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ABSTRACT Ground-based communication facilities are at risk of being destroyed after natural disasters,
such as earthquakes, floods, tsunamis, hurricanes, fires, or terrorist attacks. Unmanned aerial vehicles (UAV)
can be used as air base stations to support user equipment (UE). UAV base station (UAV-BS) development
plays a major part in rescue operations and post-disaster reconstruction. Improving network throughput
in the UAV-BS signal coverage area and reducing deployment costs while maintaining effective commu-
nication are important issues that need to be addressed. In view of the problem, this paper demonstrates
the problem of maximizing network throughput under the constraint of UAV-BS capacity by deploying
UAV-BS. We proposed a UAV-artificial bee colony (U-ABC) algorithm to solve the problem of UAV-BS
deployment. U-ABC algorithm can calculate the optimal flight position of each UAV-BS and maximum
network throughput in the disaster area. In performance evaluation, we compared U-ABC algorithm with
genetic algorithm, Greedy-ABC algorithm, PSO algorithm, DI-PSO algorithm and PSO-GWO algorithm.
We analyzed the flight height altitude of UAV-BSs, the interference factor of UAV-BS, and the influence
of the number of UE on network throughput. Results show that the proposed method improved the overall
network throughput and achieved a high UE coverage rate under a given number of UAV-BSs.

INDEX TERMS Artificial bee colony algorithm, network throughput, post-disaster wireless communication,
UAV base station.

I. INTRODUCTION
In recent years, various types of natural and sudden disas-
ters have increased. When the ground-based communication
facilities in the disaster area are destroyed, the commu-
nication between the disaster area and the outside world
becomes challenging. The rational application of unmanned
aerial vehicles (UAV) has played a major role in post-disaster
monitoring and reconstruction. In post-disaster monitoring,
UAV can immediately register the video of forest fires on
a large scale, thereby measuring the wildfire geometry and
tree parameters [1]. UAV is easy to operate, responsive and
mobile in the communication network, and provides network
access anytime and anywhere. It uses directional antennas
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for air-to-ground and air-to-air communication on ground
targets [2], [3]. Researchers establish an emergency com-
munication network with UAV, which has an onboard com-
puter responsible for end-to-end communication, formation
control, and autonomous navigation [4]. UAV is assisted to
evaluate the efficiency of the positioning and deploy floating
relay (FR) cells in a macro cell to achieve adaptive cover-
age [5], [6]. In addition, UAV can cover the blind spots of
network signals with path planning algorithm [7]. In post-
disaster communication construction, UAV can serve as a
mobile base station in air to provide communication services
for user equipment (UE). At the same time, reducing the
overall congestion cost of network can be considered [8].

The reasons for network coverage of the disaster area by
deploying UAV-BS are as follows. First, when the disaster
occurred, most of the terrestrial communication facilities
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in the disaster area were destroyed and most areas had no
signal [9]. If emergency communication network cannot be
quickly established, the rescue and reconstruction work will
face enormous difficulties. The emergency communication
network established by UAV-BS has the advantages of fast
deployment speed, high mobility and wide coverage. There-
fore, UAV-BS is a communication tool that is very suitable for
deployment in disaster areas. Second, due to the destruction
of buildings and terrain in the disaster area, the ground obsta-
cles and terrain are complicated [10]. Damaged or collapsed
road makes the deployment of traditional emergency commu-
nication vehicles difficult. In addition, the antenna height of
the emergency communication vehicle is also limited. Thus,
large area signal coverage becomes difficult to achieve. Com-
pared with the emergency communication vehicle, the UAV-
BS is not affected by the ground conditions in the disaster
area. UAV-BS can reach the place where the emergency
communication vehicle cannot reach, greatly improving the
signal coverage of the disaster area. Therefore, for the wide
application of UAV-BS, it is an urgent task to research how to
deployUAV-BS in disaster areas. The deployment of UAV-BS
is usually a non-deterministic polynomial-time (NP)-hard
problem. In addition, issues, such as improving network
throughput, UE coverage, and saving deployment costs, need
to be addressed.

