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ABSTRACT Vital-sign estimation using ultra-wideband (UWB) radar is preferable because it is contact-
less and less privacy-invasive. Recently, many approaches have been proposed for estimating heart rate
from UWB radar data. However, their performance is still not reliable enough for practical applications.
To improve the accuracy, this study employs convolutional neural networks to learn the special patterns
of the heartbeats. In the proposed system, skin displacements of the target person are measured using
UWB radar, and the radar signal is converted to a two-dimensional matrix, which is used as the input of
the designed neural networks. Meanwhile, two triangular waves corresponding to the peaks and valleys
in an electrocardiogram are adopted as the output of the networks. The proposed system then identifies
each individual and estimates the heart rate automatically based on the already trained neural networks. The
estimation error of the interbeat interval computed using our approach was reduced to 4.5 ms in the best case;
and 48.5 ms in the worst case. Experiment results show that the proposed approach significantly outperforms
a conventional method. The proposed machine learning approach achieves both personal identification and
heart rate estimation simultaneously using UWB radar data for the first time. Moreover, this study found that
using the respiration and heartbeat components together may enhance the accuracy of heart rate estimation,
which is counter-intuitive, because the respiration is usually believed to interfere with the heartbeat.

INDEX TERMS Ultra-wideband radar, heart rate, vital signs, convolutional neural networks.

I. INTRODUCTION
In recent decades, computer-based vital signs monitoring has
played an increasing role in the medical care and nursing
fields. For example, in hospitals, child care centers, and
nursing homes, heart rate monitoring can avoid many acci-
dents caused by cardiovascular diseases. Considering that
multiple persons commonly share the same space, an ideal
monitoring system would provide not only accurate vital
data, but also a function to identify each individual. In this
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kind of person-specific long-term monitoring system, a cor-
respondence between the data and the subject should be
built because a mismatch may result in serious problems.
Monitoring approaches using wearable or contact devices are
still the mainstream because they are reliable; and do not
require any extra processing of personal identification. For
example, electrocardiography (ECG) and photoplethysmog-
raphy (PPG) sensors are usually used in heartbeat monitoring
[1]–[3]. Sensors worn on the wrist [4], [5] or in the ear [6]
have also been designed to monitor vital signs. However,
wearing these devices is troublesome; and may cause skin
discomfort [7]. Some researchers have designed contactless

168484 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-1501-9719
https://orcid.org/0000-0003-0177-879X
https://orcid.org/0000-0002-1454-7942
https://orcid.org/0000-0002-2092-7335
https://orcid.org/0000-0001-7282-8171
https://orcid.org/0000-0003-4848-4078
https://orcid.org/0000-0002-9779-8201
https://orcid.org/0000-0003-1168-0323
https://orcid.org/0000-0002-2596-8101


S. Wu et al.: Person-Specific Heart Rate Estimation With UWB Radar Using CNNs

monitoring using cameras [8]–[11], but these methods are
sensitive to illumination change and visual occlusion.

In contrast to these sensor-based or camera-based
approaches, radar has been considered a more comfortable
and reliable option for monitoring vital signs [12]–[17].
To estimate the heartbeat and respiration rate, some
approaches use the Fourier transform [12]–[14] and others
adopt feature extraction [15]–[17]. Recently, ultra-wideband
(UWB) radar has been proved to be more efficient than
continuous-wave (CW) radar in measuring small skin dis-
placement because it can suppress interfering echoes from
different distances [19]–[30]. Nevertheless, radar-basedmon-
itoring systems have two major problems. One is that the per-
formance is always degraded by the interference between the
heartbeat and respiration components. To address this issue,
some researchers have adopted filtering based on Fourier
analysis, wavelet analysis, eigen features, and other methods
[21], [22], [38]. Although there has been good progress on
this front, it is still challenging to separate the respiration
and heartbeat components [18], [23]. The other challenge
is regarding the identification of individuals among multiple
persons, because, in contrast to the camera-based methods,
identifying individuals requires extra processing when using
a radar for the measurements.

