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ABSTRACT In this paper we proposed the circle trajectory assembly algorithm to control the multi-UAVs
circular assembly formation. CTFAP solution provides rapid formation of UAVs on a circular orbit and solve
the problem of large scattering distance. Proposed Distributed model prediction control framework improves
the optimization ability and reduces the computation consumption with the better convergence ability of the
UAV formation. Firstly, a circular trajectory following algorithm with an adaptive parameter is proposed to
complete the rapid formation of UAVs on a circular orbit and solve the problem of large scattering distance
during formation forming. Then, in the stage of formation reconfiguration, with distributed model prediction
control framework (DMPC), the proposed method gets the prediction information of DMPC to optimize the
population of classical differential evolution (DE) algorithm and improve the iterative optimization ability
of DE algorithm. Experiments show that the proposed differential evolution algorithm greatly improves the
efficiency of solving the formation reconfiguration problem under the DMPC framework and overcomes
the disadvantages of random population of classical DE. For the proposed rapid forming method, assembly
range is reduced by 41% compared with direct linearly formation assembly, and the formation forming time
is reduced by approximately 21%. Compared with other optimization algorithms such as Particle Swarm
Optimization (PSO), Genetic Algorithm (GA) and DE, the proposed differential evolution algorithm reduces
instruction response time of single-drones by 16%-30%.

INDEX TERMS Multi-UAVs, formation molding, DMPC, DE, formation reconfiguration.

I. INTRODUCTION
Multi-UAV formation flying includes both the assembly,
maintenance and reconstruction of formation flights, as well
as the planning and organization of flying tasks [1]. The
distance between adjacent UAVs is required to be safe
and the formation stability during flight should be main-
tained. In the process of mission execution, UAV formation
can greatly improve the efficiency of mission execution,
such as cooperative reconnaissance, tracking and mainte-
nance, perceptual recognition and cooperative attack; In
the actual environment, the frequent changes of tasks and
environments require that each drone in the formation
must be able to perform flexible position transformation,
avoid obstacles [2]–[6] and complete the reconstruction of
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the formation. UAV formation must be reconstructed to
ensure the performance of formation execution; includes for-
mation gathering, target formation reconstruction and forma-
tion preservation in formation flying. Many scholars have
done a lot of research on UAV formation reconfiguration
methods.

At present, the main methods to realize multi-UAV for-
mation forming and reconfiguration include: the artificial
potential field method [7], the bionic algorithm and the opti-
mization control method [8]–[10]. In the case of the large-
scale formation and the dynamic transformation, artificial
potential field method is difficult to make a mathematical
model and easy to fall into local optimum. Bionic algo-
rithms include the ant colony algorithm, the fish swarm
algorithm, the particle swarm algorithm etc. The computa-
tional efficiency of these algorithms is low, but real-time
performance in real application determines the stability of
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the formation control. Woods [11] et al. proposed a con-
trol method based on potential energy function. However,
with the increasing in quantity of drones and the rising of
formation size, the drones added later will have an unde-
sirable consequence on the potential energy function of the
formation. The more drones in the formation, the explosive
growth the potential energy function will be. Ru [12] et al.
designed a Distributed Model Predictive Control (DMPC)
method based onNash bargaining to solve the reconfiguration
function of the multi-UAV formation. However, it does not
take the communication distance constraint of UAVs into the
formation mathematical model. Zhang [13] et al. adopted an
improved differential evolution algorithm to solve the optimal
control variables in the multi-UAV global reconfiguration
process, and considered various constraints based on the real-
world scenarios. But this algorithm has a large amount of
computing burden to solve the control variables. Already
have proposed a hybrid particle swarm optimization and
genetic algorithm for multi-UAV formation [14], it achieved
good optimization results. However, this algorithm has some
shortcomings: the large amount of calculation, unfavor-
able tracking at the node, and difficulty in adapting to
changing size of the formation to generate an optimal
trajectory.

A new perspective on rapid forming of UAV formation is
proposed. We divide the formation forming into two stages:
the formation assembly and the target formation reconfigura-
tion. A fast optimization method for asynchronous take-off,
circle assembly and rapid reconfiguration of UAV formations
is proposed. Firstly, we propose a circle tracking algorithm
with self-adaptive parameters, which can quickly complete
the flight assembly when multiple UAVs take off asyn-
chronously, we solve the problem that the formation scat-
tering space is too large before the formation assembly.
Secondly, the UAV formation reconfiguration method based
on Distributed Model Predictive Control (DMPC) was pro-
posed to transform the centralized UAV formation reconfigu-
ration problem into the distributed optimization problem [15]
of single UAV flying control. The improved differential evo-
lution algorithm proposed in this paper inherits the prediction
information of DMPC, introduces the population optimiza-
tion operation for classical differential evolution (DE) algo-
rithm. The proposed DE algorithm effectively solves the
control quantities in the mathematical model of multi-UAV
formation reconfiguration. At the same time, it is faster, more
efficient, and meets the real-time requirements of the multi-
UAV formation system.

The content of this paper is arranged as follows: Section I
is the introduction; Section II discusses the proposed adaptive
circular trajectory following algorithm for multi-UAV assem-
bly of asynchronous take-off; Section III introduces the pro-
posed improved DE algorithm based on DMPC framework
(Pre-DMPC-DE) in detail; Section IV gives the experiments
of the proposed formation forming and reconfiguration algo-
rithms and some comparable results; Finally, the conclusion
of this paper is given.

II. ASSEMBLY OF MULTI-UAV IN CIRCULAR TRACK
This paper proposes an assembly method of multi-UAV in
the circular track for the formation with asynchronous take-
off. First, the multi-UAV formation assembly in the preset
circular track after take-off. After the assembly is completed,
target formation will be completed by formation reconfigu-
ration. The method can reduce the dispersion interval of the
multi-UAV formation, guarantee the communication perfor-
mance between the UAVs, and provide a good initial forma-
tion for the formation reconfiguration.

