
SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE FOR PHYSICAL-LAYER
WIRELESS COMMUNICATIONS

Received October 27, 2019, accepted November 14, 2019, date of publication November 19, 2019,
date of current version December 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2954455

LFM Signal Analysis Based on
Improved Lv Distribution
YU WANG 1, KE WANG 2, FULONG JING 3, XIAOYU LAN 1, (Member, IEEE),
YAN ZOU 3, AND LIANGTIAN WAN 4, (Member, IEEE)
1College of Electronics and Information, Shenyang Aerospace University, Shenyang 110136, China
2National Demonstration Center for Experimental Electrical and Electronic Education, Yangtze University, Jingzhou 434023, China
3Shenyang Aircraft Design and Research Institute, Shenyang 110035, China
4School of Software, Dalian University of Technology, Dalian 116081, China

Corresponding author: Xiaoyu Lan (lanxiaoyu1015@163.com)

This work was supported by the National Science Foundation for Young Scientists of China under Grant 61801308.

ABSTRACT In this paper, we propose a parameter estimation method named improved Lv distribution
(ImLVD) for linear frequency modulated (LFM) signals. In this method, based on the scaling principle,
we present a two-scale estimation strategy to acquire low computational cost. The two-scale estimation
strategy includes coarse estimation operation and fine estimation operation. To implement the strategy,
improved scaled Fourier transform (ISFT) and Chirp-Z transform (CZT) operation are used, where the ISFT
can be implemented by fast Fourier transform (FFT) and complexmultiplications. By changing the frequency
searching range of ISFT, the ISFT is used in different frequency ranges. To improve the anti-noise, we present
an improved parameter selection criterion which can reduce the noise correlation effectively. In this paper,
the implementation, anti-noise performance, and computational cost are analyzed. Through simulations and
analyses, we demonstrate that the ImLVD outperforms the compared algorithms.

INDEX TERMS Linear frequency modulated (LFM) signals, parameter estimation, Lv distribution, two-
scale estimation strategy.

I. INTRODUCTION
Signal processing is a very important research field [1]–[4],
including the estimation of signal paramers [5]–[7]. Recently,
analysis of LFM signals has received considerable atten-
tion. As a polynomial phase signal, the LFM signal can be
processed by the methods mainly including time-frequency
(TF) analysis methods and time-chirp rate (TCR) analysis
methods.

Time-Frequency (TF) methods are divided into linear TF
analysis methods and bilinear TF analysis methods. Linear
TF analysis methods mainly include Short-time Fourier
transform (STFT) methods [8]–[10] and local polynomial
Fourier transform [11]. Bilinear TF analysis methods mainly
include Wigner-Ville distribution (WVD) based methods
[12], [13] and ambiguity function [14]. In order to solve
the cross-term problem existing in bilinear TF methods,
the Wigner-Hough transform [15], [16], Radon-Ambiguity
transform [17], Hough-STFT [18], Hough-local polynomial
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periodogram [19], and Teager-Huang-Hough transform [20]
are proposed. Although the TF analysis methods can be
used to analyze LFM signal, several problems exist in these
methods, including: (1) for the linear TF analysis meth-
ods, frequency and time resolution depends on the length
of the window; (2) to suppress the cross-term, the Radon
or the Hough Transform is performed which results in a
large amount of computation; (3) anti-noise ability of the TF
analysis methods is poor; (4) the parameters of LFM signal
cannot be obtained directly. In addition to these TF methods,
Fractional Fourier transform (FrFT) based methods [21], [22]
are the special TF methods which attract more attention
recently. However, the practical realization of the methods
suffers the problem that the transform results cannot match
to the continuous FrFT, and the parameter of the LFM signal
cannot be obtained directly which is related with rotation
angles.