To solve these problems, the present paper applies convo-
lutional neural networks (CNNs) instead of traditional tech-
niques to our heartbeat monitoring system. Although some
recent studies have reported that a CNN is efficient in classi-
fying ECG data [31]–[36], most such studies aim to classify
normal and abnormal ECG waveforms without any radar sig-
nals involved. To the authors’ knowledge, no study has been
conducted for processing radar data to identify individuals as
well as estimate the heart rate simultaneously. The heart rate
is estimated by measuring the interval between two adjacent
unique patterns of the heartbeat. Therefore, we exploit CNNs
to regress a time-varying curve which carries the unique
patterns.

In this paper, a time series of the phase of radar signals is
used as the input of the CNNs, and two triangular waves that
correspond to the R and S waves respectively are designed
to be the output of the CNNs, which is trained by solving a
regression problem. The contributions of the present paper
are listed as follows: (1) This paper proposes a novel heart-
beat monitoring system that significantly improves estima-
tion accuracy. (2) Instead of using the raw ECG waveforms,
this paper introduces two triangular patterns for training the
CNNs. Triangular patterns corresponding to the R and S
waves (early and late ventricular depolarizations) are pro-
posed to achieve a better regression than that realized by
using ECG directly. (3) This paper has found for the first time
that the respiration component of the radar data improves the
accuracy of the heartbeat estimation, which defies the com-
mon belief in this field that the respiration component inter-
feres with the heartbeat component and degrades the overall
accuracy. (4) This paper realizes person-specific heartbeat
monitoring using a radar system for the first time, because the

identification of each subject can be automatically achieved
by the CNNs.

When aCNN is used for person-independent classification,
a large number of training data are required, and the training
process needs an unacceptably large amount of computational
resources. However, in our system, we can train each CNN
specifically for each subject in advance; so that it can auto-
matically identify each subject and estimate his or her heart
rate. Our study in this paper found that a small number of
training data were sufficient to achieve high performance
in person-specific monitoring. The proposed approach is
expected to play a crucial role in realizing an accurate long-
term and noncontact heartbeat monitoring system in a variety
of applications.

II. HEARTBEAT MONITORING USING UWB RADAR
This section introduces the basic theory of heartbeat moni-
toring using UWB radar data, and also explains an existing
algorithm that outperforms many other methods [18].

A. DISPLACEMENT MEASUREMENT BASED HEARTBEAT
ESTIMATION
In this subsection, we briefly explain the basic principle of
heartbeat estimation using a UWB radar system. Detailed
analyses can be found in [19], [20]. We define the received
radar signal at time t and range r as s(t, r), which is complex-
valued, where the real and imaginary parts are the in-phase
and quadrature components. We manually select range r0
corresponding to the position of the target subject. Then,
a displacement of the target can be obtained as

d(t) = unwrap {6 s(t, r0)} λ/4π, (1)

where d(t) is the estimated displacement of time t , 6 is the
phase operator of a complex number and obtained using an
arctangent demodulation, λ is the wavelength at the center
frequency, and unwrap {·} is an unwrapping process that
obtains a smooth phase sequence considering the phase ambi-
guity of 2nπ , where n is an integer. The unwrap function used
in this study corrects the phase of a complex-valued sequence
by adding multiples of ±2π when absolute jumps between
adjacent samples are greater than or equal to π . Therefore,
the resultant phase sequence becomes smooth [42]. We note
that the estimated displacement contains both respiration and
heartbeat components.

B. TOPOLOGY-FEATURE-BASED ALGORITHM
A topology-feature-based method (TF Method) for the radar-
based heartbeat estimation has been shown to be one of the
most accurate existing algorithms [18]. The skin displace-
ments corresponding to the heartbeats have quasi-periodic
patterns, so the computation of the interbeat interval (IBI; also
the reciprocal of the instantaneous heart rate) can be realized
by measuring the intervals between adjacent quasi-periodic
waveforms that are topologically similar. This kind of topo-
logical similarity is exploited to improve the accuracy in the
measurement of heartbeat using UWB radar systems [18].
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FIGURE 1. Layers adopted for each CNN: the five CNNs share the same
layer layout, but they are trained independently and in parallel.

