5. Inference algorithms.

To capture the uncertainty in attacker actions, an Attack
Action Node (AAN) is proposed. Attack action exists if the
state of an AAN is true, otherwise, the probability of vul-
nerability exploit is 0. However, the correctness of evaluation
depends on the reliability of security sensors.

A Local Observation Model (LOM) is used to model
the uncertainty in alerts, which is shown in Fig. 14. More
specifically, a pair of nodes, including ActualState node and
Observation node, are introduced to Bayesian network. The
Observation node is the direct child of the ActualState node.
The ActualState node cannot observe itself, but can obtain an
inference of its own state through theObservation node. If the
Observation node obtains the true state based on evidence,
the posterior probability of the ActualState node will be
refreshed by computing P(ActualState|Observation = True).
This model relies on the reliability of evidence from secu-
rity sensors. Common inference algorithms are summarized
in Table 5.
In literature [46], Bayesian decision network is proposed

to yield scalability, and integrate the risk assessment and
outcome. The premise of using this model is to generate
Bayesian attack graph of the network at first. CVSS metrics
are used to calculate the exploitability of each single vulner-
ability, and the equation is given in (32).

Exploitability = 2 ∗ AV ∗ AC ∗ AU (32)

where AV denotes Attack Vector , AC indicates Attack
Complexity, and AU represents Authentication. Time factors
may have an impact on the probability of exploits. There-
fore, besides the base metrics of CVSS (AV , AC and AU ),
the temporal metrics of CVSS, including Exploitability (E),
Remediation Level (RL), and Report Confidence (RC) are
also used in this work. The formula of Temporal Probability
(TP) is given in (33).

TP = (E ∗ RL ∗ RC) ∗ Exploitability (33)

With the consideration of temporal metrics of CVSS,
Equation (29) and (30) are changed to (34) and (35). The
definition of Bayesian decision network is given after (35).

p(Xi | pai) =

{
0, ∃Xj ∈ pai | Xj = F∏

j:Xj TPvj , otherwise
(34)

p(Xi | pai) =

{
0, ∀Xj ∈ pai | Xj = F
1−

∏
j:Xj (1− TPvj ), otherwise

(35)

Bayesian Decision Network [46]: This model represents
a decision network which combines a Bayesian network with
additional node types for actions and utilities. Bayesian deci-
sion network contains three types of nodes. First, chance
nodes, which denote random variables. Second, decision
nodes, which indicate points where the decision maker has
a choice of actions. Third, utility nodes, which represent the
utility function of agent.
The utility node represents the expected utility (EU) asso-

ciated with each action given the evidence as defined by

EU (A|E) =
∏
i

P(Oi|E,A)U (Oi|A) (36)

where E is the available evidence, A is an action with pos-
sible outcome states Oi, U (Oi|A) is the utility of each of the
outcome states, given that action A is taken, and P(Oi|E,A)
is the conditional probability distribution over the possi-
ble outcome states, given that evidence E is observed and
action A is taken.

In addition to the applications on traditional network secu-
rity, Bayesian network is also used in security risk assess-
ment of Industrial Control Systems (ICSs). In literature [47],
a novel model called Fuzzy Probability Bayesian Network
(FPBN) is proposed to evaluate dynamic risk assessment of
ICSs. To solve the problem of limited historical data, fuzzy
probabilities (that is, the set of p̃ in the definition) are used in
their model instead of crisp probabilities (that is, the set of p
in the definition) in standard Bayesian network. Both expert
knowledge and evidence are required for risk assessment
in this model. To reduce the impact from noise evidences,
a noise evidence filter is embedded in the inference algorithm.
The definition of FPBN is given below.
Fuzzy Probability Bayesian Network [47]: Here BN is

defined as BN =< x, gx 7→x , p >, where
• x = (x1, x2, . . . , x`(x) ) is a set of `(x) nodes in total.
• gx 7→x is an `(x) × `(x) incidence matrix that describes
the relationship between the nodes, it is expressed as

gx 7→x
=


x1 x2 · · · x`(x)
g1,1 g1,2 · · · g1,`(x)
g2,1 g2,2 · · · g2,`(x)
...

...
. . .

...

g`(x),1 g`(x),2 · · · g`(x),`(x)


x1
x2
...

x`(x)

(37)
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TABLE 6. Development process of KVRA based on BN.

The definition of incidence matrix element gi,j is

gi,j =

{
1, node xi is the parent of node mj
0, otherwise

(38)

• p = (p1, p2, . . . , p`(x) ) is a set of conditional probability
tables, pi is the conditional probability table of node xi.

Fuzzy Probability Bayesian Network (FPBN) is defined as
FPBN =< x, gx 7→x , p̃, v >, where
• x = (x1, x2, . . . , x`(x) ) is a set of nodes, xi represents
an ICS event with three states T (true), F (false) and U
(unknown):

xi =


T event of node xi happens
F event of node xi does not happen
U unknown

(39)

There are four types of nodes in the FPBN: attack node
a, function node f , incident node e, and asset node z. The
event of an attack node means that an attacker launches
an attack a. The event of a function node indicates that
the system function f fails. The event of an incident node
implies that a hazardous incident e happens. The event
of an asset node marks a damage of the asset z.