Cubic phase function (CPF) [23] is an effective TCR analy-
sis method for detecting and estimating the mono-component
LFM signal, which can obtain the parameters directly.
However, when dealing with multi-component LFM signals,
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this method has cross-term problem. To overcome the cross-
term problem, product CPF (PCPF) [24] and integrated
CPF (ICPF) [25] are proposed. By using the PCPF method,
the cross-term problem can be avoided, but the energy of self-
term is not fully utilized. By using the ICPF method, not only
energy of the self-term is fully utilized but also the cross-
term is suppressed. However, anti-noise ability of the ICPF is
still poor. To overcome these problems, the coherently ICPF
(CICPF) algorithm [26], [27] is proposed. By coherently inte-
grating the energy of self-term, CICPF method improves the
ability of cross-term suppression and enhances the signal-to-
noise (SNR). Although estimation performance and identifia-
bility of the CICPF are better than other CPF-based methods,
the anti-noise ability of CICPF is still poor and computation
of the CICPF is large.

In the reference [28], a simple and effective method named
Lv’s distribution (LVD) is proposed. Compared to the above
methods, the LVD can be more easily implemented by using
fast Fourier transforms (FFT), inverse FFT (IFFT), and com-
plex multiplications. It is known that LVD can obtain good
performance based on the analyses and simulations in [28]
and [29]. Due to the excellent performance, the algorithm
has been widely used in many fields [30]–[33]. However,
the computation cost of LVD is still high for obtaining high
precision estimation and the anti-noise performance is still
poor because of the noise correlation [34].

In this paper, we propose a parameter estimation algorithm,
known as improved Lv distribution (ImLVD), for noisy lin-
ear frequency modulated (LFM) signals. In the ImLVD, the
two-scale estimation strategy is used to reduce the compu-
tational cost. To implement the strategy, the Chirp-Z trans-
form (CZT) [35] and the improved scaled Fourier transform
(ISFT) [36] are used. In the ISFT, by introducing a scaling
factor, a new time variable is constructed to remove the cou-
pling. Moreover, by changing the search range of frequency,
the ISFT is used in different frequency ranges. The ISFT is
implemented only by using FFT, IFFT, and complex multipli-
cations. To improve the anti-noise performance, the proposed
method proposes an improved parameter selection criterion.

The rest of paper is organized as follows. In Section 2,
we review the principle of LVD. In Section 3, we give the
principle and the implementation of proposed algorithm in
detail. In Section 4, based on a few numerical examples,
we demonstrates the effectiveness of the proposed algorithm.
In Section 5, some concludes are given.

II. REVIEW OF LVD
The parameters of signals mainly include frequency [37]
and direction-of-arrival [38]–[41]. In this paper, we only
focus on research into the frequency parameters of LFM
signal. We will give a briefly reviews of the LVD [28]. The
representation of multi-component LFM signals is as follow:

sm (t) =
Q∑
i=1

Ai exp
(
j2π fit + jπγit2

)
, (1)

where sm(t) denotes the multi-component LFM signals, Q
denotes the number of components, Ai is the constant ampli-
tude, fi and γi denote the centroid frequency and chirp rate,
respectively. In the LVD, the authors define a parametric
symmetric instantaneous auto-correlation function (PSIAF),
the expression of PSIAF is

Rsm (t, τ ) = sm

(
t +

τ + a
2

)
s∗m

(
t −

τ + a
2

)
=

Q∑
i=1

A2i exp (j2π fi (τ + a)+ j2πγi (τ + a) t)

+
Q−1∑
i=1

Q∑
j=i+1

(
Rsm,ism,j (t, τ )+ Rsm,jsm,i (t, τ )

)
,

(2)

where a denotes a constant time-delay which is related
to scaling operator. Rsm,ism,j and Rsm,jsm,idenote cross-terms.
Equation (2) shows that t and τ couple with each other.
Due to the linear frequency migration, such a coupling leads
to a blurred representation of the LFM signals on the two
dimensional (2D) centroid frequency and chirp rate (CFCR)
domain. To remove the coupling, the authors propose a
scaling operator H [·] which is defined by

H [g (t, τ )]→ g
(

tn
ρ (τ + a)

, τ

)
, (3)

where g (·) is the phase function of signal, ρ and tn denote
the scaling factor and scaled time, respectively. When the
operator H [·] is applied to (2), a new expression is obtained
as follow:

H
[
Rsm (t, τ )

]
=

Q∑
i=1

A2i exp
(
j2π fi (τ + a)+ j2π

γi

ρ
tn

)

+

Q−1∑
i=1

Q∑
j=i+1

H
[
Rsm,ism,j (t, τ )+ Rsm,jsm,i (t, τ )

]
. (4)

Equation (4) shows that the coupling existed in (2) is
removed. The lag variable τ and the new time variable tn
are independence from each other. The LVD is obtained by
performing 2D Fourier transformation (FT) on (4), which is
represented by

Lsm (f , γ ) = Fτ
[
Ftn
[
H[Rsm (t, τ )]

]]
=

Q∑
i=1

Lsm,i (f , γ )+
Q−1∑
i=1

Q∑
j=i+1

Lsm,ism,j (f , γ ), (5)

where Fτ [·] denotes performing FT along the lag variable τ ,
and Ftn [·] denotes performing FT along the time variable tn.
The first term of (5) denotes the self-terms and the second
term denotes the cross-terms. By using the LVD method,
the LFM signals are accumulated as the peaks in the 2D
CFCR domain. The parameters can be obtained by locating
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the peaks. However, in practical applications, the computa-
tion cost of LVD is high for obtaining high precision estima-
tion. Moreover, since the constant delay in PSIAF is selected
by using the parameter selection criterion introduced in [28],
the noise correlation is strong which leads to bad anti-noise
performance [34].

III. IMLVD METHOD
In this section, based on mono- and multi-component LFM
signal, we introduce the principle of ImLVD.

A. PEAK ACCUMULATION
According to the PSIAF in LVD,we defind an self-correlation
function which is represented as

Rsm (t, τ ) = sm

(
t +

τ + D
2

)
s∗m

(
t −

τ + D
2

)
, (6)

where D is a new constant delay which will be discussed
in III-D. Substituting the multi-component LFM signals sm
in (6), we can obtain

Rsm (t, τ ) =
Q∑
i=1

A2i exp (j2π fi (τ + D)+ j2πγi (τ + D) t)

+Rcross. (7)

where Rcross denotes the cross-terms. To estimate the param-
eters correctly, the coupling between t and τ should be
removed. It is known that the similar coupling can be removed
by using the keystone transform [30]. Inspired by the idea of
keystone transform, we propose the ISFT-IFT operator in [36]
which is expressed by

x (tnew) = IFT [ISFT [x (t)]]

= IFT
[∫
∞

−∞

x (t) exp
(
−j2π ftnew tnew

)
d (tnew)

]
(8)

where tnew = ρbt . The purpose of b is to change t , and ρ
denotes scaling factor. IFT[·] denotes inverse Fourier trans-
form. The searching frequency ftnew is limited in the frequency
range [fd , fu], where fd and fu denote the lower limit and
the upper limit, respectively. Therefore, the search frequency
range can be controlled by changing fd and fu.

Replace x(t) by Rsm (t, τ ) and set b = (D+ τ ). Then (8) is
becoming

Rsm (tnew, τ ) = IFT
[
ISFT[Rsm (t, τ )]

]
=

Q∑
i=1

A2i exp (j2π fi (τ + D)+ j2πhitnew)

+IFT[ISFT(Rcross(t, τ ))], (9)

where hi = γi/ρ and tnew = (Dρ + τρ)t . The purpose of
D is to make sure Dρ = 1 and inherit advantages of the
LVD, which will be discussed in III-D. Equation (9) shows
that the coupling existed in Rsm (t, τ ) is removed. The peak
is accumulated by performing two-dimension (2D) FT along

the variable τ and the variable tnew, respectively, which is
represented by

CFCR
(
ftnew , fτ

)
= FTτ [FTtnew [Rsm (tnew, τ )]]

= FTτ [FTtnew [IFT[ISFT[Rsm (t, τ )]]]]

=

Q∑
i=1

A2i exp(j2π fia)δ(fτ − fi)δ(ftnew − hi)

+Qcross(ftnew , fτ ), (10)

where FTτ [·] and FTtnew [·] denote performing the Fourier
transform along the variable τ and the variable tnew, respec-
tively. CFCR is the 2D parameter domain. Qcross

(
ftnew , fτ

)
is the cross-terms after performing peak accumulation
operation.