We propose a UAV-BS deployment method based on
UAV-artificial bee colony algorithm (ABC) (U-ABC) to
deploy UAV base station (UAV-BS) after disasters. Under
certain conditions of UAV-BS deployments, the flight loca-
tion of the UAV-BS is deployed to improve the network
throughput in the disaster area. This paper has the following
contributions:

1) We propose a post-disaster UAV-BS deployment
model. The model calculates the network throughput
and coverage of the covered UEs according to the
Euclidean distance between the UAV-BS and the UE.
The signal-to-interference-plus-noise ratio (SINR) of
the covered UE is greater than a specified threshold,
wherein UEs are subject to the signal interference
of multiple UAV-BSs and the constraint of UAV-BS
capacity.

2) We propose a heuristic U-ABC to maximize network
throughput. The algorithm designs a new fitness func-
tion and uses the three-dimensional (3D) coordinates of
a group of UAV-BSs as the solution of U-ABC. U-ABC
effectively solves the problem of network throughput
optimization and determines the optimal flight position
of the UAV-BS.

The rest of this work is organized as follows. Section II
reviews the existing research on UAV deployment. Section III
proposes the UAV-BS deployment model. Section IV
describes U-ABC. Section V shows the parameter settings of
performance evaluation and discusses the results to evaluate
our proposed algorithm. Finally, Section VI summarizes this
work.

II. RELATED WORK
The UAV can act as a mobile air base station to provide
wireless network coverage for UEs. Many scholars have
conducted extensive research on the deployment of UAV-BS.
Considerable number of research on UAV-BS deployments
aim to increase signal coverage and network throughput.
Savkin and Huang [11] proposed a distributed algorithm by
investigating the problem of keeping the UAV-BS connected
to the fixed base station while minimizing the average dis-
tance between UAV-BS and UE. Lyu et al. [12] proposed
a new cyclic multiple access scheme, which was based
on the location of the UAV-BS, to schedule the UAV for
the maximization of the minimum throughput in a cycli-
cally time-division manner. Lai et al. [13] proposed a den-
sity aware placement algorithm to maximize the number
of restricted users. This algorithm is limited by the mini-
mum data rate required by each user. Wu and Zhang [14]
investigated a UAV orthogonal frequency division multiple
access (OFDMA) network to maximize the minimum aver-
age network throughput for all users. Rupasinghe et al. [15]
proposed a method to identify the optimal hovering position
of a UAV-BS equipped with multiple antenna arrays and
discussed the problem on maximizing the signal-to-noise
ratio (SNR) at the ground node. Kalantari et al. [16] intro-
duced network- and user-centric approaches to examine the
effects of different types of wireless backhaul on the number
of service users. They found the best 3D backhaul-aware
location for UAV-BS, which enhanced network coverage
and regional capacity. Mozaffari et al. [17] first derived the
downlink coverage probability of the UAV-BS as a function.
Subsequently, they used circular filling theory to determine
the 3D position of the UAV-BS. Wu et al. [18] proposed
an efficient iterative algorithm to maximize the minimum
throughput of all terrestrial users in downlink communica-
tions by applying block coordinate descent and continuous
convex optimization techniques. Xie et al. [19] first proposed
an effective continuous hovering and flight path design. Sub-
sequently, they presented local optimal solutions by applying
alternating optimization and continuous convex optimization
techniques. Chen and Gesbert [20] developed an algorithm
based on fine-grained line of site (LOS) information to deter-
mine the optimal location of the drone to maximize end-
to-end throughput. Kovalchukov et al. [21] constructed a
new 3D model of drone-based millimeter wave communi-
cation to improve network coverage and regional capacity.
Dong et al. [22] studied the deployment density of optimized
small aircraft (DSC) and proposed an algorithm to max-
imize the coverage of UAV-BS. Chen et al. [23] proposed
two networking strategies to improve network efficiency and
maximize communication performance by using a greedy
algorithm to determine the optimal hover point for UAV-BS in
each region. Zhao et al. [24] proposed two algorithms based
on whether knowing the UE location on the ground is nec-
essary in determining the on-demand coverage of terrestrial
UE. Huang and Savkin [25] proposed a natural distribution
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optimization model and developed a maximization algorithm
to determine the local optimal solutions to maximize cover-
age and reduce interference effects. Sharma et al. [26] inves-
tigated the UAV allocation problem based on user demand in
the geographical area of high traffic demand. They developed
a neural-based cost function approach to improve coverage
and increase capacity. Azari et al. [27] proposed a general
framework for the analysis and optimization of air-to-ground
(A2G) systems. The optimal altitude of the drone is obtained
for maximum coverage by ensuring the minimum power
outage performance in the area. Turgut and Gursoy [28] pro-
vided an analysis framework for the SINR coverage proba-
bility of UAV-assisted cellular networks with clustered UE.
Liu et al. [29] used deep reinforcement learning (DRL) for
UAV control and proposed a novel and energy efficient
DRL-based approach to enhance the coverage of communi-
cation networks.