A. THE MATHEMATICAL MODEL OF UAV
Roger M proposes a new robust controller, which is applied
to the regulation and trajectory tracking tasks of four rotor
vehicles [26]–[30]. The simulation results show that the
scheme is superior and robust to different types of distur-
bances. It has great inspiration for our algorithm in this
paper. we propose an assembly method of multi-UAV in the
circular track for the formation with asynchronous depar-
ture. First, the multi-UAV formation assembly in the pre-
set circular track after departure. After the assembly is
completed, the flying of the target formation will be com-
pleted by the formation reconstruction. The method can
reduce the dispersion interval of the multi-UAV formation,
ensure the communication performance between the forma-
tions, and provide a good initial formation for the formation
reconstruction.

x(k + 1) = x(k)+ V (k) cos γ (k) cosχ (k)dt
y(k + 1) = y(k)+ V (k) cos γ (k) sinχ (k)dt
h(k + 1) = h(k)− V (k) sin γ (k)dt
V (k + 1) = V (k)+ a(k + 1)dt
χ (k + 1) = χ (k)+ χ ′(k + 1)dt
γ (k + 1) = γ (k)+ γ ′(k + 1)dt

(2-1)

In formula (2-1), x, y, h is the projection coordinate of the
UAV’s centroid position in the ground coordinate system;
v, χ, γ are the acceleration, the heading angle and the pitch
angle of the UAV; a, χ ′, γ ′ are the acceleration, the heading
angular velocity and the pitch angular velocity; dt is the
sampling period.

The state variables and control variables of either UAV at
k moment are Xi(k) and Ui(k) in formula (2-2):

Xi(k) = [xi(k), yi(k), hi(k),Vi(k), χi(k), γi(k)]

Ui(k) = [ai(k), χi(k), γi(k)] (2-2)

Then the motion formula of the either UAV at k moment is
formula (2-3):

Xi(k + 1) = fi (Xi(k),Ui(k)) (2-3)

B. CIRCLE TRAJECTORY FOLLOWING ALGORITHM WITH
THE ADAPTIVE PARAMETER
For a preset circular assembly flying orbit [17], the parame-
ters in the traditional trajectory following algorithm [18] are
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FIGURE 1. Schematic diagram of the CTFAP algorithm.

experimental or empirical values. The Non-adaptive parame-
ter causes the oscillation problem of following the trajectory,
as shown in Figure 2(a). The blue circle is the set assembly
trajectory, the lower right triangle is the take-off point of
UAVs [31]–[33]. After takeoff, the UAVneeds to fly along the
set circular trajectory. All the UAVs complete the trajectory
following and then reconstruct the target formation (‘gable’
or ‘diamond’). In Figure 2, TwoUAVs (UAV1UAV2)with the
speeds of 100m/s and 200m/s track the circular trajectory.
The trajectory following algorithm with a fixed parameter
of λ = 0.1 has a large oscillating situation in the 2th UAV.
UAV2 can converge to the circular trajectory after nearly a
circle of flight, at this time, the parameters show good con-
vergence performance for UAV1. For fast trajectory flowing
for takeoff UAVs with individual difference we propose a
solution for the circle trajectory following algorithm with
the adaptive parameter (CTFAP) to complete the assembly
flying of the UAV on the orbit, avoiding the oscillation shown
in Figure 2(a).

CTFAP algorithm is shown as following:

Step 1: As shown in Figure 1, a UAV with the heading angle
of χ is located outside the circular path. By the
parameters of the preset circle trajectory and the
position of the UAV, the projection point of the UAV
on the circular trajectory can be obtained.

Step 2: The parameter λ is initially set to the median of
the best interval. Combining the projection point
q with the parameter λ, the sampling point s of
the UAV on the circular trajectory can be fig-
ured out which is the offset point from point q
by the angle λ. (The best interval is [2 arcsin(V ∗
dt/2R), 2 arcsin(

√
1− (1− a%)2], which is solved

in Section II.C.)
Step 3: Get the angle ψ between the speed direction of the

UAV and the direction of the UAV to the offset sam-
pling point s. The angle λ is brought in the formula
(2-4) to get the control amount ui(k + 1) of the UAV
in the next moment:

χ ′(k + 1) =

{
ψ, if : ‖ψ‖ ≤ χ ′max ∗ dt
χ ′max ∗ dt

ui(k + 1) = [0, χ ′(k + 1), 0] (2-4)

FIGURE 2. Comparison of the traditional trajectory following algorithm
and the algorithm with adaptive parameter.

Step 4: Apply the control variable to the control of the UAV
in the next moment.

Figure 2(b) shows the experimental results of the improved
circle trajectory following assembly algorithm with the adap-
tive parameter [3], [34], [35]. The blue circle is the set assem-
bly trajectory, the lower right triangle is the take-off point of
UAVs. It shows that both UAV1 and UAV2 have good con-
vergence performance. The experimental results show that
the automatic parameter interval of the algorithm is correct,
which can make the multi-UAV formation quickly to enter
the stable circular trajectory assembly state. Compared with
the method with the empirical parameter, this algorithm can
dynamically adjust in real time under any circumstances to
ensure the stability of the assembly flight.

C. PROOF OF THE RANGE OF THE PARAMETER λ OF
CTFAP ALGORITHM
In the actual flight, the error of the trajectory following is
smaller than a%(a = 1 in the simulation of this paper),
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FIGURE 3. Schematic diagram of the CTFAP algorithm.

that is, the trajectory coincides without deviation. Due to
the previous papers, the classical path following algorithm
can make the UAV position error of preset circular trajec-
tory less than a%, but it is not stable. In Figure 3, when
the UAV is near the point L of the circular trajectory (the
error between the UAV and the circular trajectory is less
than a%), with the algorithm in Section II.B and the preset
parameter λ, the point S ′ is solved to be the offset point in
the circular trajectory of the UAV at this moment. LS ′ is the
flying direction. With the knowledge of circle and triangle,
the distance between the point L ′ in the line LS ′ and the circle
can be solved. If the distance error from the point L ′ to the
circle is less than a%, the UAV can converge on the circular
trajectory.