Equation (10) shows that, by using the accumulation oper-
ation, self-term can be accumulated as a peak in CFCR
domain. The coordinates of each peak are (fi, hi). Therefore,
the parameters of LFM signal can be estimated by locating
the peaks. It is noteworthy that γi can be obtained by hi =
γi/q. For the cross-term Qcross(ftnew , fτ ), it will be discussed
in APPENDIX.

It is worth noting that, in (10), the IFT[·] and the FTtnew [·]
operations can be removed because the IFT[·] operation is
the inverse transformation of the FTtnew [·] operation. Thus,
the peak accumulation technology, which is shown in (10),
can be simplified to

CFCR(ftnew , fτ ) = FTτ [ISFTt [Rsm (t, τ )]]. (11)

According to (11), we only need to perform the ISFT
operation and the FT operation along the variable t and the
variable τ to obtain the peak.

B. IMLVD WITH MONO-COMPONENT
In this subsection, the processing procedure of ImLVD is
described based on a discrete mono-component LFM signal.
Equation (1) is mono-component LFM signal when K = 1.
Let Ts is the sampling interval, the discrete mono-component
LFM signal is

s (n)=A exp
(
j2π fnTs+jπγ (nTs)2

)
, (1≤n≤Nw) , (12)

where Nw is date length. Firstly, we will describe the imple-
mentation of ISFT, and then we will describe the parameter
estimation process of mono-component LFM signal by using
ImLVD.

1) IMPLEMENTATION OF ISFT
Based on the analysis in [28], [42], [43], we find that the ISFT
can be implemented by using the CZT operation [35] because
the CZT can change the frequency search range. The CZT is
defined by

CZT [s (n)] =
N−1∑
n=0

s (n) z−nv =
N−1∑
n=0

s (n)A−nW nv,

v = 0, 1, · · · ,V − 1, (13)
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FIGURE 1. Flowchart of ISFT.

where V is the frequency number, both A and W are the
arbitrary complex numbers with the forms A = A0 exp (jθ0)
and W = W0 exp

(
−j1φ

)
. θ0 denotes initial phase angle, W0

denotes zooming factor, A0 denotes initial radius length, and
1φ is the angle increment which is determined by frequency
resolution.

For the ISFT, W0 = 1 and A0 = 1. To introduce the factor
bρ, the factors A and W should be set as

A = exp
(
j2π

fd
fs
bρ
)

and W = exp
(
−j2π

fr
V fs

bρ
)
, (14)

where fs denotes the sampling frequency, fr = fu − fd is
the selected frequency band. Substituting (14) in (13), the
implementation of ISFT is defined as

ISFT [s (n)] =
N−1∑
n=0

s (n) z−nv

=

N−1∑
n=0

s (n) exp
(
−j2π

(
fd
fs
bρn+

fr
V fs

bρnv
))
,

v = 0, 1, · · · ,V − 1. (15)

Inspired by the implementation of CZT, the implementation
of ISFT is shown by Fig. 1.

Fig. 1 shows that the ISFT can be implemented by using
FFT, IFFT, and multiplications. By changing fd , fu, and L,
we can obtain different estimation precision.

2) PROCESSING PROCEDURE
The processing procedure is a two-step procedure. Firstly,
we coarsely determine the frequency ranges of chirp rate and
centroid frequency, this procedure is called coarse estimation
operation. Secondly, we perform a fine search to accurately
estimate chirp rate and centroid frequency, this procedure is
called fine estimation operation.

According to the peak accumulation technique, we perform
the self-correlation function on (12), and a N × N matrix is
obtained which is expressed by

Rs=


Rs (n1,m1) Rs (n2,m1) · · · Rs (nN ,m1)

Rs (n1,m2) Rs (n2,m2) · · · Rs (nN ,m2)
...