Studies also explored the fairness of UAV-BS coverage.
Xi et al. [30] investigated the network selection problem
of integrated cellular and UAV networks by proposing an
efficient and fair network selection (RSG-EF) algorithm
based on repetitive random games to maximize the pro-
portional fairness function. The deployment of UAV-BS is
usually a NP-hard problem. Thus, the heuristic algorithm
can solve the UAV-BS deployment problem by providing
a feasible solution to the combinatorial optimization prob-
lem to be solved under acceptable spatiotemporal compu-
tation. Shi et al. [31] proposed a UAV-BS-assisted radio
access network architecture. They maximized user coverage
while maintaining a given number of UAV-BSs by iterating
PSO (DI-PSO) algorithm for each UAV-BS. They maintained
the communication quality between UAV-BS and terrestrial
base stations. However, the scenario of the above paper is
not a post-disaster scenario. Chen et al. [32] proposed an
improved multi-population genetic algorithm for horizon-
tal size UAV-BS layout problems to maximize the num-
ber of users covered. Zhang et al. [33] used UAV-BS with
in-band full-duplex in cellular networks to improve network
throughput. They proposed two heuristic algorithms that are
dynamic-DSP and fixed-DSP to solve the entire problem.
Heuristic algorithms can also be used for the optimization
of heterogeneous cellular networks. Lu et al. [34] proposed
a simple greedy algorithm, a submodule greedy algorithm,
and a particle swarm optimization algorithm based on the
Femto-BS selection algorithm to select the best Femto-BS
to maximize the average number of connected UEs in a
given time. Chen et al. [35] developed a heuristic multicast
delivery tree algorithm to optimize the delay performance and
transmission cost of the video transport network.

This paper proposed a UAV-BS deployment method based
on U-ABC algorithm. First, we proposed a post-disaster
UAV-BS deployment model. Second, we proposed the
U-ABC algorithm, where the 3D coordinates of a group of
UAV-BSs were used as the solution of the U-ABC algorithm
to calculate the maximum network throughput and obtain
each UAV-BS’s best flight location.

FIGURE 1. Schematic of the unified UAV-BS flight altitude deployment.

FIGURE 2. Schematic of the variable UAV-BS flight altitude deployment.

III. SYSTEM MODEL
We propose a post-disaster UAV-BS deployment model in
this section to solve the deployment problem of UAV-BS.
We analyze the characteristics of UAV-BS and demonstrate
the problem.

A. CHARACTERISTIC ANALYSIS OF UAV-BS
The UAV-BS’s unified flight altitude and variable flight alti-
tude deployment diagrams are compared in Figures 1 and 2,
where the blue area represents the signal coverage of the
UAV-BS. The SINR in the area is not less than the thresh-
old. The out-of-area indicates that the SINR is less than the
threshold. Cloud computing server provides scalable com-
puting services that are easier and more efficient to manage
than physical servers. The cloud computing server receives
the data of each UAV-BS and processes the data by using
the method proposed therein to schedule the flight location
of each UAV-BS. The B2U link is a communication con-
nection between the UAV-BS and the UE. The B2S link is
a communication connection between the UAV-BS and the
cloud computing server. We assume that the capacity of each
UAV-BS can accommodate up to two UE network through-
put. In Figures 1 and 2, the UAV-BS heights hold a reference
from experimental result in Section V. Figure 1 shows that
the UAV-BS1 cannot establish normal communication with
UE1 and UE4 because its capacity is limited and UE1 and
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UE4 are farther away from UAV-BS1 than UE2 and UE3.
In Figure 2, the heights of UAV-BS1 and UAV-BS2 are
increased to 90 m, and the coverage decreased, and they
covered UE1, UE2, UE3, and UE4. Meanwhile, the flight
altitude of UAV-BS3 is increased to 60 m, and the coverage
increased, thereby covering UE5 and UE6. The following
conclusions can be drawn. First, as the flight altitude of
UAV-BS increases, the transmission loss increases. When
the transmission loss is greater than the received power,
the coverage becomes larger first and then becomes smaller.
Second, the method of variable UAV-BS flight altitude covers
more UEs than the method of unified UAV-BS flight altitude
in increasing network throughput. The characteristics of the
UAV-BS we derived are as follows:

• Flight altitude of UAV-BS: The horizontal flight position
of the UAV-BS shall not exceed the specified area, and
the flight altitude should be between 20 m and 120 m.
UAV-BS’s variable flight altitude allows improved cov-
erage of the UE to increase network throughput.

• Coverage of UAV-BS: The signal coverage of UAV-BS
increases first, and then decreases with the increase in
UAV-BS flight altitude. Therefore, coverage and trans-
mission loss increase with UAV-BS flight altitude. If the
transmission loss is greater than the received power, then
the coverage will be reduced.

B. PROBLEM FORMULATION
The post-disaster UAV-BS deployment model is summarized
into three steps. First, the network throughput of each UE is
calculated. Second, constraints are imposed on the through-
put of the UAV-BS. Third, the overall network throughput and
UE coverage in the disaster area were calculated. The detailed
steps are explained in the next paragraph.

In the first step, we establishe a 3D scene with a specified
size and number of UEs. Afterwards, we randomly generate
the coordinates of several UAV-BSs in the 3D scene and
calculate the Euclidean distance between UAV-BSs and UEs.
The SINR of each UE and the transmission power of the
UAV-BS are also calculated on the basis of the Euclidean
distance. Finally, the respective network throughput of the
SINR of UEs that are not lower than the set threshold are
calculated. In the second step, the network throughput of
each UE covered by the UAV-BS is accumulated, and its
SINR is greater than the set threshold. Then, we determine
whether the network throughput of each UAV-BS is greater
than the capacity of the UAV-BS. If the network throughput
of the UAV-BS is greater than the capacity of the UAV-BS,
the UAV-BS is disconnected from one or more UEs so that
the UAV-BS does not exceed its capacity. When the UAV-BS
capacity is not exceeded, the network throughput of the
UAV-BS is maximized. In the final step, the network through-
put of all the UAV-BSs that meet the capacity constraints is
added to calculate the network throughput in the disaster area.

The received power, SINR, UE network throughput,
UAV-BS network throughput, and network throughput in

the proposed UAV-BS deployment model are introduced as
follows.

Received Power: The received power is represented by
Pr,ij, which refers to the power received by the UE i from
the UAV-BS j.

Pr,ij = Pt + Lij, (1)

where Pt is the transmission power of UAV-BS. Lij is the
transmission loss between UAV-BS j and UE i. The average
of the upper limit Lu,ij of Lij and the lower limit Ll,ij of Lij is
computed as follows:

Lu,ij = Lj + 20+

{
25 lg(dij/Rj), if dij ≥ Rj
40 lg(dij/Rj), if dij ≥ Rj

, (2)

Ll,ij = Lj +

{
20 lg(dij/Rj), if dij ≥ Rj
40 lg(dij/Rj), if dij ≥ Rj

, (3)

Lj = |20 lg(λ2/8πhjhp)|, (4)

In Formulas (2) and (3), dij is the Euclidean distance of
the UAV-BS j and the UE i. (xj, yj, hj) is the coordinates of
the UAV-BS j and (xi, yi, hp) is the coordinates of the UE i.
In formula (4), Lj is the free space path loss of the UAV-BS j.

dij =
√
(xi − xj)2 + (yi − yj)2 + (hp − hj)2, (5)

where hj is the flight altitude of the UAV-BS j above the
ground, and hp is the height of the UE above the ground.

λ =
c
f
, (6)

where λ is a wavelength, c is a wave speed and f is a
frequency.