However, the TF Method still has some challenges, e.g.,
the performance is occasionally degraded by the interference
between the heartbeat and respiration components. More-
over, individuals cannot be identified based on radar signals
using the TF Method; that needs to be done by other tech-
niques. Because no other existing techniques can solve these
problems, we explore the use of machine learning methods
to replace the conventional signal processing methods. The
major purpose of the research is to verify the efficiency of
machine learning methods when they are applied to radar-
based heartbeat monitoring and individual identification.
Among the various machine learning algorithms, we choose
CNNs because they have been reported to be remarkably
effective in processing various types of data [43].

III. PROPOSED ALGORITHM
A. USER SCENARIO FOR THE PROPOSED ALGORITHM
In this section, first we describe a user scenario for the pro-
posed heartbeat monitoring system. The proposed system is
designed to be used in a space shared by several people, such
as a home, office, or hospital. In the initialization setup, a new
user is required to register his/her name and user ID, and
remain seated or lying still for 100 s a few meters away from
the radar system, with ECG electrodes attached to his/her
chest. After the measurement, the pair of radar and ECG data
are used to train the user’s person-specific neural network.
Once this initialization setup is complete, the user can always
be identified and his/her heart rate can be monitored when
the user is in static scenarios. Note that heart rate estimation
is person-specific in the proposed system. If the CNNs are
trained for general people (i.e., not person-specific), then the
system cannot identify which user is under test, which makes
heartbeat monitoring useless in a space shared by multiple
people.

B. STRUCTURE DESIGN OF THE CNN
Fig. 1 shows the layers of the CNN used in this study.
It contains one input layer, two convolutional layers, one
rectified linear unit (ReLU) layer, one fully connected layer,
and one regression layer. The size and number of filters are

FIGURE 2. Proposed networks that contain five independent CNNs. Each
network is trained using radar and ECG data for each user.

determined empirically as shown in Fig. 1. The CNN in this
study do not contain pooling layers because a study [39]
reported that the use of pooling layers can degrade the accu-
racy of estimation. As illustrated in Fig. 1, the input sequence
of each CNN is a two-dimensional (2D) matrix, and the
output of each CNN consists of two one-dimensional time
sequences of signals. The regression layer here aims at chang-
ing a classification network into a regression network. The
CNN is trained to find a connection between a time series of
ECG data and a time series of radar data.

We specifically selected the CNN rather than other
machine learning algorithms because the CNN was reported
to be more effective in learning nonlinear relationships than
other machine-learning methods [44]. Additionally, estimat-
ing the heart rate using radar data is considered highly non-
linear. The main focus of this study is to demonstrate the
effectiveness of themachine learning approach in radar-based
heartbeat monitoring. It is also important to compare different
machine learning algorithms for radar-based heartbeat moni-
toring, which will be performed in future studies.

C. INPUT SAMPLING FROM UWB RADAR DATA
If the radar and ECG devices share the same clock and
they are completely synchronized, a single CNN is sufficient
for the estimation of the heart IBI of each user. However,
when radar and ECG devices have independent local clocks,
the devices cannot be always completely synchronized, which
is the case in our experiment; a time deviation between
the devices degrades the accuracy of the heart IBI estima-
tion when using a single CNN. Because the time deviation
between the devices varies over time, an initial calibration
cannot resolve the synchronization issue. This is why we
introduced a parallel structure with multiple CNNs, as shown
in Fig. 2. Specifically, the proposed network contains five
CNNs, where the input sequences to these CNNs are time-
shifted by zero, 1t , 21t , 31t , and 41t , where 1t = 0.12 s.
The output sequences from the CNNs are averaged to
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FIGURE 3. Example of ECG signals (the R, S, and T waves are specified).

estimate the heart IBI, which enables the proposed CNN-
based algorithm to tolerate a time delay of up to 0.48 s.
Increasing the number of CNNs in the proposed network
would make the system even more robust against a longer
time deviation. The selection of the number of CNNs and time
shift intervals depends on the actual synchronization accuracy
of the devices.