• gx 7→x is an `(x) × `(x) incidence matrix. It describes
the relationship between the nodes, which is the same as
standard BN.

• p̃ = (p̃1, p̃2, . . . , ˜p`(x) ) is a set of conditional probability
tables, and p̃i is the fuzzy conditional probability table
of node xi.

• v = (v1, v1, . . . , v`(x) ) is a set of loss, vi is the loss of
node xi. If xi is an asset node, the loss vi is the value of
that asset; otherwise vi = 0. There are three types of
assets in ICSs: humans, environment, and properties.

Development process of Known Vulnerability Risk
Assessment (KVRA) based on Bayesian Network (BN) is
summarized in Table 6. Although works mentioned above
make a certain contribution to network security, they only
focus on known vulnerabilities. Next, the way to apply BN
to unknown vulnerability risk assessment and related works
will be introduced.

1) APPLYING BN TO UVRA
In unknown vulnerability risk assessment, nodes in BN rep-
resent possible states, and edges denote state transitions.
Each node has a Conditional Probability Table (CPT) that is
used to quantify the effect of the parent node on child node.

FIGURE 15. An example of Bayesian network.

The prior probability and conditional probability of nodes
are subjective because they come from vulnerability database
with manual evaluation. To make an objective assessment,
evidence from security sensors can be used to update the
probability of the compromised node. Meantime, the prob-
abilities of nodes that have relationships (parent nodes and
child nodes) will also be updated.

For example, in Fig. 15, if node p1 is true, the probability
of node p3 being true is 0.9, and P(p3 = T |p1 = T ) = 0.9.
If evidences from security sensors such as IDSs confirm the
fact that p3 = T , the posterior probability of P(p1 = T |p3 =
T ) can be calculated.
In literature [45], zero-day vulnerability is first mentioned

in the domain of using Bayesian network for network security
analysis, but the technology of unknown vulnerability risk
assessment is not given.

In literature [48], Bayesian network is used to estimate
the likelihood of acquiring critical software vulnerabilities
and exploits. This model contains 13 states (nodes) and
17 activities (edges). Besides vulnerability databases, data
of the activities in this Bayesian network contains previ-
ous empirical studies and a survey with 58 individuals who
discover critical software vulnerabilities. The possibility of
each state being true depends on the likelihood of its related
activities (or steps) being true. Meantime, the latter relies on
the characteristics of software and resources of an attacker.

The advantage of this model is that it can be used to support
enterprise decision making. The limitations of this model
mainly include three aspects. First, this work only focuses
on exploiting the root/administrator permissions of the victim
host through remote access. Second, this model only consid-
ers software programs required to be compiled. Third, skills
and resources of attackers will impact the decision result.

An example of the model proposed in [48] is shown
in Fig. 16. The number in this figure indicates an activity
(edge), and the letter indicates a state (node). Equation (40)
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FIGURE 16. An example of BN for software exploit.

and (41) are required to calculate P1 and P2.

P1 = P(X ≤ Tw|X ∈ LI (2, 9, 855)) (40)

where Tw denotes work days for discovering a zero-day vul-
nerability, LI indicates linear interpolation.

P2 = P(X ≤ M |X ∈ EXP(1.32 ∗ 10−5)) (41)

where M represents money (United States dollar) for pur-
chasing a zero-day vulnerability, and EXP indicates expo-
nential distribution. Equation (42) and (43) respectively
denote the formula of linear interpolation and exponential
distribution.

LI (X ) = y0 +
y1 − y0
x1 − x0

(X − x0) (42)

f (x) =

{
λe−λx , x > 0
0, x ≤ 0

(43)

In literature [48], when Tw = {2, 9, 855}, the likelihood of
discovering a zero-day vulnerability PD = {5%, 50%, 95%},
and P3 = P4 = 1. If Tw = 50 ∈ [9, 855], M = 7000, and
λ = 1.32∗10−5. The calculation process of vulnerability risk
assessment in Fig. 16 is given as follows:
• P1 = 50%+ 95%−50%

855−9 ∗ (50− 9) = 52.2%

• P2 = 1.32 ∗ 10−5e−1.32∗10
−5
∗7000

= 8.8%
• PA = P1 = 52.2%,PB = P2 = 8.8%
• PR = PAP3 ∪PBP4 = 52.2% ∗ 1+ 8.8% ∗ 1− 52.2% ∗
1 ∗ 8.8% ∗ 1 = 56.4%

If PAP3 and PBP4 are regarded as S1 and S2 respectively,
which can be founded in the definition of attack graph, it can
be clearly discovered that the idea of the cumulative score in
attack graph is applied to calculating PR. The future work of
this model is to consider other types of vulnerabilities.