Rj ≈
4πhjhp
λ

, (7)

In Formulas (6) and (7), Rj is a threshold for measuring the
transmission loss radius of the UAV-BS j.
SINR: SINRin refers to the ratio of the received power and

interference power plus channel noise of the UE i under the
coverage of the UAV-BS n.

SINRin =
Pr,in
I + N

, (8)

where Pr,in is the maximum received power of all UAV-BSs
received by the UE i. We will call the UAV-BS received by
UE i the maximum received power UAV-BSn. N is a constant
channel noise. I is the interference power, which is the sum
of the received powers received by UE from other m − 1
UAV-BSs.

I =
m∑
j=1

Pr,ij − Pr,in, (9)

Network Throughput: The network throughput of UE
refers to the maximum data rate that are actually transmitted
by UE i and the UAV-BS n during network transmission.
Channel capacity is the maximum information rate that the
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channel can transmit without error. A specific single channel
is used for the communication of UE and UAV-BS. The net-
work throughput of each UE is equal to the channel capacity
of each UE. Shannon formula is used to calculate the channel
capacity of each UE:

Cin = B ∗ log2(1+ SINRin), (10)

whereCin is the channel capacity of the UE i to the UAV-BS n,
and B is the channel bandwidth in units of Hz.
The formula for calculating the network throughput of

UAV-BS can be defined as follows:

Tj =
p∑
i=1

Cij

s.t. Tj ≤ Tmax , (11)

where Tj is the network throughput of the UAV-BS j. The
network throughput of each UAV-BS is equal to the sum of
the network throughput of all UEs covered by it and they,
which are not lower than the SINR threshold. If the network
throughput of the UAV-BS is greater than its capacity Tmax ,
then UE is lightly disconnected from the UAV-BS to make
network throughput and UE coverage larger without exceed-
ing their own capacity Tmax . The network throughput Total
in the disaster area is the sum of the network throughput of
all UAV-BSs.

Total =
m∑
j=1

Tj, (12)

The 3D coordinates of UAV-BS are used as the solution of
the U-ABC algorithm, which aim to calculate the maximum
network throughput.

max
xj,yj,hj

m∑
j=1

Tj, (13)

The position P of the corresponding m−1 UAV-BS can be
obtained as follows:

P = argmax
xj,yj,hj

m∑
j=1

Tj, (14)

IV. SOLUTION
A. ABC ALGORITHM
ABC algorithm is a swarm intelligence optimization algo-
rithm [36], [37], in which the bees’ collecting process is
simulated, and the bees are divided into employed, on-looker,
and scout bees. These bees have two basic behavior, namely,
search for honey sources and give up honey sources. All kinds
of bees spread and share honey information through different
honey collecting behavior. The number of honey sources is
equal to half of the total number of bees. The number of
employed and on-looker bees is half of the total number of
bees. Employed bees tend to look for high-quality honey
sources, whereas on-looker bees find a better honey source
according to the quality of the honey source. If a honey source

has not been replaced by a better honey source for a long
time, then the corresponding on-looker bee will give up the
honey source and become a scout bee. Thus, each honey
source represents a solution to the optimization problem. The
process of bees that search for honey sources is the model
solving process. The use of three different kinds of bees has
various effects. Employed bees are used to maintain good
solutions, on-looker bees are used to improve convergence,
and scout bees are used to enhance the ability to removing
local optimums.

B. U-ABC ALGORITHM
U-ABC is used to solve the optimization problem defined
in Formula (13). The U-ABC algorithm follows the same
general framework as the original ABC algorithm. However,
we redesign the fitness function and determine a better solu-
tion to improve the network throughput in the disaster area.
fitness(Si) can be written as follows:

fitness(Si) =
m∑
j=1

Tj, (15)

Formula (15) is a new fitness function that represents the
sum of the network throughput of m UAV-BS in solution S,
where i = {1, 2, . . . ,U}. The solution with larger fitness
value is more optimized.

1) INITIALIZATION PHASE
First, the U-ABC generates U initial solution sets S. Each
initial solution Si is defined as Si = {s1i , s

2
i , . . . , s

3m
i }, where

i = {1, 2, . . . ,U}. (sji, s
2j
i , s

3j
i ) represents the position of

the UAV-BS jth, where j ∈ {1, 2, . . . ,m}, which contains
the position of m UAV-BS. The formula for each UAV-BS
position can be written as follows:

sdji = (ubd − lbd ) ∗ rand − lbd , (16)

where d = {1, 2, 3} is the dimension. rand is a random num-
ber between [0, 1]. ub and lb are the upper and lower limits of
the solution space, respectively. The initial solution is brought
into the objective function. Thus, the current optimal solution
is calculated and recorded.