In our system, the time sampling interval of the radar is
δ = 0.24 ms and that of the ECG signal is 2.0 ms. Radar
displacement signal d(t) is filtered using a bandpass filter to
improve the SNR. Then, the signal is normalized so that the
displacement signal values fall into the range [0,1]. Next, N
samples of the radar displacement signal are extracted to form
an input sequence, where N = 27, 000, which corresponds
to 6.43 s, was empirically selected. The input sequence is
thus expressed as φ(t) = {d(t − T/2 + δ), d(t − T/2 +
2δ), · · · , d(t + T/2)}. Its time-shifted versions φ(t − 21t),
φ(t − 1t), φ(t), φ(t + 1t), and φ(t + 21t) are the input
sequences for the five CNNs, where 1t = 0.12 s. The
input sequences with a length of 2,700 (the average of every
10 points) are reshaped into 54× 50 matrices.

D. OUTPUT DATA TRANSFORMATION BASED ON
TRIANGULAR WAVES
To estimate the heart rate, the output waveform of each CNN
is designed to be related to the ECG waveform so that the
heart rate can be computed from the output. A straightforward
approach is to use the raw ECG waveform for training the
CNNs, as shown in Fig. 3. The ECG waveform, however,
changes sharply during the RST interval, which is differ-
ent from the smooth radar waveform associated with the
mechanical activity of a human heart. This difference makes
regression a challenging task.

To solve this problem, we use two triangular waveforms
corresponding to the R and S waves respectively for training
instead of the original ECG waveform. Thus, the regression
layer of each CNN is used to estimate the two triangular
waveforms.

For each R–R interval, we use the triangular wave shown
in Fig. 4(a) to replace the ECG waveform. Similarly, we use
the triangular wave shown in Fig. 4(b) to replace the ECG
waveform in each S–S interval. Because the R and S waves

FIGURE 4. Transformation of the ECG waveforms into two triangular
waves.

FIGURE 5. Relationship among the radar, ECG, and output of the CNNs.

are very close, we use an inverted triangular waveform to
represent the S wave to make the waves easier to visualize.
Consequently, the sharply changing RST interval of the ECG
is transformed into two gradually changing triangular waves.
Next, we give an example to illustrate the relationship among
the radar signals, ECG signals, transformed triangular waves,
and output of the trained CNNs.

First, we trained the CNNs directly using the ECG wave-
forms for comparison. Fig. 5 shows the radar signal, ECG
signal, and estimated curve from the trained CNNs on the
same timeline. Here, the CNNs are trained by other data (not
the data in Fig. 5) from the same participant.

We find that the output of the CNNs is totally different
from the ECGwaveform even we use the ECG as the training
data. This is because the sharply changing RST waveforms
are difficult to determine using UWB radar data alone. In the
last row of Fig. 5, the peaks and valleys corresponding to
the heartbeat appear after 19,500 iterations, but the output
is not similar to the ECG waveform. It is similar to a trian-
gular waveform. This gave us an idea that triangular wave-
forms should be used instead of the ECG signals for training
the CNNs.

Fig. 6 shows the results when using triangular waveforms,
where the correspondence of the radar, ECG, triangular waves
created from the ECG, and the output of the CNNs trained
by the triangular waveforms, is illustrated. The training and
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FIGURE 6. Relationship among the radar, ECG, triangular waves, and
outputs of the CNNs: the four types of data are on the same timeline. The
black curves of the first and the second rows show the radar and ECG
signals, respectively. In the third row, the red curve denotes the triangular
waveform corresponds to the R wave shown in Fig.4(a), and the black
curve denotes the triangular wave corresponds to the S wave shown
in Fig.4(b). In the last row, the red and black curves show the estimated
triangular waves related to the R and S waves, res- pectively, and the two
curves are the outputs of the CNNs.

test data used in Fig. 6 are the same as those used in Fig. 5.
Fig. 6 shows that the proposed CNN-based algorithm out-
put waveforms (in the 4th row) similar to the triangular
waveforms (in the 3rd row), which resulted in a heart IBI
error of 26.0 ms, whereas the error was 84.0 ms when the
CNNs were trained using the raw ECG signal instead of the
triangular waveforms. Moreover, when using the triangular
waveform, the number of iterations required for training was
5,850, whereas it was 19,500 (shown in Fig. 5) when using the
raw ECG signal, which indicates that the proposed algorithm
using the triangular waveforms not only improves accuracy,
but also saves training time.