To investigate the possibility of improving the tolerance
for Industrial Control Systems (ICSs) with zero-day attack by
defending against knownweakness, in literature [34], amodel
called Bayesian Risk Network (BRN) is proposed. In this
model, nodes represent different meanings, including target
nodes, attack nodes and requirement nodes. Edges represent
correlation between nodes. Data source of nodes in BRN
comes from the ICS Top 10 Threats and Countermeasures,

and Common Cybersecurity Vulnerabilities in ICSs. They
belong to the application layer of OSI model.

To measure the minimum effort required for zero-day
exploits to compromise a system, tolerance is defined as a
probabilistic metric. Then, Bayesian network is used to ana-
lyze the zero-day threat propagation across ICSs. Attackers
can choose a known or zero-day weakness at each step to
propagate the risk. If the exploitability of the chosen weak-
ness and its previous exploited target are obtained, the prob-
ability of successful exploit can be computed. The definition
of Bayesian Risk Network is given below.
Bayesian Risk Network [34]: Let B =< N ,PT ,PE ,PR,PT0 >

be a Bayesian Risk Network, where
• N = T ∪ε∪R, including target nodes, attack nodes and
requirement nodes.

• PT = {PT1 , . . . ,PTn} includes conditional proba-
bilities of all non-root target nodes given their par-
ents such that PTx denotes P(Tx |

⋃
T ′x∈pa(Tx )

ET ′xTx ),
where P(Tx |

⋃
T ′x∈pa(Tx )

ET ′xTx ) = 1 −
∏

T ′x∈pa(Tx )
(1 −

P(Tx |ET ′xTx )) by noisy-OR operator. P(Tx |ET ′xTx ) is the
probability of Tx given the weakness used at ET ′xTx .

• PE = {PET ′1T1
, . . . ,PET ′nTn } includes conditional proba-

bility distribution for all attack nodes such that PET ′xTx
denotes P(ET ′xTx |T

′
x).

• PR = {PR1 , . . . ,PRn} includes decomposition of all
requirement nodes such that PRx denotes P(Rx |pa(Rx)),
where P(Rx |pa(Rx)) =

∑
R′x∈pa(Rx )

P(Rx |R′x), and
P(Rx |R′x) is the assigned proportion of R

′
x in Rx .

• PT0 is the prior probability distribution of the root node
T0.

• P(Tx) is the unconditional probability of Tx ∈ T , which
can be obtained by:

P(Tx)

=



∑
ET ′xTx

PTx
∑

T ′x
PET ′xTx P(T

′
x), if ωz /∈ �(ET ′xTx )∑

ET ′xTx
PTx

∑
T ′x
PET ′xTx P(T

′
x)

+P(Tx |ET ′xTx = ωz)∑
T ′x
PET ′xTx P(T

′
x), otherwise

(44)

P(Tx) is obtained by its parent node P(T ′x) recursively
until it hits the root T0 whose probability distribution
is known.

∑
ET ′xTx

denotes ET ′xTx is marginalized. PTx ,
PRx and PET ′xTx are given by PT , PR and PE respectively.
P(Tx |ET ′xTx = ωz) equals to the uncertain exploitability
of the zero-day exploit ωz at Tx .

• P(Rx) denotes the unconditional probability of Rx inR
given its parents R′x and P(Rx) =

∑
R′x
PRx

∏
R′x∈pa(Rx )

P(R′x), where pa(Rx) are marginally independent.
An example of Bayesian risk network with no control

deployed is given in Fig. 17 [34]. White ovals denote tar-
get nodes, grey ovals indicate attack nodes, and blue ovals
represent requirement nodes. The exploitability of weak-
ness {w1,w2,w3,w4,w5} is {80%, 60%, 70%, 80%, 60%}.
w means the weight of corresponding target node.
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FIGURE 17. Bayesian risk network with no control deployed.

FIGURE 18. Bayesian risk network with control deployed.

There are two cases in Fig. 17. Conditional Probability
Tables (CPTs) with white color denote the case with no zero-
day exploit, and the risk is 30.94%. CPTs with yellow color
indicate the case that zero-day exploit z1 exists in the network,
and the exploitability is set to 80%. Under this circumstance,
the risk rises from 30.94% to 34.29%.

Compared with Fig. 17, in Fig. 18, the exploitability of
z1 is set to 100%. And control is deployed to combat w1,
which decreases half exploitability ofw1 (from 80% to 40%).
Under this circumstance, the risk decreases from 34.29% to

26.70%, which is also lower than the first case in Fig. 17.
In other words, with the implementation of reasonable con-
trol, the tolerance of the system against zero-day exploits can
be improved.