Assume that the UAV has already moved to the position
which coincides with the track [20], [36], [37], how to ensure
that the position of the UAV in the next moment is still
coincident with the track? In Figure 3, the point P is the
location of the UAV (the error between the UAV and the track
is less than a%). The point S is the offset point of the point P
(There is an angle λ between the point S and the point P in
the circle). d is the distance. V is speed of UAVs.

R is the radius of the circle. Formula (2-5) can be launched
by the previous assumption d ≤ a% ∗ R.

PS ≤ 2R
√
1− (1− a%)2

λ = 2 arcsin(PS2R )

}
⇒ λ ≤ 2 arcsin(

√
1− (1− a%)2 (2-5)

Formula (2-6) can be launched by the limit of the UAV’s
speed.

PS ≥ V ∗ dt
λ = 2 arcsin(PS2R )

}
⇒ λ ≥ 2 arcsin(

V ∗ dt
2R

) (2-6)

Formula (2-5) ensures that the flying path of the UAV is
in the error range of the trajectory. Formula (2-6) ensures
that the UAV cannot fly out of the trajectory, and ultimately
ensures that the flying path of the UAV can converge to the
circular trajectory. With formula (2-5), formula(2-6), speed
V of the UAV, radius R of circular trajectory and distance
error a%, the best interval can be solved: ([2 arcsin(V ∗
dt/2R), 2 arcsin(

√
1− (1− a%)2]).

FIGURE 4. The schematic diagram of UAVs communication.

III. DMPC MODEL FOR TARGET FORMATION
RECONSTRUCTION
After the multi-UAV formation completes assembly, it needs
to efficiently move from the initial state to the specific forma-
tion state to complete the formation reconstruction under the
constraints. UAV formations communicate their respective
status information in real time through the self-organizing
network. As Figure 4 shown, under the constraints informa-
tion of the formation sent by the leader UAV, the rapid proto-
typing and the reconstruction of the formation are completed,
forming the host-down mode (reconstructed from ‘gable’ to
‘diamond’), and guide the UAV formation to the next mission
site (target point).

UAV formations communicate their respective status infor-
mation in real time through the self-organizing network.
As Figure 4 shown, under the constraints information of the
formation sent by the leader UAV, the rapid forming and
the reconfiguration of the formation are completed, forming
the host-down mode.

The leader UAV receives the command from the ground,
which commands the leader UAV to guide the formation to
form a specific formation such as: A formation and B for-
mation, and to guide the multi-UAV formation to the next
mission location (the target point). The wing-UAVs receive
the position information and follow the leader UAV to the
mission location. During the period, the wing-UAVs receive
the formation information (the leader UAV sends the relative
positions of thewing-UAVs to itself) to form a specific forma-
tion required by the ground command. The reconfiguration of
the target formation begins when the assembly is completed
on the circle trajectory.

A. DMPC FRAMEWORK OF THE MULTI-UAV FORMATION
During the reconfiguration of the multi-UAV formation, the
dynamic characteristics of each UAV is decoupled. Its control
structure can adopt the distributed model predictive con-
trol (DMPC) to complete the formation reconfiguration task
by the interaction of their respective position states and the
constraints [38]. Under the DMPC framework, each UAV
has its own model predictive controller to solve the control
domain and to select the control value.

Under the DMPC framework, each UAV has its ownmodel
predictive controller to solve the control domain and to select

169602 VOLUME 7, 2019



L. Bian et al.: Trajectory Following and Improved Differential Evolution Solution for Rapid Forming of UAV Formation

the control value, the behaviors of n UAVs formation can be
jointly described and solved by each UAV. Therefore, DMPC
has been widely used in the research of the reconfiguration of
the UAV formation [39]–[41]. The formation motion formula
is expressed as formula (3-1):

f (x̃(k), ũ(k))=
[
f1(X1(k),U1(k))T , . . . , fN (Xn(k),Un(k))T

]
(3-1)

In formula (3-1), x̃(k), ũ(k) are the vector of the total
state and the control amount of the multi-UAV formation
at the k moment. When the control input is known (that is,
ũ(0), ũ(1), ũ(2), ..., ũ(n), x̃(0) are given), the formation status
at the k = n ∗ dt moment can be launched by formula (3-1).

Under the DMPC framework, the cost of the target forma-
tion reconfiguration of the n UAVs formation can be divided
into the sum of each UAV’s control, as shown in formula
(3-2):

J (x̃(k), ũ(k))=
N∑
i=1

Ji
(
XN
i (k), x̃(k−1),X

N (k−1)|,UN
i (k)

)
(3-2)

In formula (3-2), XN
i (k) and UN

i (k) are the N-step-
predicted state and control set of the i UAV at the k moment.
XN (k − 1) is the N-step-predictive state set for all UAVs in
the formation at the k moment, as shown in formula (3-3):

XN
i (k) = {Xi(k|k),Xi(k + 1|k), . . . ,Xi(k + N − 1|k)}

UN
i (k) = {Ui(k|k),Ui(k + 1|k), . . . ,Ui(k + N − 1|k)}

XN (k) = {XN1 (k),XN2 (k), . . . ,XNn (k)} (3-3)

Under the DMPC framework, the overall reconfiguration
problem of the formation can be simplified to n local opti-
mization problems of individual UAV, as shown in formula
(3-4):

ui(k) = argmin
Ui(k)

Ji
(
XN
i (k),X

N (k − 1),UN
i (k)

)
(3-4)

Formula (3-4) shows that under the framework of DMPC,
the optimization in each time domain is only related to the
status Xi(k) and the control set UN

i (k) of the either UAV,
the state x̃(k − 1), the forecast information of all UAVs at
last moment received by the network. The optimization goal
range is reduced because only UN

i (k) needs to be solved and
the efficiency of optimization solution is improved.