Next, we investigate the performance of the proposed
CNN-based algorithm using a triangular waveform that corre-
sponds to the R wave alone and S wave alone instead of using
both the R and S waves. The average IBI error over seven
participants when using both the R and S waves, R wave
alone, and S wave alone were 20.6 ms, 27.1 ms, and 30.8 ms,
respectively. This accuracy improvement can be explained
by the increase in the amount of information used for train-
ing the CNNs. The R-R interval and S-S interval are not
always the same. Thus, using both the R and S waves allows
us to exploit more information about the heartbeat of the
participants.

E. PERSON IDENTIFICATION BASED ON CNNS
The proposed approach identifies individuals based on the
classification capability of CNNs. We suppose that the num-
ber of users is J , we train J networks, where the j-th network
is trained using the radar and ECG data from the j-th user,
as shown in Fig. 2. After training, the CNNs are used for
both personal identification and heart IBI estimation. When
the radar signal from the j-th user is fed to the J trained

FIGURE 7. Personal identification: The upper row shows the outputs of
the CNNs when the training and test data are from the same subject. The
lower row shows the outputs of the CNNs when the training and test data
are from different subjects.

networks, the j-th network is most likely to generate a tri-
angular signal with an almost constant amplitude, whereas
the other networks generate relatively weak signals with
amplitude fluctuations, as shown in Fig. 7. The proposed
CNN-based algorithm detects the constant-amplitude tri-
angular signal using the average peak values defined as∑Np

i=1 Vi/Np, where Vi is the i-th peak value and Np is the
number of peaks. The proposed CNN-based algorithm identi-
fies individuals and estimates the heart IBI simultaneously as
follows:
————————————————————————
Step 1: Measure the radar and corresponding ECG signals

from the j-th user (j = 1, · · · , J ) and train the j-th network
using the pair of data.

Step 2: After the k-th user is measured using the UWB
radar, input the obtained radar signal to all J networks sequen-
tially. Then compare the J output waveforms from these
networks and select the network with the largest average peak
value as a match.

Step 3: We suppose that the r-th network was selected in
Step 2. This mean that the k-th user is recognized by the r-
th network. The output from the r-th network will be used to
estimate the heart IBI of the k-th user.
————————————————————————
When k and r are matched as the above method shows,
the proposed CNN-based algorithm is expected to generate
accurate estimates of the heart IBI. In this study, seven partic-
ipants were tested, and all of them were correctly identified.
Thus, once our CNNs are trained person-specifically, each
subject can be identified using radar data even when the
system processes the data from multiple subjects simultane-
ously. After personal identification, the matched CNN can
be used to estimate the heart IBI of the same subject. This
system is especially suitable for a scenario in which one
space is shared by several people, and their vital signs are
intermittently monitored and recorded over a long period of
time in healthcare applications.
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FIGURE 8. Triangular waves W1(t) and W2(t), represented by the red and
black curves. Then the IBI are computed by (t (R)

i+1 − t (R)
i−1 + t (S)

i+1 −t (S)
i−1)/4,

where t (R)
i and t (S)

i are the peak and valley positions of W1(t) and W2(t),
respectively.

F. CALCULATION OF IBI BASED ON THE CNN OUTPUT
As discussed above, the proposed CNNs produce two triangu-
lar waveforms W1(t) and W2(t) that correspond to the R and
S waves of the ECG. Fig. 8 shows how the IBI (the reciprocal
of the heart rate) values are calculated from the two triangular
signals. In Fig. 8, the red and black lines representW1(t) and
W2(t), respectively. The peaks of W1(t) and valleys of W2(t)
are detected as t (R)i and t (S)i by the following equations:

t (R)i = t, if dW1(t)/dt = 0 and d2 W1(t)/dt2 < 0. (2)

t (S)i = t, if dW2(t)/dt = 0 and d2W2(t)/dt2 > 0. (3)

Then, the i-th IBI is estimated by averaging (t (R)i+1 − t (R)i−1 +

t (S)i+1− t
(S)
i−1)/4, where averaging can suppress the influence of

random components.

IV. EXPERIMENTAL RESULTS
In this section, first we explain the system settings in the
experiments, and then we show the comparisons of the con-
ventional and proposed techniques.