...
. . .

...

Rs (n1,mN ) Rs (n2,mN ) · · · Rs (nN ,mN )

 , (16)

where np denotes discrete time variable, and mp denotes
discrete lag variable, 1 ≤ p ≤ N . N = Nw − D/Ts
denotes the effective signal length. By using the Claasen and

Mecklenbrauker (CM) sampling criterion [12], the element in
Rs is represented by

Rs
(
np,mp

)
= A2 exp(j2π f

(
2mpTs + D

)
+j2πh

(
2ρmpTs + Dρ

)
npTs), (17)

where h = γ /ρ.

a: COARSE ESTIMATION
According to the analysis in Section III-A, we should perform
the ISFT operation along time variable and perform the FT
along lag variable to accumulate peak. For coarse estimation
operation, FT is implemented by the FFT. Therefore, the peak
accumulation processing is represented by

CFCR1 = FFTcol [ISFTrow [Rs]] , (18)

where ISFTrow[·] denotes performing the ISFT operation on
the row vector, and FFTcol[·] denotes performing the FFT
operation on the column vector. The coarse estimations of f
and h, expressed as f̂ and ĥ, are obtained by locating the peak
in the CFCR1 domain.

It is noteworthy that the searching frequency range of ISFT
can be obtained by two criteria. Firstly, when the range of
chirp rate has been known, and the range is [fd,γ , fu,γ ], so the
upper limit and lower limit of ISFT are set to fd = fd,γ /q and
fu = fu,γ /q, respectively. Secondly, when the range of chirp
rate is unknown, it is set to the maximum value under Nyquist
frequency constraint, which means fd = −fs/2, fu = fs/2 in
ISFT. In this paper, for coarse estimation operation, the range
is unknown.

Setting the frequency number of the ISFT is L1. Based on
the CM sampling, the estimation precision of f̂ and ĥ are
fs/2N and fs/L1, respectively. L1 is decided by actual chirp
rate resolution demand. When the resolution is unknown,
the frequency number is set to L1 = N . In order to improve
estimation precision, we should perform fine estimation
operation.

b: FINE ESTIMATION
For the fine estimation, to accumulate peak, FT is imple-
mented by performing the CZT instead of FFT because we
do not need to search entire frequency band. Thus, the fine
estimation operation is expressed as

CFCR2 = CZTcol

[
ISFTrow

[
RC
s

]]
, (19)

where CZTcol[·] denotes the CZT operation performing on
the column vector, CFCR2 denotes the CFCR domain which
is obtained by performing fine estimation operation. We can
estimate the fine estimations of f̂ and ĥ by locating the peak
in the CFCR2. The fine estimation of γ̂ is obtained by γ̂ fine =
ρĥfine.

For the fine estimation operation, the searching frequency
ranges of ISFT and CZT are selected around the coarse
estimations f̂ and ĥ, which is represented by

fr,f = fs/(2N ) and fr,h = fs/L1, (20)
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where fr,f and fr,h denote the search frequency bandwidths
of f̂ and ĥ, respectively. In (20), fs

2N and fs
L1

are the estima-
tion precision, which are obtained by the coarse estimation
operation. Based on fr,h in (20), the factors of ISFT are set to

fd = ĥ− fr,h/2 and fu = ĥ+ fr,h/2. (21)

The frequency number of ISFT is set to L2.
Based on fr,f in (20), the factors of CZT are set to

θ0 = 2π
f̂ − fr,f /2

fs
and 1φ = 2π

fr,f
fsLCZT

, (22)

where LCZT is the frequency number.
Therefore, the final estimation precision of chirp rate and

centroid frequency is fs
2NLCZT

and fs
L1L2

, respectively. L1, L2
and LCZT are the known parameters in advance, which are
decided by practical requirement.

The steps of the proposedmethod are given as Algorithm 1.