B. THE COST FUNCTION OF FORMATION
RECONFIGURATION UNDER DMPC FRAMEWORK
This paper divides the constraints into the constraint of the
target formation reconstructed status, the constraint of the
target position approaching and the constraint of the in-team
collision prevention [42], [43]. Therefore, the cost function of
the UAV formation is divided into the following three parts,
the constraint function is defined as follows:

1) THE COST FUNCTION OF RECONSTRUCTED STATE
For complete the formation reconfiguration with high effi-
ciency, the cost function of reconstructed state is selected as
formula (3-5)

JiF (k) = (Xi(k)− Xif (k)

+

N−2∑
0

α ∗
∥∥Xi(k + q|k)− Xip(k + q|k − 1)

∥∥2)
+

q=N−2∑
q=1

β ∗ ‖Ui(k + q|k)‖2 (3-5)

In formula (16), the explanation ofXif (k) andXip(k+m|k−
1) is shown as formula (3-6):

Xif (k) = X1(k)+ Li
Xip(k + m|k − 1) = X1(k + m|k − 1)+ Li;m ∈ (1,N − 2)

(3-6)

In formula (3-6), Li is the relative position information of
the either UAV about the leader. Xif (k) is the expected status
of the either UAV at the k moment. Xip(k + m|k − 1) is the
current expected state of any UAV based on the prediction of
k-1 time. The previous item guarantees that the formation can
reach its target formation status, and the last item guarantees
the high control efficiency.

2) THE COST FUNCTION OF TARGET APPROACHING
For make the UAV formation reach the mission target point
with higher efficiency, the heading of the UAV should be the
direction of the mission point. The cost function of target
approaching is taken as formula (3-7):

Jid (k) =
q=N−1∑
q=0

rq ‖χi(k + q|k)− angleid (k + q|k)‖2

+

q=N−1∑
q=0

hq ‖Vi(k + q|k)− V0‖2 (3-7)

In formula (3-7), angleid (k + q|k) is the angle between the
UAV and the target point at the N-step-prediction. V0 is the
expected speed. The previous item guarantees the direction
of the formation, and the last item guarantees the speed of the
formation.

3) THE COST FUNCTION OF THE IN-TEAM COLLISION
For prevent collisions within the team during the formation
forming, the safe distance is set. The cost function of the in-
team collision is shown as formula (3-8):

Jic(k) =
n∑
j=1
j 6=i

(len(Xi(k),Xj(k))+
N−2∑
m=1

len(Xi(k + m|k),

×Xj(k + m|k − 1))) (3-8)
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The function in formula (3-8) is described in formula (3-9):

len(Xi(k),Xj(k) =

{
η(2D− dij), dij < 2D
0, others

(3-9)

In formula (3-9), dij is the Euclidean distance between the
either UAV and the either UAV at the k moment. D is the
collision radius of the UAV. The previous item guarantees that
there will be no collision between the UAV team at the current
moment, and the latter item will predict the future collision
cost.

In summary, the total cost function of UAV formation is
given in formula (3-10):

Ji(k) =
∥∥xi(k + N |k)− xif ∥∥2
+

q=N−1∑
q=0

(∥∥xi(k + q|k)− xif ∥∥2 + ‖ui(k + q|k)‖2)

+

q=N−1∑
q=0

rq ‖χi(k + q|k)− angleid (k + q|k)‖2

+

q=N−1∑
q=0

hq ‖Vi(k + q|k)− V0‖2

+

n∑
j=1
j 6=i

(len(Xi(k),Xj(k))

+

N−2∑
m=1

len(Xi(k + m|k),Xj(k + m|k − 1))) (3-10)

So far, this paper has completely built the multi-UAV
formation mathematical model under the DMPC framework.

IV. IMPROVED DE ALGORITHM FOR SOLVING DMPC
MODEL
For the DMPC model with the above cost function,
the researchers propose many optimization algorithms such
as PSO and DE algorithm. Among them, the differential
evolution algorithm has the strong global search ability and
the fast convergence ability. However, the traditional DE
algorithm is slow in iteration. Themain reason is that the pop-
ulation of each iteration is randomly generated and does not
inherit the result of the previous calculation of the framework
or formation model. This paper inherits the prediction infor-
mation of the DMPC model to improve the differential evo-
lution algorithm named as Pre-DMPC-DE algorithm, which
increases the optimized population operation and greatly
improves the efficiency of the solution.

A. PRE-DMPC-DE ALGORITHM FOR DMPC MODEL
Under the DMPC framework, the forming problem of the
whole UAV formation can be differentiated into the problem
of optimizing the control quantity set UN

i (K ) of n relatively
independent UAVs. Pre-DMPC-DE algorithm uses theN-step
predictive control set UN

i (K ) as the individual in the DE

algorithm, randomly generates M sets of predictive control
quantities as the population of the DE algorithm, and uses the
formation cost function as the individual evaluation function
of the DE algorithm.

Optimization of the Pre-DMPC-DE is that:
1) M represents the size of the population. The population

is Randomly initialized in the feasible space for solving
the problem. G0

= {g01, g
0
2, . . . , g

0
M } ( 0 indicates

the number of the iteration). g0j = Ui(k) (That is

g0j = {ui(k|k), ui(k + 1|k), . . . , ui(k + N − 1|k)},

×i ∈ [1, n], j ∈ [1,M ]).