2) EMPLOYED BEE STAGE
Employed bees search for a better solution around the current
solution. They search for a new candidate solution nri near the
current solution set and calculate its fitness value. The search
formula can be written as follows:

nri = sri + ϕ
r
i ∗ (s

r
i − s

r
k ), (17)

where r ∈ (1, 2, . . . , 3m) is the index of the randomly
selected current solution. k is the index of the randomly
selected candidate solution, and k 6= i. ϕri is a random number
between [−1, 1]. If the fitness value of the candidate solution
is greater than the current solution, then the candidate solution
will replace the current solution.
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3) ON-LOOKER BEE STAGE
The probability of the bee selecting the solution is propor-
tional to the quality of the solution, thereby further optimizing
the solution found by each employed bee. Each on-looker bee
uses the roulette method to select a new solution. The greater
the fitness value of the solution, the greater the probability of
an on-looker bee selects the solution.

pi = 0.9 ∗
fitness(Si)

maxfitness(S)
+ 0.1, (18)

where maxfitness(S) is the maximum fitness value of the
solution set S. A random number randi between [0, 1] is
compared with pi. If randi < pi, then the observation bee
selects an employed bee. Formula (17) is used to search for
a new candidate solution near the current solution and to
calculate its fitness value. If the fitness value of the candidate
solution is greater than the current solution, then the current
solution is replaced with the candidate solution.

4) SCOUT BEE STAGE
If a solution is not improved in a predetermined number of
iterations, then the corresponding employed bee will give up
the solution and turn into a scout bee using Formula (16) to
re-find the new solution. The algorithm stops when the num-
ber of iterations reaches the predefined maximum number of
iterations. Robustness increases with the number of runs.

Algorithm 1 U-ABC Algorithm
Require: number of UAVs m in a solution, number of solu-

tions U , solution set S, maximum number of iterations
maxiteration

Ensure: find out the optimal solution Sbest
1: Select m × U UAV-BSs randomly to initialize U solu-

tions;
2: Calculate these fitness values of U solutions with for-

mula (15) and record the best solution Sbest ;
3: iteration = 0
4: Use EmployedBee() to search for a better solution ni;
5: UseOn-lookerBee() to search for a better solution ni with

probability;
6: Use ScoutBee() to replace an unmodified solution that

more than limit iteration with a new solution;
7: Calculate these fitness values of U solutions with for-

mula (15) and record the best solution Sbest ;
8: iteration = iteration+ 1
9: Repeat step 4-step 9 until iteration = maxiteration;

In Algorithm 1, three functions, namely, Employedbee(),
On-lookerbee() and Scoutbee(), are used. Employedbee()
generates a new candidate solution near the current solution
using Formula (17) and then calculates its fitness value. If the
fitness value of the candidate solution is greater than the
fitness value of the current solution, then the current solution
will be replaced by the candidate solution. On-lookerbee()
calculates the selection probability pi using Formula (18) to
decide whether to generate a new candidate solution near

TABLE 1. Experimental parameter settings.

the current solution. The greater the fitness value of the cur-
rent solution, the greater the probability of generating a new
candidate solution. If a new candidate solution is generated,
then its fitness value will be calculated. If the fitness value of
the candidate solution is greater than the fitness value of the
current solution, then the current solution will be replaced by
the candidate solution. Employedbee() abandons a solution
that cannot be improved when iterations reach their limit.
Then, a new solution is generated to replace the abandoned
solution using Formula (16).

V. PERFORMANCE EVALUATION
The performance of the algorithm is evaluated through per-
formance evaluation. The experimental parameter settings are
shown in Table 1. We compare UAV-BS deployment method
based on U-ABC algorithm, genetic algorithm, Greedy-ABC
algorithm, Particle Swarm Optimization (PSO) algorithm,
DI-PSO algorithm and Particle Swarm Optimization-Grey
Wolf Optimizer (PSO-GWO) algorithm. The impacts of
UAV-BS flight altitude and interference on network through-
put are also analyzed. The simulation results show that the
proposed method improved the overall network throughput in
the UAV-BS signal coverage area and achieved a high ground
UE coverage rate under the condition of deploying a given
number of UAV-BSs.