A. SYSTEM MODEL AND EXPERIMENTAL SETTINGS
We used a 79-GHz UWB multiple-input multiple out-
put (MIMO) radar systemwith four transmitting antennas and
four receiving antennas. The radar chips were developed by
Imec (Heverlee, Belgium), and we integrated the two Imec
chips with a digital control and interface circuit on the radio
frequency circuit board. Using this system, a total of 16 radar
signal channels were collected. UWB radar in the 79-GHz
band has a high-range resolution because the wide bandwidth
of 4.0 GHz is available, and its cost has recently become
significantly inexpensive. Additionally, 79-GHz radar has a
short wavelength, and thus is more sensitive to vital signs.
Considering all these merits, we chose 79-GHz radar in
this study. The pitch between any two adjacent antennas is
4.6 mm, which corresponds to 0.92 wavelength [37], [38].
We measured the radar echo reflected from the shoulder of
each participant. The radar system was placed 0.9 m from the
floor and 1.1 m from the shoulder. We synthesized the data
from 16 channels and applied a beamforming technique to

FIGURE 9. Experimental environment: The radar is placed on the left side
of the participant. The distance between the radar and the shoulder of
the parti- cipant is 1.1 m.

maximize the SNR. The beamforming uses the eigenvector
that corresponds to the maximum eigenvalue of the correla-
tion matrix of the signal vector as the weighting vector [38].
The experimental setup is shown in Fig. 9, where the radar
measures from the left-hand side of the seated person. The
radar echo from a range that corresponds to the left shoulder
is extracted and used for personal identification and heartbeat
monitoring in this study.

The ECG signals were used as the ground truth in the evalu-
ation. We used an ECG device (ECG15102017, PLUXWire-
less Biosignals S.A., Arruda dos Vinhos, Portugal), whose
three electrodes were attached to the upper chest of each
participant. The sampling frequency and resolution of the
device were 500 Hz and 16 bits, and the data were wirelessly
transmitted to a receiver via Bluetooth. The ECG receiver was
not synchronized with the radar system.

We measured UWB radar and ECG signals for seven par-
ticipants (P1 to P7), whose age and body mass index (BMI)
are listed in Table 1. The participants were requested to be
seated and breathing normally. The measurement for each
participant took 300 s. The training procedure is detailed in
Section III. For each participant, we used 50,000 samples
(100 s) for training and another 25,000 samples (50 s) for
testing. The training for each participant took approximately
10 min using the Parallel Computing Toolbox (GPU) of
MATLAB. The CPU and memory of the desktop we used are
i7-6700 @ 3.40 GHZ 3.41 GHZ and 32 GB.

B. COMPARISONS AND RESULTS
We compare the proposed approach with the TF Method [18]
for calculating IBI. For the TF Method, to extract the heart-
beat component while rejecting the respiration component,
a bandpass filter with low/high cut-off frequencies of 3.1 and
12.0 Hz was used. Because the respiration component was
much larger than the heartbeat component, the high-order
harmonics of the respiration components could interfere with
the heartbeat component. This is why we set the low cut-
off frequency of the bandpass filter to be higher than that in
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TABLE 1. Experiment settings and comparison results for seven
participants.

FIGURE 10. TF Method vs. the proposed method for estimating IBIs for P1.

FIGURE 11. TF Method vs. the proposed method for estimating IBIs for P2.

other studies. Note that the proposed CNN-based algorithm
does not require filtering, as detailed in Section V-C. The
root mean square error (RMSE), and the Mean±STD of the
absolute error are used for the evaluation below.

Figs. 10 to 12 show three examples of the comparison.
In these figures, the horizontal axis represents the time, and
the vertical axis represents the IBIs. Here, the black curves
show the IBIs estimated using the ECG signals, the blue
circles show the IBIs estimated using the TF Method, and
the red curves show the IBIs estimated using the proposed

FIGURE 12. TF Method vs. the proposed method for estimating IBIs for P3.

method. These figures show that the proposedmethod is more
accurate than the TFMethod. From these figures, we also see
that the IBIs estimated using the TF Method are occasionally
inaccurate, which makes the tracking of the heartbeat a diffi-
cult task. Moreover, the RMSE of the TFMethod is relatively
large and unstable. By contrast, the proposed method can
accurately estimate the IBIs, even in some difficult cases.
Table 1 summarizes the comparison results. The results in the
figures and the table verify that the proposedmethod achieves
an overall better performance than the TF Method, which
demonstrates the efficiency of the CNN-based approach in
heartbeat estimation.