2) After loop iterations of mutation, crossover and selec-
tion operations, the best individual gtbest are obtained
in the population. gtbest is brought in formula (3-11) to
get the optimized individual g0new at the next moment.
That is the increased optimizing population operation,
which is shown in formula (3-11).

g0new = gtbest ∗ A

G0
new = G0

∪

[
g0new

]
A =

[
0 0
E 0

]
(3-11)

In the DMPC framework, the first part control quantities
ui(k|k) of UN

i (K ) control the next movement of the UAV,
and the current optimization solution will discard the set of
the remaining control quantities ({ui(k + 1|k), . . . , ui(k +
N − 1|k)}). The set of the remaining control quantities has
high adaptability for the evaluation function, which has the
prior knowledge at the k moment. Therefore, this paper uses
this information on the Pre-DMPC-DE algorithm to optimize
the population, and to generate excellent individuals ({ui(k +
1|k), . . . , ui(k + N − 1|k), ui(k + N |k + 1)}) with excellent
genes for the next moment. The Pre-DMPC-DE algorithm
accelerates the process of population optimization by the
cross-evolution of good individuals and random individuals
to solve the optimal control set UN

i (k) with fewer iterations.

B. PROPOSED FORMATION SOLUTION BASED ON DMPC
BY PRE-DMPC-DE
As described above and the flow chart shown in Figure 5,
a solution of structure reconstruction Pre-DMPC-DE algo-
rithm is proposed. The steps are as follows:
Step 1: At time k, all the wing UAVs send their own status

information XN
i (k − 1) to the leader UAV through

the communication between the formations, and the
leader communicates the status information of the
unmanned aerial vehicles at the previous moment
through the communication between the formations
XN (k − 1). And the formation information Li is
sent to all slaves. The optimal control quantity
UN
i (k) is used to perform the optimized population

operation in the Pre-DMPC-DE algorithm given in
Section IV(A) of the initial population in Figure 5,
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FIGURE 5. The flow chart of the forming problem of the formation.

and finally the optimized population unique to the
wing UAV is generated. Go to step 2;

Step 2: The proposed algorithm uses the mutation operation
and crossover operation in the Pre-DMPC-DE algo-
rithm to evolve the individual gtj in the optimized
population of the wing UAV; The DMPC framework
in section III(A) and the cost function proposed in
section III are defined as an evaluation model and
evaluation function, all evolutionary individuals are
evaluated to obtain individual evaluation values, and
whether the individual evolves is determined by the
selection operation, if the evolution fails, it replace
its parent. As shown in Figure 5, the population evo-
lution of step 2 is repeated until the evaluation value
of the optimal individual satisfies the condition, or
the number of iterations of step 2 exceeds the setting
of the algorithm (the maximum number of itera-
tions is set to 500), and the optimized population is
evaluated. The highest value individual gtbest . Go to
step 3;

Step 3: It can be known from section IV(A) that the indi-
vidual in the population is the control quantity set
of the wing UAV, the optimal individual gtbest is the
optimal control quantity set UN

i (k − 1) of the slave
machine either UAV at the k-1moment. This optimal
control amount is transmitted to step 1, and the
next optimal control amount is obtained according
to formula 9, applied to the flight of the wing UAV,
and the wing UAV reaches a new state. Return to
step 1.

The flow chart for solving the forming problem of the
multi-UAV formation under the DMPC framework is shown
in Figure 5:

C. CONVERGENCE PROOF OF PRE-DMPC-DE ALGORITHM
FOR DMPC
Theorem 1: The evaluation value of the Pre-DMPC-DE algo-
rithm does not increase as the number of iterations increases.

Proof: The selection operation of the DE algorithm
shows that the operation is performed only when the cost is
reduced, so the algorithm generation value does not increase
as the number of iterations increases.
Theorem 2: The population in the Pre-DMPC-DE algo-

rithm is the Markov chain.

Proof: All operations of the DE algorithm are indepen-
dent of the number of iterations, so the t + 1 generation
X t+1 of the algorithm is only related to the t generation X t .
Therefore, the population is a Markov chain. Its transition
probability is formula (3-12):

P(X(t + 1) = Y|X(t) = X)

=


N∏
i=1

P (T (X(t))i = xi(t + 1)) , restriction

0, other

restriction : ∃ix , iy ∈ [1,M ], s.t.F (xix)

= Fmin(X),F
(
yiy
)
= Fmin(Y) (3-12)

In formula (3-12), Fmin(X ) is the minimum cost of the
population G = [g1, g2, . . . , gn].
Theorem 3: The population G of the Pre-DMPC-DE algo-

rithm converges to the satisfactory species cluster V ∗ in the
solution space with the probability 1, as shown in formula
(3-13):

lim
t→∞

P(X (t) ∈ V ∗|X (0) = X0) = 1 (3-13)

Proof: Let x ∗ be the optimal solution of the cost func-
tion. P(X ,Y ) Expresses P(X (t+1) = Y |X (t) = X ). Formula
(3-22) introduces the following two points:
(1). If X ,Y ∈ V ∗, then P(X ,Y ) > 0,P(Y ,X ) > 0. That is,

two states interoperate X < − > Y ;
(2). If X ∈ V ∗,Y ∈ V ∗, then P(X ,Y ) = 0. That is, two

states don’t interoperate. X is not available to Y.
V ∗ is an aperiodic irreducible closed set, so there is

formula (3-13) for any initial state:

lim
t→∞

P (X(t) = Y/X(0) = Xo) =

{
π (Y),Y ∈ V ∗

0,Y /∈ V ?
(3-14)

The initial state is bound to enter a satisfactory species
group. Its ultimate probability satisfies the distribution π (Y),
that is formula (3-15):

lim
t→∞

P
(
X(t) ∈ V å

|X(0) = X0

)
= 1 (3-15)

Therefore, the Pre-DMPC-DE algorithm can solve the for-
mation reconfiguration problem of the DMPCmodel, and the
algorithm is convergent.

V. THE ANALYSIS OF THE SIMULATION EXPERIMENTS
This paper carries out the simulation verification of the
algorithm performance with the simulation software Mat-
lab2019 and Intel 2.8G CPU with 16GB Memory. Sim-
ulation 1 is a simulation of the circular assembly with
the circle trajectory following algorithm, which has five
UAVs. It verified the effectiveness of the adaptive param-
eters and the rapid stability of the assembly. For verify
the excellent performance of the proposed Pre-DMPC-DE
algorithm, simulation 2 gave experimental comparison of
different optimization algorithms. Differential Evolution
(DE) [19], [20], genetic algorithm (GA) [21], particle swarm
optimization- (PSO) [22], [23], genetic learning particle
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TABLE 1. Constraint parameters of UAVs.