Algorithm 1
1: Input: s(n), fs, L1, L2, and LCZT .
2: Step 1: Perform self-correlation function on s(n) to obtain

Rs based on (6).
3: Step 2: Set fd = −fs/2 and fu = fs/2 for ISFT. Perform

ISFT and FFT on Rs to obtain CFCR1 by (18).
4: Step 3: Search the peak in the CFCR1 domain to obtain

the coarse estimate parameters f̂ and ĥ.
5: Step 4: Calculate the parameters of CZT and ISFT based

on (20)-(22), and obtain CFCR2 by (19).
6: Step 5: Get the fine estimation parameters f̂ fine and ĥfine

by searching the peak in CFCR2, and calculate the fine
estimation of chirp rate by γ̂ fine = qĥfine.

7: Output: The fine estimation parameters of LFM signal,
f̂ fine and γ̂ fine.

C. IMLVD WITH MULTI-COMPONENT
In this part, we discuss the proposed method for
multi-component case. Based on (1), the discrete form of the
multi-component LFM signals is represented by

sm (n) =
Q∑
i=1

Ai exp
(
j2π finTs + jπγi(nTs)2

)
. (23)

According to analysis in III-A, when we apply (11) on the
multi-component LFM signals, there will be Q peaks in
CFCR domain. Thus, after coarse estimation operation, Q
peaks appear in CFCR1. The coordinates of Q peaks are{
f̂i, ĥi, i = 1, · · · ,Q

}
. Based on the coarse estimation, we set

different parameters of CZT and ISFT for fine estimation
operation. For example, for the ith peak, the parameters of
CZT should be set to

θ0i = 2π
f̂i − fr,f /2

fs
and 1φi = 2π

fr,f
fsLCZT

, (24)

where θ0i and 1φi denote the parameters of CZT of the ith
component. The parameters of ISFT should be set to

fdi = ĥi − fr,h/2 and fui = ĥi + fr,h/2, (25)

where fui denotes the upper limit of searching frequency, and
fdi denotes the lower limit of searching frequency. With the
factors, we perform the fine estimation operation to accu-
rately estimate the parameters of ith LFM signal. The parame-
ters of other components are obtained by the same processing.

D. PARAMETER SELECTION
For the LVD, the constant delay greatly benefits its cross
term suppression and anti-noise performance. According to
the analysis in [28], the constant delay of LVD is set to ‘‘1s"
whose purpose is to reduce the interpolation influence, but the
anti-noise ability is still bad because of the noise correlation.
In this paper, by using an improved parameter selection cri-
terion, the anti-noise performance can be improved without
increasing the influence of interpolation.

According to the analysis in [34], the constant delay is
related to the anti-noise performance. When the constant
delay is large, the noise correlation is small which is bene-
ficial to improve the anti-noise performance. With the limita-
tion of signal length, the anti-noise performance achieves its
best when the constant delay is equal to the effective signal
length [34]. So, in the (6), the constant delay is D = NTs.
According to the analysis of LVD, when no interpolation is
required along the axis tnew and the interpolation on both sides
of the tnew axis is symmetrical, the precision is the best.
Based on the analysis in (9), to remove the coupling,

t is changed to a new variable tnew which is denoted by
tnew = (ρD+ ρτ) t . By using the phase lines analysis
method in [42], when ρD = 1, there is no interpolation along
the axis which is the same as the LVD. Thus, the selection of
the parameters are expressed as

D = NTs and ρ =
1
NTs

. (26)

From (26), we can see that ρD = 1.

IV. ANALYSIS OF ANTI-NOISE AND
COMPUTATIONAL COST
In this section, the computational cost and the performance of
anti-noise will be analyzed by using numerical simulations.
According to the analysis in Introduction, the LVD and the
CICPF are selected as the comparative methods.

A. ANTI-NOISE PERFORMANCE
The evaluation of anti-noise performance includes two parts,
the mono-component LFM signal with noisy and the multi-
component LFM signals with noisy.