Although tolerance and k-zero day safety are different,
they are similar. More specifically, they are both looking for
a value to indicate the condition that the systems (or other
network assets) can be compromised. It is worth noting that
the idea of calculating logical OR node in Bayesian attack
graph is applied to calculating the compromised probability
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of target node T3. The future development of this graph
model is to cancel the assumption that the exploitability
of each weakness will always decrease 50% under control
deployed.

2) DISCUSSION ON BN FROM ADVANTAGES, FLAWS AND
SOLUTIONS
The advantages of Bayesian network mainly include
three aspects. First, Bayesian network provides a causal-
consequence relationship between random variables, which
is similar to attack graph. Second, Bayesian network is a
directed acyclic graph and provides a more compact repre-
sentation with all attack path information. In other words,
Bayesian network shows better scalability in medium and
large networks. Third, Bayesian network provides a form of
reasoning partial belief under uncertain conditions.

However, Bayesian network also exists flaws. For example,
Bayesian network includes boundary constraints on proba-
bility of state values of the variables. To solve this problem,
fuzzy probabilities can be used to replace the crisp probabili-
ties in standard Bayesian networks. Meantime, it is important
to investigate whether the BN models used for problems
associated with insiders are applicable for Industrial Control
System (ICS) environments, especially for a control room
with an operator [34].

Bayesian risk network is an extended model of Bayesian
network, which can be used to improve the safety of Industrial
Control Systems (ICSs). Thismodel is constructed at the level
of assets rather than states and attributes. The advantage of
BRN is that it can model zero-day exploits with the limi-
tation of details about them (such as pre-requisites or post-
conditions) [34].

However, there are three types of nodes in this model, and
the probability calculation methods are different according to
the node type. That is, the complexity of analyzing a Bayesian
risk network is high. Moreover, this work only considers
individual zero-day weakness at different targets. Meantime,
it does not consider the cost of deploying control solution
[8]. To further verify the validity of this model, the case that
one attack path contains multiple zero-day exploits needs to
be considered. In addition, the cost (mainly includes human
resource, time, and money) of each solution should also be
given.

Looking forward to future development, attacks from
insiders also need to be considered to verify whether this
model can address both internal and external issues as well
as social engineering attacks, collusion attacks, etc.

IV. DGM FOR UVRA BASED ON SYSTEM-LEVEL DATA
This section introduces directed graph models for unknown
vulnerability risk assessment whose nodes are constructed by
system-level data. Due to the lack of related works, only the
system call is discussed in this section. Directed graphmodels
that rely on system-level data include System Object Depen-
dency Graph (SODG) and Object Instance Graph (OIG).

The rest of this section is arranged as follows. First,
the concepts of these models are given, including the defi-
nitions and purposes. Next, the general process of applying
these directed graphs to UVRA is given, and related works
of these models will be analyzed. Finally, these directed
graph models will be discussed from three aspects, including
advantages, flaws and solutions.

A. SYSTEM OBJECT DEPENDENCY GRAPH (SODG)
In literature [49], a model called System Object Dependency
Graph (SOGD) is proposed to reveal zero-day attack paths.
Nodes in SODG represent system objects, such as files, pro-
cesses and sockets. Edges in SODG indicate the dependency
between system calls. Labels on edges represent when the
system calls occur. The definition of SODG is given below.
System Object Dependency Graph [49]: If the system call

trace for the i− th host is denoted as
∑

i, then the SODG for
the host is a directed graph G(Vi,Ei), where:
• Vi is the set of nodes, and initialized to empty set ∅;
• Ei is the set of directed edges, and initialized to empty
set ∅;

• If a system call syscall ∈
∑

i, and dep is the dependency
relation parsed from syscall, where dep ∈ {(src →
sink), (sink → src), (src ↔ sink)}, src and sink are
OS objects (mainly a process, file or socket), then Vi =
Vi∪{src, sink}, Ei = Ei∪{dep}. dep inherits timestamps
start and end from syscall;

• If (a → b) ∈ Ei and (b → c) ∈ Ei, then c transitively
depends on a.

1) APPLYING SODG TO UVRA
To build a complete SODG of a managed network, each
host should construct its own SODG at first. System calls
are parsed to generate nodes and edges in each SODG. The
auditing of system calls on each host is performed at first to
filter the useless information. Then, system call traces from
individual hosts are sent to the analysis machine after filter-
ing. Next, to obtain the complete SODG, different SODGs
should be connected together if and only if there is at least one
same directed edge that appears in different graphs simultane-
ously. Since it is difficult to discover zero-day vulnerabilities
alone, zero-day attacks are identified by calculating the risk
probability of Suspicious Intrusion Propagation Paths (SIPPs)
[49]. SIPPs can be divided into path metric, and the definition
of SIPPs is given below.
Suspicious Intrusion Propagation Paths [49]: If the network-

wide SODG is denoted as ∪G(Vi,Ei), where G(Vi,Ei)
denotes the per-host SODG for the i− th host, then the SIPPs
are s subgraph of ∪G(Vi,Ei), denoted as G(V ′,E ′), where:
• V ′ is the set of nodes, and V ′ ⊂ ∪Vi;
• E ′ is the set of directed edges, and E ′ ⊂ ∪Ei;
• V ′ is initialized to include trigger nodes only. And
trigger nodes come from SODGobjects that are involved
in the alert from security sensors (such as IDSs);