TABLE 2. Initial kinematic parameters of UAVs.

swarm optimization (GLPSO) [24], historical and heuristic-
based adaptive differential evolution (HHDE) [25] and Pre-
DEMPC-DE algorithms were used to execute the simulation
of multi-UAV formation forming and reconfiguration. For
verify the overall effectiveness of CTFAP and Pre-DMPC-DE
algorithms, simulation 3 used simultaneously the proposed
CTFAP and Pre-DMPC-DE algorithms to make a simulation
of multi-UAV assembly and formation reconfiguration.

These experiments stipulate that there is no communication
delay between the UAVs in the formation; the speed and
heading angle of the UAV are not affected by any other
factors. The fixed-wing UAV is selected in this experiment.
The parameters are shown in Table 1.
Simulation 1: Verify the functionality of the circle tra-

jectory following assembly algorithm in this article and
the advantages of the algorithm compared with normal line
assembly.

Simulation scenario: Five UAVs take off in sequence at 1 s
intervals. The assembly method adopts the CTFAP algorithm
and the linear formation algorithm which commonly used
in practice. The initial parameters of the UAV formation

FIGURE 6. Comparison of the circular trajectory take-off and the
straight-line take-off.

members are shown in Table 2. UAV 1-5 refers to the UAV
number, of which No. 1 is the leader. The three parameters
of take-off position refer to the East direction, the north
direction and the height from the ground in the Northeast
celestial coordinate system, with the take-off point as the
origin. Expected speed refers to the final mission execution
speed of UAV formation, and maximum speed refers to the
maximum flight speed of each UAV formation.

Figure 6 is a three-dimensional flying diagram showing the
circular trajectory assembly and formation reconfiguration
and the linearly assembly and formation forming. In order
to clearly indicate the trajectory status of different UAVs
and avoid overlapping trajectories at the same altitude, Fig-
ure 6(a) makes concentric circle trajectories at different alti-
tudes for formation members UAV1-UAV5. The triangular
arrows in the Figure 6 indicate the location of all UAVs every
10 seconds. In the following Figure 12(b), we can find that

169606 VOLUME 7, 2019



L. Bian et al.: Trajectory Following and Improved Differential Evolution Solution for Rapid Forming of UAV Formation

FIGURE 7. Trajectory offset error of circular trajectory assembly flight.

the 2-D circular trajectory diagram shows that the formation
assembly of 5 UAVs are in the same circular orbit.

In Figure 6(a), the rise of the left curve indicates the climb-
ing phase of the UAVs, and the circular curve represents the
track where the multi-UAV formation is assembling. When
the circular track assembly is completed, the distance of the
leader UAV (UAV1) from the take-off point is 400 meters.
The arrow line on the right indicate that the UAVs fly out of
the circular assembly and complete the formation reconfigu-
ration and forming. Figure 6(b) is the 3-D flying diagram of
the UAVs’ straight-line assembly. As the figure shows, these
UAV gradually form an assembly of equal space. However,
when the assembly formation is completed, the leader UAV
is at the 1100 meters of the x-axis, which is far bigger than
the 400 meters of the circle trajectory assembly.

Figure 7 shows the offset error of circular trajectory assem-
bly flying of the formation. The ballistic error value in Fig-
ure 7 is the ratio of the shortest distance from the UAV to
the circular trajectory to the radius of the circular trajectory
(100m). The smaller the error is, the better the coincidence
degree between the UAV trajectory and the predetermined
circle trajectory is. When the error value is 0, it means the
complete coincidence. Figure 7 shows that in the period
from 0 s to 17 s on the t-axis (the axis of the time), the error
values of the five UAV are decreasing. Meanwhile, the five
UAV are all in the acceleration phase, flying from the take-off
point to the center of the circular track. Between 14s and 17s,
line segments of each color that reach the lowest point and
bounce, indicate that these UAVs passed the center of the
circular trajectory and began to track the circular trajectory.
When the error values of all UAVs stabilize in a straight line,
all UAVs stably track circular trajectory with the error less
than the assumption (1%). That is, the error distance of all
UAVs is less then 1 meter.

Figure 8 is the diagram of the distance between UAVs of
two assembly algorithms and formation forming. The t-axis
is the time axis, indicating the time point after takeoff of
formation, and the distance axis is the distance between wing
UAVs and leader UAV. The distance is the length between
the wing-UAV (UAV2-UAV5) and the leader UAV (UAV1).
As shown in Figure 8(a), the distance of UAV5 reaches
the maximum in the crest, which is 200 meters. The
UAV2-UAV5 curve represents the distance between the

FIGURE 8. Comparison of the circular formation and the beeline
formation.

TABLE 3. Comparison of formation forming time and distance.

current UAV and UAV1.So, the max distance of the CTFAP
algorithm is 200 meters at t = 13s. Figure 8(a) The straight
line on the right indicates that the formation is stable, and
the distance is stable at the set value of the formation. The
distance of UAV5 in Figure 8(b) is 250 meters at t = 18s,
so the max distance of the linear assembly algorithm is
250 meters. The circular assembly algorithm is 25% smaller
than the linear assembly algorithm in the max distance. The
experimental data shows that the circular assembly algorithm
consumes less communication performance than the linear
assembly formation algorithm.

Table 3 shows the numerical results of formation forming
time according to the all lines stable time in Figure 8. The
results show that compared with the linear combination algo-
rithm, the stability time of CTFAP algorithm in this paper is
shortened by 21%, and the distance from takeoff to formation
point is shortened by 41%, which can complete formation
combination and formation in a small area.
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TABLE 4. Parameters of algorithms.