1) MONO-COMPONENT LFM SIGNAL
According to the analysis methods geiven in [44] and [45],
we use the input-output SNR to evaluate the anti-noise perfor-
mance of the mono-component LFM signal. The amplitude,
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FIGURE 2. Comparison of the anti-noise performance under noisy
mono-component LFM signal.

FIGURE 3. Comparison of the anti-noise performance under noisy
multi-component LFM signals. (a) Result of the ImLVD. (b) Result of the
LVD. (c) Result of the CICPF.

centroid frequency, and chirp rate are set as follows: A1 = 1,
f1 = 4 Hz, γ1 = 16 Hz/s, fs = 128Hz, and N = 256. The
input SNRs are SNR ∈ [−14 : −7] dB.
It is easily seen from Fig. 2, when SNRin ≥ −12 dB,

the SNRout of ImLVD is close to that of the Matched filter.
Thus, the threshold of ImLVD is -12 dB. For the LVD and
CICPF, the thresholds SNRin are -10 dB and -9 dB, respec-
tively. Results in Fig. 2 show that, the anti-noise ability of
ImLVD is better than that of the LVD and CICPF. That is
because, by using the improved parameter selection criterion
for the ImLVD, the noise correlation is decreased effectively
which is beneficial to improve the anti-noise performance.

2) MULTI-COMPONENT LFM SIGNALS
Assume two components, the parameters of first component
are the same as the mono-component LFM signal case. The
parameters of the second component are: A2 = 1, f2 = 8
Hz, and γ2 = 8 Hz/s. The sampling frequency fs is 128 Hz.
The effective signal length is equal to 256. The signals are
contaminatedwith the complexwhite Gaussian noise with the
SNRin = −10 dB. In this paper, we use the multi-component
analysis method which is the same as that presented in [34].

In Fig. 3, Au1 and Au2 denote the self-terms. We can
see from Fig. 3 that the true peaks of LVD and CICPF are
immersed in the noise, and the energy of the spurious peaks

TABLE 1. Computational cost.

FIGURE 4. Simulation time.

approaches or exceeds that of the true peaks. Thus, it is hard
to detect the LFM signals. For the ImLVD, the energy of the
true peaks is much higher than that of the noise. The results
in Fig. 3 can reflect the high anti-noise performance of the
ImLVD under noisy multicomponent LFM signals.

B. COMPUTATIONAL COMPLEXITY ANALYSIS
In this subsection, the computational complexity analysis
of ImLVD, LVD, and CICPF is described. Assume the fre-
quency number of ISFT of coarse estimation operation is
equal toN , and the estimation precision of centroid frequency
and chirp rate is fs/(NLCZT ).
The main operations of ImLVD consists of PSIAF, ISFT,

FFT, and CZT. The computational complexity of them are
O(N ), O((N + LCZT )2log2(N + LCZT )), O(N 2log2N ), and
O((N + LCZT /2)2log2(N + LCZT /2)). Thus, computational
complexity of ImLVD isO((N + LCZT )2log2(N+LCZT )). For
the LVD, the computation cost is O((NLCZT )2log2(NLCZT ))
[28]. For the CICPF, the computation cost is O((NLCZT )3)
[27]. The computational costs of the ImLVD, LVD, and
CICPF are listed in Table 1.

Table 1 shows that the computational complexity of
ImLVD is lower than that of LVD and CICPFmethods. Based
on the analysis in III-B, to improve estimation precision,
LCZT should be increased when N is unchanged. When LCZT
increases, the computational complexity of ImLVD is almost
no increase, but the computational complexities of LVD and
CICPF are rapidly increasing.

The average simulation times of the ImLVD, LVD, and
CICPF are shown in Fig. 4 under different estimation preci-
sion. The simulation results are obtained by using the R2016b
MATLAB and the computer with an Intel Core i5-6200U
CPU (2.40 GHz), 8 GB memory. Parameters of the LFM
signal is the samewith the mono-component LFM signal case
under SNRin = 0 dB.
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It is easily seen from Fig. 4 that the average simulation
time of ImLVD is almost unchanged with the estimation
precision becoming higher, and it is less than that of the
other two methods. Moreover, for the LVD and the CICPF,
the average simulation times increase very quickly. For the
ImLVD, we can see that when precision is 1 Hz and 0.5 Hz,
the simulation times are less than other precision conditions,
because when the precision requirement is not high, we just
need to perform the coarse estimation operation.