• For ∀obj′ ∈ V ′, if ∃obj ∈ ∪Vi where (obj→ obj′) ∈ ∪Ei
and start(obj→ obj′) ≤ lat(obj′), then V ′ = V ′ ∪{obj}
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FIGURE 19. An example of SODG.

and E ′ = E ′ ∪ {(obj → obj′)}. lat(obj′) maintains the
latest access time to obj′ by edges in E ′;

• For ∀obj′ ∈ V ′, if ∃obj ∈ ∪Vi where (obj→ obj′) ∈ ∪Ei
and end(obj′→ obj) ≥ eat(obj′), then V ′ = V ′ ∪ {obj}
and E ′ = E ′ ∪ {(obj′ → obj)}. eat(obj′) maintains the
earliest access time to obj′ by edges in E ′.

The use of SODG for UVRA appears in [49] at first. This
work exists two main flaws. First, as shown in Fig. 19, SODG
may exist cycles. Second, this work assumes that both pre-
knowledge and common features at OS-level can be obtained,
which is hard to accomplish in reality. The existence of cycles
will lead to the complexity of risk assessment.

2) DISCUSSION ON SODG FROM ADVANTAGES, FLAWS
AND SOLUTIONS
The advantage of this model is that it identifies zero-day
attacks by paths rather than single exploit. The reason is that
individual zero-day exploit is hard to detect in reality.

The flaw of this graph model is the existence of cycles,
which will lead to the difficulty of quantification. Meantime,
the readability of SODG will become worse with the growth
of network scale.

A model called object instance graph is proposed to solve
the problems of SODG. This model will be introduced next.

B. OBJECT INSTANCE GRAPH (OIG)
To solve the problem of SODG that it may exist cycles,
in literature [50], a model called object instance graph is
proposed. Each node in object instance graph indicates an
object instance, and each edge represents the dependency
relation between nodes. The definition of object instance
graph is given below.
Object Instance Graph [50]: If the system call trace in a

time window T [tbegin, tend ] is denoted as
∑

T and the set of
system objects (mainly processes, files or sockets) involved
in

∑
T is denoted as OT , then the object instance graph is a

directed graph GT (V ,E), where:
• V is the set of nodes, and initialized to empty set ∅;
• E is the set of directed edges, and initialized to empty set
∅;

• If a system call syscall ∈
∑

T is parsed into two system
object instances srci, sinkj, i, j ≥ 1, and a dependency
relation depc: srci→ sinkj, where srci is the ith instance
of system object src ∈ OT , and sinkj is the jth instance
of system object sink ∈ OT , then V = V ∪ {srci, sinkj},
E = E ∪ {depc}. The timestamps for syscall, depc, srci,

FIGURE 20. An example of object instance graph.

FIGURE 21. The infection propagation model.

and sinkj are respectively denoted as t_syscall, t_depc,
t_srci, and t_sinkj. The t_depc inherits t_syscall from
syscall. The index i and j are determined before adding
srci and sinkj into V by:
- For ∀srcm, sinkn ∈ V , m, n ≥ 1, if imax and jmax are
respectively the maximum indexes of instances for
object src and sink, and;

- If ∃srck ∈ V , k ≥ 1, then i = imax , and t_srci stays
the same; Otherwise, i = 1, and t_srci is updated
to t_syscall;

- If ∃sinkz ∈ V , z ≥ 1, then j = jmax + 1; Otherwise,
j = 1. In both cases t_sinkj is updated to t_syscall;
If j ≥ 2, then E = E ∪ {deps : sinkj−1→ sinkj}.

• If a → b ∈ E and b → c ∈ E, then c transitively
depends on a.

1) APPLYING OIG TO UVRA
Object instance graph relies on SODG. The process of apply-
ing SODG to UVRA can be founded in the previous section.
Object instance graph eliminates the cycles in SODG by
creating corresponding number of object instances according
to the frequency that an object being called.

An example of object instance graph is given in Fig. 20.
From Fig. 20, it can be clearly discovered that the cycle exists
in Fig. 19 is eliminated. The infection propagation model is
shown in Fig. 21, which contains two different cases.

First, when there are instances from different timestamps
of the same object (file 1), if an instance of the previous
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FIGURE 22. Merging different instance nodes of the same object.

timestamp (node B) is infected, the instance of the latter
timestamp (node C) must also be infected.
Second, if an instance of the previous timestamp (node B)

is not infected, the instance of the latter timestamp (node C)
may be infected by other object (node A). Contact infection
rate τ denotes the probability that node C gets infected when
node A is infected, and intrinsic infection rate ρ indicates
the probability that node C gets infected when node A is not
infected.