V. DISCUSSION
A. WHY THE CNN CAN ESTIMATE HEART IBI
USING RADAR SIGNALS
The proposed CNN-based algorithm is used to learn the rela-
tionship between the radar and ECG-related triangular signals
for estimating the heart rate. Each cardiac muscle depolar-
ization followed by repolarization during each cardiac cycle
causes small electric field changes in the skin, which can
be captured by the ECG electrodes. Almost simultaneously,
the heartbeat also causes small body movements, which can
be detected by UWB radar. Therefore, there should be a
relationship between the radar and ECG signals if they are
measured from the same person at the same time. This rela-
tionship is highly nonlinear and difficult to elucidate without
using a machine learning approach. Because CNNs can learn
such nonlinear relationships effectively, the proposed CNN-
based algorithm performs better than the conventional non-
machine learning method.

According to [45], ECG is more accurate than PPG in
monitoring the heart rate. Thus, we use ECG data to train the
CNNs. In future, it will also be important to study the perfor-
mance of the proposed algorithm using PPG. Additionally,
the reproducibility of the heartbeat patterns in ECG data has
been established [46], [47]. Based on this, we use the CNNs to
learn the relationship between the radar and ECG data so that
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FIGURE 13. Comparison of the ground truth with the results from
CNNs: The first and second rows show the radar and ECG, respectively.
The red and black curves in the third row show two rectangular waves
corresponding to the R and S waves, respectively, of the ECG, and these
waves are the ground truth. The red and black curves in the fourth row
show the outputs of the trained CNNs.

the radar signals can be associated with the heartbeat patterns
for personal identification and heart rate estimation.

B. WHY THE PROPOSED METHOD CAN OVERCOME THE
SYNCHRONIZATION DEVIATION
Fig. 13 shows an example with a non-zero synchronization
deviation. The first row contains raw radar signals that were
used as the input of the CNNs. The second row contains ECG
signals that were measured as a reference of the ground truth.
The third row contains two triangular waves transformed
from the ECG signals shown in the second row. The fourth
row contains the outputs of the CNNs. Fig. 13 shows that
the output of the CNNs trained on radar signals shifted to the
right slightly comparedwith the triangular waves transformed
from the ECG, which demonstrates that the synchronization
deviation occurred during the training of the CNNs of this
subject. The dashed blue and purple vertical lines show this
small deviation visually. Even though this deviation existed,
the heartbeat could be estimated correctly. The deviation
was consistent over time, and the IBI was calculated from
the intervals between adjacent peaks or valleys. Therefore,
the IBI was not influenced by the synchronization deviation.
If we did not use five parallel CNNs, the system could not
produce smooth waves when the synchronization of the radar
and ECG signals deviated. The results demonstrate that our
parallel structure is effective in estimating the heartbeat, even
if the radar and ECG are not synchronized completely.

C. WHY IT IS UNNECESSARY TO REMOVE THE
RESPIRATION COMPONENTS
In previous radar-based heartbeat monitoring studies, the res-
piration component interfered with the heartbeat component,
which lowered the accuracy of the heart rate estimation.
However, this analysis does not apply to the proposed
CNN-based algorithm. In this section, we demonstrate how

FIGURE 14. Three different types of radar data: (1) data that contain both
respiration and heartbeat components; (2) data that contain the
respiration component only; and (3) data that contain the heartbeat
component only.

FIGURE 15. Comparison of results obtained from the three different
types of data.

respiration affects the estimation of the heart rate when using
the conventional and proposed CNN-based methods. For
this purpose, we apply a high-pass filter (HPF) with a cut-
off frequency of 0.27 Hz to radar signal d(t) and obtain
dH(t) = HPF0.27Hz[d(t)], which contains a high-frequency
component. We then obtain dL(t) = d(t)−dH(t), which con-
tains a low-frequency component. Note that dH(t) contains
most of the heartbeat component, dL(t) contains most of the
respiration component, and d(t) contains both components.
Fig. 14 shows examples of d(t), dH(t), and dL(t). Fig. 15
shows the heart IBIs estimated using d(t), dH(t), and dL(t),
respectively. These results show that the IBI estimated using
d(t) is more accurate than the IBIs estimated using dL(t) or
dH(t), which implies that it is not necessary to remove the
respiration component when using the proposed CNN-based
algorithm, which provides new insights into the conventional
belief of the negative effect of respiration components [40].