A. COMPARISON OF U-ABC ALGORITHM, GENETIC
ALGORITHM, GREEDY-ABC ALGORITHM, PSO
ALGORITHM, DI-PSO ALGORITHM AND
PSO-GWO ALGORITHM
First, we briefly introduce these algorithms. Genetic algo-
rithm is a computational model that simulates the natural
evolution of Darwin’s biological evolution theory and the
biological evolution process of genetic mechanism. It is a
method to search for optimal solutions by simulating natural
evolutionary processes. Greedy-ABC algorithm is a hybrid
algorithm combining greedy algorithm and U-ABC algo-
rithm. The algorithm finds the local optimal solution by
U-ABC algorithm in each step. PSO algorithm simulates
birds in a flock by designing a massless particle. The optimal
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FIGURE 3. Comparison of running time of six algorithms.

solution for each particle to search separately is called the
individual extremum, and the optimal individual extremum in
the particle swarm is taken as the current global optimal solu-
tion. DI-PSO algorithm uses PSO algorithm independently on
each UAV-BS. As each UAV-BS is deployed independently,
the spatial ergodicity of the DI-PSO increases, which leads
to a higher probability of finding a global optimum [31].
PSO-GWO algorithm is a hybrid optimization algorithm that
combines the functions of PSO algorithm and GWO algo-
rithm. In Figure 3, the running time of each execution of
the UAV-BS deployment methods are compared on the basis
of U-ABC algorithm, genetic algorithm, Greedy-ABC algo-
rithm, PSO algorithm, DI-PSO algorithm and PSO-GWO
algorithm. The running time of DI-PSO algorithm is signifi-
cantly higher than five other algorithms, and the longest time
has reached 580 seconds. Genetic algorithm and PSO-GWO
algorithm are slightly faster than U-ABC algorithm.

In Figure 4, the UAV-BS deployment methods are com-
pared on the basis of U-ABC algorithm, genetic algorithm,
Greedy-ABC algorithm, PSO algorithm, DI-PSO algorithm
and PSO-GWO algorithm under three common distribu-
tions. In the random distribution, the interference signal
increases with the number of UAV-BS. The network through-
put that corresponds to U-ABC algorithm, genetic algorithm,
PSO algorithm and PSO-GWO algorithm first increases and
then decreases. The network throughput that corresponds to

Greedy-ABC algorithm and DI-PSO algorithm first increases
and maintains a steady trend. When the number of UAV-BS
is 5 to 18, the U-ABC algorithm has an advantage. The
maximum network throughput is obtained when the number
of UAV-BS is 10. In the normal distribution, the network
throughput of U-ABC algorithm is significantly higher than
five other algorithms after the UAV-BS number becomes
greater than 2. The number of UAV-BSs in U-ABC algorithm
when the maximum network throughput is obtained is 10.
In the exponential distribution, the network throughput of six
algorithms is almost unchanged after the number of UAV-BS
becomes greater than 6. The network throughput in U-ABC
algorithm is approximately 50 to 400 Mbps higher than
five other algorithms. Therefore, U-ABC algorithm is more
advantageous than the five other algorithms in optimizing the
network throughput.

B. IMPACT OF UAV-BS FLIGHT ALTITUDE
ON NETWORK THROUGHPUT
In Figure 5, two UAV-BS deployment methods are compared
under three UE distributions. The first uses the UAV-BS
flight altitude as a variable of U-ABC algorithm, which is the
proposed method. The second uses UAV-BS as a constant,
and all UAV-BSs have the same flight altitude. The coverage
of each UAV-BS in the first algorithm is not fixed. Thus,
the UE can be covered better according to the distribution of
the UE, thereby greatly improving the network throughput
in the disaster area. In a random distribution, the network
throughput of our method is higher than the second method.
In the normal and exponential distributions, our method has
minimal advantage due to the uneven distribution of UEs and
the accumulation of UAV-BS in high-density areas, thereby
causing the change in UAV-BS flight altitude to slightly affect
network throughput. Therefore, UAV-BS flight altitude can
be used as a variable of U-ABC algorithm to obtain greater
network throughput.