To eliminate the assumption that all pre-knowledge and
common features at OS-level can be obtained in [49],
Bayesian network is applied to object instance graph because
it canmodel cause-and-effect relations, and incorporate intru-
sion evidences from various security sensors. In this work,
Local Observation Model (LOM) is used to incorporate evi-
dences, which has been introduced in Fig. 14. The future
development of this graph model is to solve the problem that
some attack paths cannot be revealed when attack time span
exceeds the analysis time period.

2) DISCUSSION ON OIG FROM ADVANTAGES, FLAWS AND
SOLUTIONS
The advantage of this model is that Bayesian network can be
applied to this model for calculating the probability of nodes
being infected.

Scalability is one of the defects of this model, because
multiple object instances will be generated if system objects
are called frequently. To solve the problem of scalability,
besides the pruning operations already mentioned in [50],
another way is to merge different instance nodes of the same
object. These instance nodes do not include evidences from
security sensors, and nodes whose compromised probabilities
are lower than the threshold should also be excluded. Mean-
time, these nodes that can be merged only have one child
node. After merging, the representation is < tstart , tend >:

(pid : ppid : pcmd), where tstart denotes the start time of
merging, tend indicates the end time of merging, pid means
process ID, ppid represents the ID of parent process, and

pcmd is process command. An example of this idea is given
in Fig. 22. Nodes in the dotted line on the left-hand side of
Fig. 22 are required to be merged. The node in the dotted box
on the right-hand side of Fig. 22 is the merging result. As can
be seen from Fig. 22, this idea simplifies the graph on the
basis of retaining the information in the original version.

In addition, when some attack activities evade system
calls, or the attack time span exceeds the analysis time period,
the constructed instance graphs may not capture the complete
zero-day attack paths. Genetic algorithm can be used to solve
this problem because it is highly suited to NP-complete prob-
lems, such as searching through all attack paths [51].

V. CHALLENGES AND SOLUTIONS
The technology of Unknown Vulnerability Risk Assessment
(UVRA) based on directed graph models is still in the devel-
opment stage, and many problems are urgently required to
be solved. Meantime, the common challenges of mentioned
directed graph models for UVRA can be summarized into
following aspects:

• Obtaining zero-day vulnerabilities. Zero-day vulnerabil-
ities are difficult to obtain, current researches often set
a time point to divide known vulnerabilities into known
and unknown vulnerabilities [8], [21]. For example, set-
ting the time point to 2018/12/31, vulnerabilities before
2018/12/31 are used as known vulnerabilities, and vul-
nerabilities occur after this time point are regarded as
zero-day vulnerabilities;

• Generating directed graphs effectively. At present,
the directed graphs given in the existing research results
are based on a managed network with a small number of
hosts. With the growth of network scale, the complexity
of attack graph generation will increase;

• Proposing better security metrics. The application scope
of current security metrics is limited. Security metrics
for Unknown Vulnerability Risk Assessment (UVRA)
based on Directed Graph Models (DGMs) are cate-
gorized in Table 7, where CVSS denotes Common
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Vulnerability Scoring System, CCSS indicates Common
Configuration Scoring System, CWSS represents Com-
mon Weakness Scoring System, SP indicates Shortest
Path, and SIPPs denotes Suspicious Intrusion Propaga-
tion Paths. Better security metrics are required to obtain
more accurate exploitation, which depends on compre-
hensive considerations of vulnerabilities, assets, etc.;

• The improvement of directed graph models and risk
assessment methods. The applications of existing mod-
els have certain limitations. Further improvement on the
theoretical system of unknown vulnerability risk assess-
ment based on directed graphs is required.

Combining existing researches and prospect for future
development, possible solutions for the above challenges are
given as follows:

• Due to the difficulty of obtaining zero-day vulnerabil-
ities, the method that dividing them from known vul-
nerabilities by setting a time point will be continuously
used in the future. Another possible approach is when
dividing zero-day vulnerabilities from known vulnera-
bilities, the time for fixing a vulnerability should also be
considered as a classification indicator;

• The growth of network nodes inevitably increases the
time complexity for generating attack graphs. One solu-
tion is to use the idea of distributed attack graph genera-
tion [52] to overcome the state space explosion problems
with the growth of hosts and vulnerabilities in amanaged
network;

• Not only the inherent characteristic of the vulnerability
(exploitability), but also time and environmental factors
of securitymetrics should be considered to obtain amore
accurate risk assessment. When multiple security met-
rics are used to quantify network security risks, fuzzy
comprehensive risk assessment can be used to determine
the severity of the risk. The successful application of
bio-diversity in risk assessment reflects the possibility of
integration between different scientific research fields.
Some methods regard alerts from security sensors as
evidences to dynamically update the exploitability of
corresponding nodes, so the accuracy of risk assessment
can be indirectly enhanced by improving the reliability
of security sensors;

• To obtain a better model, fusion between directed graph
models is an existing method (such as Bayesian attack
graph which is the fusion product of attack graph and
Bayesian network) and ongoing approach.