V. CONCLUSION
In this paper, based on the LVD, we propose an improved
method named ImLVD to analyze mono- and multi-
component LFM signals. For the ImLVD, by using the dou-
ble scale estimation strategy, the amount of calculation is
effectively reduced, especially for estimating high precision
parameters. By using the ISFT operator, the scale opera-
tion is implemented, and the coupling, which affects the
performance, is removed. Based on the improved parameter
selection criterion, the proposed method can achieve superior
anti-noise performance. The numerical simulations demon-
strate the superiority of ImLVD method about anti-noise
performance and computational cost. In the future, wemainly
focus on the development of the high-order version of the
ImLVD for the general polynomial-phase signals.

APPENDIX
In order to demonstrate the cross-term cannot accumulate as
the self-term in (10), the characteristics of Qcross(ftnew , fτ ) is
analyzed in this Appendix. Based on the analysis method
utilized in [44], we consider two LFM signals to formulate
the cross-term problem arising from multicomponent LFM
signals, which is represented as

sm (t) = A1 exp
(
j2π f1t + jπγ1t2

)
+A2 exp

(
j2π f2t + jπγ2t2

)
. (27)

With analysis of the characteristics of the cross-term,
Qcross(ftnew , fτ ) can be divided into two parts which is repre-
sented as

Qcross = Qcross,1 + Qcross,2, (28)

where

Qcross,1

= FTτ [ISFTt [sm,1(t +
D+ τ
2

)s∗m,2(t −
D+ τ
2

)]]

= FTτ [ISFTt [A1 exp[j2π f1(t+
D+τ
2

)+jπγ1(t +
D+ τ
2

)
2
]

×A2 exp[−j2π f2(t −
D+ τ
2

)− jπγ2(t −
D+ τ
2

)
2
]]]

= FTτ [ISFTt [A1A2

× exp[j2π (f1 + f2)
D+ τ
2
+ jπ (γ1 + γ2)(D+ τ )t]

× exp[j2π (f1 − f2)t + jπ (γ1 − γ2)(t2 + (
D+ τ
2

)
2
)]]]

(29)

and

Qcross,2

= FTτ [ISFTt [sm,2(t +
D+ τ
2

)s∗m,1(t −
D+ τ
2

)]]

= FTτ [ISFTt [A2 exp[j2π f2(t+
D+τ
2

)+jπγ2(t+
D+ τ
2

)
2
]

×A1 exp[−j2π f1(t −
D+ τ
2

)− jπγ1(t −
D+ τ
2

)
2
]]]

= FTτ [ISFTt [A1A2

× exp[j2π (f1 + f2)
D+ τ
2
+ jπ (γ1 + γ2)(D+ τ )t]

× exp[j2π (f2 − f1)t + jπ (γ2 − γ1)(t2 + (
D+ τ
2

)
2
)]]].

(30)

It is easily seen from (29) and (30) that, only when
f1 = f2 and γ1 = γ2, Qcross,1 and Qcross,2 can be accumulated
as peaks which are becoming

Qcross,1 = FTτ [ISFTt [A1A2
× exp[j2π f1(D+ τ )+ j2πγ1(D+ τ )t]]] (31)

and

Qcross,2 = FTτ [ISFTt [A1A2
× exp[j2π f1(D+ τ )+ j2πγ1(D+ τ )t]]]. (32)

Substituting (31) and (32) into (28),

Qcross = 2× FTτ [ISFTt [A1A2
× exp[j2π f1(D+ τ )+ j2πγ1(D+ τ )t]]]. (33)

Equation (33) shows that the form of cross-term is the same
as the self-term. Thus, by using the proposed method, the
cross-term cannot be accumulated as spurious peaks in the
CFCR domain.
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