Using dL(t) containing only the respiration component
can rarely estimate the heart rate, which indicates that the
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TABLE 2. RMSE comparisons for the results obtained by filters 1 and 2
(without and with the respiration component, respectively).

heartbeat component is still more important than the respira-
tion component, even for the proposed CNN-based algorithm.
Table 2 summarizes the comparison of the accuracies of the
proposed CNN-based algorithm and the TF Method using
d(t) and dH(t), where dL(t) is excluded from the compar-
ison because neither algorithm can estimate the heart rate
accurately using dL(t). Note that the second row of P3 is not
available (NA) because of the instability of the TF Method
in this specific case. The table shows that the respiration
component improved the accuracy of the TF Method in most
cases, whereas removing the respiration component degraded
the accuracy of the proposed algorithm in all cases.

These results can be explained by the mechanism of the
TF Method; that is, the TF Method uses the feature points of
a radar signal.When the radar signal contains both respiration
and heartbeat components, the TF Method cannot distin-
guish the features of the heartbeat and respiration signals
correctly, which results in its low accuracy. In cases P2 and
P7 in Table 2, removing the respiration component degraded
the accuracy of the TF Method. This is because the high-
pass filter erroneously excluded the heartbeat component in
addition to the respiration component in these two cases.
In general, it is not easy to determine the optimum cut-off fre-
quency to separate the heartbeat and respiration components
because these components often overlap in the frequency
domain. By contrast, it is noteworthy that the respiration
component may benefit the proposed CNN-based algorithm,
which means that adjusting the cut-off frequency of the fil-
ter is not necessary when using the proposed CNN-based
algorithm.

D. MOTION OF THE TARGET PERSON
As stated in Section III, we assumed that the proposed CNN-
based algorithm was intended to be applied to a user in
static scenarios, where the SNR remains low, and mostly
unchanged. In general, radar-based heartbeat monitoring of
an active user in motion is challenging, regardless of whether
conventional methods or machine learning methods are used.
Because the purpose of this study is to show for the first time
the effectiveness of machine-learning-based heartbeat moni-
toring and personal identification using UWB radar, tackling
this challenging problem is out of the scope of the present
paper. In future studies, it will be important to investigate the
performance of the proposed CNN-based algorithm when the
target person is in motion.

VI. CONCLUSION
We proposed a CNN-based algorithm to accurately esti-
mate the heartbeat from a UWB radar signal. The proposed
method uses supervised learning with multiple CNNs trained
using radar-ECG signal pairs as a training set. The exper-
imental results demonstrate that the proposed method not
only improves the accuracy in estimating the heartbeat, but
also simplifies the entire signal processing because the pro-
posed method does not need preprocessing such as multiple-
parameter-based filtering. Interestingly, the proposed method
was found to perform better when the data contain respiration
components, which degrade the accuracy of conventional
algorithms. The smallest, largest, and average RMS errors
of the heart IBI estimated using the TF Method were 8.8,
144.5, and 65.6 ms, respectively. By contrast, the smallest,
largest, and average RMS errors of the heart IBI estimated
using the proposed CNN-based algorithm were 4.5, 48.5, and
20.6 ms, respectively. The degree of accuracy improvement
was 4.5 times in the best case, 1.1 times in the worst case,
and 3.2 times on average. Because the proposed method can
identify the individual among several possible participants,
the heart rate is measured and associated with the individual
record using only radar signals without the need for any
additional information and techniques.

A limitation of this research is that the proposed model was
designed for static scenarios only. In our future work, we will
research how to process different scenarios, for example,
when the subject is in motion, at different orientations, and
under stress. Additionally, we plan to visualize the data flows
inside the CNN in the next stage of our research.
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