VI. DISCUSSION
Unknown Vulnerability Risk Assessment (UVRA) focuses
on zero-day vulnerabilities. A typical zero-day attack may
last for 310 days on average [53]. To protect against zero-
day attacks, various methods are proposed. These methods
are classified as statistics, signatures and behavior tech-
niques [54]. In order to meet the future trend, the classifi-
cation needs to be further expanded. The following content

introduces the future work directions of UVRA from the
perspective of techniques and application trends.

A. MAIN TECHNIQUES FOR URVA
The main techniques for UVRA are listed as follows, includ-
ing current popular techniques and methods that will play an
important role in the future. Their defects at the current stage
will be analyzed, which can be regarded as the future work
directions of UVRA.

1) STATISTICAL-BASED TECHNIQUES
Zero-day detection based on statistical techniques relies on
static attack profile and manual modifications of detection
settings. For example, Nessus is a vulnerability scanner,
which is often used in vulnerability risk assessment. The prin-
ciple of Nessus is to compare the defects of hosts with the vul-
nerability features stored in the vulnerability database. The
list of hosts that need to be scanned is manually configured
by users. If the defects match the vulnerability features, they
will be regarded as vulnerabilities. Therefore, this method is
not suitable for real-time detection and defense.

2) SIGNATURE-BASED TECHNIQUES
As mentioned before, suspicious activities whose signatures
are not defined previously in Snort IDS/IPS are regarded
as zero-day exploits. A signature is a sequence of bytes at
specific locations within the executable, a regular expression,
a hash value of binary data, or any other formats created
by malware analyst which should accurately identify mal-
ware instances [55]. This kind of method relies on previous
malware signatures, which means unknown malware without
known signatures will not be detected.

3) BEHAVIOR-BASED TECHNIQUES
Methods based on behaviors assume that malware can be
detected by observing the malicious behaviors exhibited by
malware during runtime [55]. Compared with signature-
based techniques, behavior-based methods focus on observ-
ing malware actions instead of previously known signatures.
Therefore, behavior-based methods have a better perfor-
mance on malware variants with similar behaviors but differ-
ent structures. However, their flaws are the high false positive
rate and worse performance on mimicry attacks.

4) GRAPH THEORY
This method is the core content of our paper. It can be clearly
discovered that the advantage of this method is to visual-
ize the network status by graphs. Each path represents the
strategy that attackers may use to achieve the goal. However,
the probability that each attack path being adopted by attack-
ers cannot be known by only using the knowledge of graph
theory. Among the current researches of UVRA based on
directed graph models, most of them use both directed graphs
and security metrics to complete qualitative and quantitative
tasks.
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TABLE 7. The classification of security metrics for UVRA based on DGMs.

5) SECURITY METRICS
In UVRA, security metrics are used to quantitatively evaluate
the probability that network systems will be exploited when
facing attacks. Security metrics are often used in conjunction
with graph models, which is the main theme of our paper.
The previous classification work of security metrics can be
seen in Table 4. However, there is a gap in the previous
work to classify the security metrics for UVRA. Therefore,
the supplementary work is made in our paper, which can be
seen in Table 7.

6) PROBABILITY THEORY
The original purpose of proposing probability theory is
to analyze the frequency of events. These events can be
repeated, such as throwing a coin and observing whether the
coin falls to the front or the back. However, some events
cannot be repeated. For example, supposing the probability of
a host being exploited is p, and assuming the threshold to be
reached for an emergency fix is q. If p > q, the host requires
to be repaired immediately. Otherwise, it does not need to do
that. The former is called the frequentist probability, which
is directly related to the frequency of events. The latter is
called the Bayesian probability, which involves the level of
certainty. Bayesian theory enables us to infer the uncertainty
of network attacks. The combination of Bayesian theory and
graph theory is Bayesian network.

7) ARTIFICIAL INTELLIGENCE
Artificial intelligence (AI) can be simply regarded as using
computer science to simulate human thinking. It has been
called one of the three cutting-edge technologies (genetic
engineering, nanoscience, and artificial intelligence) of the
world in the 20th century. And it is also considered to be one
of the cutting-edge technologies (space, energy, and artificial
intelligence) of the world in the 21th century.

AI will play a vital role in vulnerability risk assessment.
Methods for vulnerability risk assessment can be divided into
three steps [56].

The first step is manual vulnerability assessment. This
method is time costing and depends on expert knowledge
deeply.

The second step is assistive vulnerability assessment,
which is the stage of most current researches. This method
requires the help of vulnerability scanners or frameworks to
find the most relevant security weakness. Therefore, the lack
of flexibility and compatibility will be the inherent defects of

this method. And the dependency on expert knowledge still
exists.