TABLE 5. Model parameter.

Simulation 2: Comparison of the performance of the
multi-UAV formation reconfiguration algorithm with differ-
ent algorithm. The average iteration times, completion time,
reconstruction trajectory and reconstruction trajectory errors
are compared. GLPSO, HHDA and DMPC-DE algorithms
are applied in these simulations. Assembly and formation
reconfiguration, and the average number of iterations in the
reconstruction process is compared with the experimental
results, and the reconstruction time, the reconstruction track
and the reconstruction track error are all given in this section.
The initial population is 30 and the maximum number of
iterations is 300. The parameters of the above algorithms are
shown in Table 4. Themodel parameters are shown in Table 5.
The initial parameters of the multi-UAV formation are shown
in Table 6: The algorithm parameters in the following table
can be explained by the formula in the paper. For exam-
ple, the mutation parameters and crossover probability in
DE algorithm are the parameters in formula 12 of original
DE algorithm. The parameters in Table 4 below are all the
same. Sampling period, prediction step, cost coefficient and
target point in model parameters are all mentioned in the
formula in Section III. The initial parameters of UAV are
set by itself. The three parameters of the initial position
refer to the East direction, the north direction and the height
from the ground in the Northeast celestial coordinate system,
respectively, with the take-off point as the origin. The relative
position is the position error of slave position relative to
long position in reconstructed formation. Heading angle is a
parameter in UAV mathematical model, which is explained
in Section II(A). Expected speed refers to the final mission
execution speed of UAV formation, and maximum speed
refers to the maximum flight speed of each UAV formation.

TABLE 6. Initial kinematic parameters of UAVs.

In Figure 9(a), the x-axis represents the iteration num-
ber axis and the y-axis represents the cost value axis. The
relationship between the value of each algorithm and the
number of iterations per iteration is represented by two axes.
In Figure 9(b), x axis is the axis of the algorithm, and the y
axis is the average number of iterations (the average number
of iterations each time the optimal solution is obtained). The
two axes jointly represent the average converge speed of each
algorithm. Figure 9(a) shows the cost descending sequence of
the above different algorithms at 45s. Figure 9(b) shows the
comparison of the improved DE algorithm (Pre-DMPC-DE)
and other algorithms on the average number of iterations.
The green line in Figure 9(a) represents the cost value drop
curve of Pre-DMPC-DE algorithm, which is below the curve
of all other algorithms, which shows that the cost value of
this algorithm is generally lower than that of other algorithms.
In the first few seconds, the gradient of curve drop is large,
and the cost value is dropping faster than other algorithms.
Figure 9(a) shows that Pre-DMPC-DE algorithm can achieve
rapid cost reduction with fewer iterations. It shows that
the improved algorithm has a strong iterative optimization
ability and quickly completes the optimization solution for
this control quantity set. The comparison of the histogram
in Figure 9(b) shows that the average number of iterations
of the classical DE algorithm is nearly 200, while the other
improved algorithms is nearly 170 times. But the Pre-DMPC-
DE algorithm proposed in this paper has an average number
of iterations which is less than 150 times. The improved DE
algorithm reduces the number of iterations by 16% ∼ 30%,
which greatly saves time and resource consumption of the
computation in solving the problem of the UAV formation
control.

For further verify the advantages of the Pre-DMPC-
DE algorithm, simulation experiments of these multi-UAV
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FIGURE 9. Cost diagram and histogram of iterations.

formations reconfiguration are carried out, which respec-
tively have 5, 10, 20 and 40 UAVs. The total calculation time
from take-off to the formation forming is shown in Table 7.
In this simulation, the time performance of the algorithm
is investigated at the scale of 5, 10, 20 and 40 UAVs and
the formation aggregates from disordered state to formation
flying state in random initial state (this process does not
include circular aggregation, but only further verifies the
reconstruction algorithm).The experimental results show that
the Pre-DMPC-DE algorithm has obvious advantages in the
calculation time in the case of the continuous expansion of
the UAV formation. From Table 7, we can see that the Pre-
DMPC-DE algorithm proposed in this paper consumes more
than 18% less than all the other algorithms in the total time
of UAV reconstruction calculation.

Figure 10 is the comparison of the trajectory maps of
the five UAVs with afferent algorithm (reconstructed from
‘gable’ to ‘diamond’). The small triangle with each color
represents a UAV. Among them, the UAV1 is the leader
UAV. These UAVs’ position is displayed every 5 seconds.
Figure 10(a) is the output trajectory of the Pre-DMPC-DE
algorithm proposed in this paper. The entire trajectory is
smooth and does not produce large trajectory oscillations.
Five triangles form gable formation at the left, then 11th sec-
ond of the flight, the diamond formation is basically formed.
TheUAV formation is stable before the 16th second, as shown
at the right of the Figure 10(a), five triangles form the

TABLE 7. Results of multiple UAVs formation reconfiguration time
experiments (millisecond).

diamond formation. Figure 10(b) is the trajectory of the
HHDE algorithm. At the 11th second of the flight, the forma-
tion is basically formed. The UAV formation is stable before
the 16th second. However, the trajectory of the UAV5 pro-
duces a slight turbulence. Figure 10(c) is the trajectory of
the GLPSO algorithm. At the 11th second of the flight,
the formation is basically formed. The UAV formation is
stable before the 16th second. However, the trajectory of
the UAV4 produces a turbulence, and the flying distance of
the UAV4 is far. Figure 10(d) is the trajectory of the DE
algorithm. At the 11th second of the flight, the formation
is basically formed. The UAV formation is stable before the
16 second. Figure 10(e) is the trajectory of the PSO algo-
rithm. In figure 10(e), the trajectory of the UAV4 produced
a large shock, and it was before the 21th second that the
formation reconfiguration is completed. Figure 10(f) is the
trajectory diagram of the GA algorithm. The trajectory of
the UAV formation has undergone a large oscillation. After
the 31th second, the formation is basically stable, and the
reconfiguration of the formation is completed. So the pro-
posed Pre-DMPC-DE algorithm achieve great performance
on rapid formation forming and reconfiguration. Compared
with the smoothing of the trajectory and the flight time of the
reconstructed formation, the Figure 10(a) of the Pre-DMPC-
DE algorithm in this paper is better than that of the other
algorithms. It is further shown that the proposed algorithm
is superior to other algorithms.