The third step is fully automated vulnerability assessment,
which is based on the technology of artificial intelligence.
Compared with the first and second step, this method can
produce expert-level decisions without the help of human
beings, which will reduce the costs on time and economic.
However, this technology is still in the development stage,
and further researches on automated vulnerability mitigation
techniques that can actually protect computing platforms are
still required [56].

B. APPLICATION TRENDS OF UVRA
Unknown Vulnerability Risk Assessment (UVRA) focuses
on traditional network at first. However, devices connected
to the network are no longer just hosts, they show a trend of
diversification. The result is that existing UVRA techniques
may lose their power on these devices, such as intelligent
robots, vehicles, etc. Therefore, it is important to correctly
grasp the application trends of UVRA. Due to the variety of
application scenarios, the following content only focuses on
the future work directions of UVRA on Industrial Internet of
Things (IIoT), robots and vehicles.

1) IIoT
Nowadays, the era of Internet of Things (IoT) is coming. The
number and types of devices connected to IoT are far beyond
traditional networks. In other words, there are more vulner-
abilities in IoT than traditional networks. Moreover, with a
constant growth of attack surfaces and capabilities, network
systems will suffer from more serious attacks. Therefore,
UVRA is a key technology to keep IoT security. Industrial
IoT (IIoT) is an application of IoT on industry, with the aim
of improving the overall operational efficiency in industrial
management [57]. Events that exploiting the vulnerabilities in
the devices of IIoT happen frequently recent years. The future
work directions on applying UVRA to IIoT are as follows:

• New security metrics to quantify vulnerabilities in IIoT.
The cost and return on patching a vulnerability should
be considered;

• New assessment frameworks and specific vulnerability
database for IIoT. Due to the difficulty to update the
underlying light weight operating system, many vulner-
abilities in IoT devices cannot be expected to be patched
and upgraded. Therefore, new assessment frameworks
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should be able to provide risk mitigation strategies to
improve security;

• New risk vectors that satisfy the form of International
IoT Asset Classification (IIoTAC) and Key IoT Cyber
Risk Factors (KIoTCRF) [58];

• New methods to solve the low attack path quantification
degree and complex path finding.

2) ROBOTS
With the rise of AI technology, different types of intelligent
robots are constantly being connected to the network. How-
ever, robots are typically not created with security as a main
concern [59]. Therefore, the existence of vulnerabilities in
robots is an inevitable fact. At present, researches on the
vulnerability risk assessment of robots are lacking. In order
to achieve an effective vulnerability risk assessment, the fol-
lowing points can be the future work directions:
• New security metrics to quantify vulnerabilities in
robots. A novel security metric called Robot Vulnera-
bility Scoring System (RVSS) [59] is proposed to evalu-
ate the severity caused by corresponding vulnerabilities.
This metric is an improvement of CVSS. However, there
is almost no relevant metric for zero-day vulnerabilities
in robots;

• New assessment framework and specific vulnerabil-
ity database for robots. Due to the difference between
robot and conventional vulnerabilities on features, some
reported robot vulnerabilities are difficult to be classi-
fied by existing standards.Moreover, the severity assess-
ment of robot vulnerabilities is also quite different from
conventional vulnerabilities.

3) VEHICLES
Besides robots, vehicles also connect to the network and
become network/physical systems, which are the core com-
ponent of Intelligent Transportation System (ITS). Vulnera-
bilities in vehicles can cause the loss of property, even the
personal safety of users. However, the research on assessing
the impact of network/physical attacks on road users and sys-
tem operators is lacking [60]. Although literature [60] takes a
step forward in the vulnerability risk assessment of vehicles,
it only finishes the qualitative work of vulnerabilities. The
future work directions on vulnerability risk assessment of
vehicles are listed as follow:
• Trying to apply Bayesian network to in-vehicle network.
The reason is that there is a high degree of uncertainty
about the impact of security breaches on the in-vehicle
network [60]. Bayesian network can infer uncertainty
and visualize attack paths;

• Proposing novel security metrics to quantify vulnerabil-
ities in vehicles. A common idea is to improve existing
standards to adapt new application scenarios.

VII. CONCLUSION
Directed graph models for unknown vulnerability risk assess-
ment are formed by enumerating possible attack paths

(or called attack strategies) from the perspective of attack-
ers. They play an important role on risk assessment and
decision making for administrators. In this paper, the con-
cepts and definitions of directed graph models are given at
first. Then, these models are analyzed from three aspects,
including advantages, flaws and solutions. Next, correspond-
ing examples are given to facilitate understanding. After
that, challenges and solutions of unknown vulnerability risk
assessment based on directed graph models are given. Mean-
time, Security metrics for unknown vulnerability risk assess-
ment based on directed graph models are summarized and
classified. At last, future work directions of UVRA are dis-
cussed from the perspective of techniques and applications.
At present, the survey of unknown vulnerability risk assess-
ment based on directed graph models is relatively lacking,
so our work is valuable.
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