Figure 11 is the comparison of the sum of the trajectory
error of the above algorithms. The error value is defined as
the distance between the position of the wing-UAV and the
position transmitted by the leader UAV. The sum of error
is the sum of the trajectory error of all wing-UAVs. It can
be seen from Figure 11 that the Pre-DMPC-DE algorithm
proposed in this paper has the smallest trajectory error and
the fast falling speed, and the sum of error is minimum at
the same time. In the purple PSO curves, the error curves
rebounding at some time points t = 16 indicates that a UAV
has a sharp shock at this moment. The proposed Pre-DMPC-
DE algorithm only has one rebound. It indicates the stability
of the convergence of this Pre-DMPC-DE algorithm is better
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FIGURE 10. Comparison of trajectory of the multi-UAV formation reconfiguration with different algorithms.

than other algorithms. Assume that the trajectory error of the
UAV formation is 30 meters, that is, the special formation is
basically formed. From Figure 11 we can see that the Pre-
DMPC-DE algorithm is completed at the 12.5 second, while
the remaining other algorithms form the basic formation at
least after the 14 second. The comparison of these algorithms
from Figure 10 and Figure 11 shows that: Pre-DMPC-DE
algorithm is superior to other algorithms in both reconfigu-
ration speed (in time) and accuracy (in oscillation).

Simulation 3: The simulation of the complete process
from the departure to the formation reconfiguration. In this
simulation, the accuracy, flight time consumption and flight
distance consumption of the circular formation take-off algo-
rithm and UAV formation reconstruction algorithm proposed
in this paper are adopted. Five drones take off at one second
intervals. The UAVs would assemble in the form of the
circular over the airport and eventually fly out of the airport
in gable formation. The Pre-DMPC-DE algorithm is used to
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FIGURE 11. Comparison of the trajectory error of each algorithm.

TABLE 8. Model parameter.

TABLE 9. Initial kinematic parameters of UAVs.

start the reconfiguration of the multi-UAV formation and the
cruising of the target point. In the improved DE algorithm,
the initial population is 30 and the maximum number of
iterations is 300. The parameters of the DMPC are shown
in Table 8. The relevant parameters of the UAVs are shown
in Table 9. Table 8 sampling period, prediction step length,
cost coefficient and target point inmodel parameters are given
in the formula in Section III. The initial parameters of the
UAVs of Table 9 are set. The three parameters of the take-off
position refer to the east, the north and the height of the

FIGURE 12. Track diagram of the formation from departure to
reconfiguration.

ground in the north-east coordinate system, respectively, and
taking the take-off point as the origin. The relative position is
the position error of the slave position relative to the leader
position in the reconstructed formation. The desired speed
refers to the flight speed of the final mission of the UAV
formation; the maximum speed refers to the maximum flight
speed of each UAV.

Figure 12 is the 3-D and 2-D simulation results diagram of
the multi-UAV formation from the departure to the formation
reconfiguration. It can be seen from Figure 12(a) that the
UAV formation takes off from the origin and makes a circular
flying around the 300 meters diameter to the x-axis. All
UAVs form the circular assembly on the circular trajectory,
then the UAV assembly formation fly out of the circular
trajectory at 500meters to theX-axis direction. The formation
enters the reconfiguration and forming stage and flies to the
target point (5000,0). From Figure 12(b), it can be found
that when the leader UAV (UAV1) reaches the 1500 meters
at the x-axis, the UAV formation has basically completed
the formation reconfiguration task. The three UAVs have the
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same height (10 meters). For distinguish these flight paths in
the three-dimensional diagram, the altitude of the subsequent
UAVswas successively reduced by 1meter. The experimental
results show that the UAV formation correctly and accurately
complete the task of the formation take-off, the formation
reconfiguration and flying to the target location, which proves
the correctness of the two algorithms proposed in this paper.
The proposed cascade algorithm adopts the take-off mode of
circular formation in this paper, which inherits the advantages
of short takeoff distance and short flight time, reduces the
time and space consumption of UAV formation. In addition,
the reconstruction algorithm in this paper improves the calcu-
lation time in the process of UAV formation and reconstruc-
tion. Therefore, the cascade algorithm in this paper optimizes
the time and space consumption of the previous algorithm in
the process of UAV formation from take-off to formation.

VI. CONCLUSION
In this paper, the circle trajectory following assembly algo-
rithm with adaptive parameters is applied to control the
multi-UAV form the circular assembly formation. It reduces
the inter-UAV distance of the formation, reduces the com-
munication consumption and provides a new method for
the fixed-wing UAV formation with the asynchronous take-
off way. We also propose an improved DE algorithm (Pre-
DMPC-DE) based on the predictive information of DMPC
for the rapid forming of the UAV formation. Compared with
classical GA, DE, PSO, new GLPSO and HHDE algorithms,
the results show that the improved algorithm improves the
iterative rate and reduces the computation consumption with
the better convergence ability of the UAV formation. Exper-
imental results prove the feasibility of using the proposed
algorithms in the process from take-off to formation forming
task.

The cascade algorithm in this paper is suitable for sites with
few runways and can’t take off at the same time when UAV
formation flies. This is true of most drone sites today, where
the number of runways is smaller than the number of drones
in formations. The number of UAV formations in this paper
is still relatively small, and hundreds of UAV formations may
complete the task in the future. How to use circular formation
takeoff algorithm in the case of multiple aircraft taking off at
the same time, and to ensure the mutual safety of aircraft is
our next step subject to study and solve.
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