C. IMPACT OF UAV-BS INTERFERENCE ON
NETWORK THROUGHPUT
In Figure 6, two methods are that U-ABC algorithm con-
sidering UAV-BS interference and U-ABC algorithm not

FIGURE 4. Comparison of network throughput of six algorithms.
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FIGURE 5. Comparison of network throughput of UAV-BS at different flight altitudes.

FIGURE 6. Comparison of network throughput about UAV-BS interference.

FIGURE 7. Comparison of UE coverage ratios for different UEs.

considering UAV-BS interference under three UE distribu-
tions. In the random distribution, the network throughput of
both methods increases first and then decreases. The overall
throughput of considering the interference is higher than the
case without considering the interference because the flight
position is unreasonable without considering the interference.
Under normal and exponential distributions, the method that
does not consider interference is subject to the UAV-BS
capacity constraint. The network throughput first increases
briefly and then decreases to zero because the UAV-BS is con-
centrated in the high-density areas of the two distributions,

and the interference signal received by the user is extremely
strong. Therefore, the method that consider UAV-BS interfer-
ence is more reasonable than the flight position of UAV-BS
under the method of not considering UAV-BS interference.

D. IMPACT OF THE NUMBER OF UES ON COVERAGE
In Figure 7, the coverage of different numbers of UEs are
compared under the three UE distributions. According to the
test requirements of China Mobile Communications Group
Company Limited, 3 db is the extreme difference threshold
of SINR. Thus, we assume that when SINR ≥ 3db, the UE is
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covered by the signal of the UAV-BS. When SINR < 3db,
the UE is not covered by the signal of the UAV-BS. The
greater the number of UAV-BS, the stronger the interference
signal received by each UAV-BS because of the limitation of
UAV-BS capacity and the influence of interference signals.
Therefore, as the number of UEs increases, the UE coverage
rate gradually decreases. The coverage of the three distributed
UEs can reach more than 90% when the number of UEs
is 100. Therefore, our method can cover most UEs under
the three distributions when the number of UEs is approx-
imately 100. Therefore, the fewer the UE, the higher the
coverage.

VI. CONCLUSION AND FUTURE WORK
In the study of post-disaster UAV-BS deployment methods,
a UAV-BS deployment method is proposed on the basis of
U-ABC algorithm to improve the network throughput and
the coverage of terrestrial UEs in the disaster area. First,
a UAV-BS deployment model is established. Then, the model
is applied to the U-ABC. The 3D coordinates of the UAV-BS
are used as the solution of the U-ABC algorithm. Finally,
we found the best UAV-BS flight position. The network
throughput is improved while achieving high ground UE cov-
erage. The results show that the proposedmethod has remark-
able advantages compared with other methods. In future
research, the UAV-BS energy consumption, as well as terrain,
construction, and obstacles, can be considered.

REFERENCES
[1] G. Zhou, C. Li, and P. Cheng, ‘‘Unmanned aerial vehicle (UAV) real-time

video registration for forest fire monitoring,’’ in Proc. IEEE Int. Geosci.
Remote Sens. Symp., vol. 3, Jul. 2005, pp. 1803–1806.

[2] Y. Zhou, N. Cheng, N. Lu, and X. S. Shen, ‘‘Multi-UAV-aided networks:
Aerial-ground cooperative vehicular networking architecture,’’ IEEE Veh.
Technol. Mag., vol. 10, no. 4, pp. 36–44, Dec. 2015.

[3] C. Caillouet and T. Razafindralambo, ‘‘Efficient deployment of connected
unmanned aerial vehicles for optimal target coverage,’’ in Proc. Global Inf.
Infrastruct. Netw. Symp. (GIIS), Oct. 2017, pp. 1–8.

[4] G. Tuna, T. V. Mumcu, and K. Gulez, ‘‘Design strategies of unmanned
aerial vehicle-aided communication for disaster recovery,’’ in Proc. High
Capacity Opt. Netw. Emerg./Enabling Technol., Dec. 2012, pp. 115–119.

[5] Y. Li and L. Cai, ‘‘UAV-assisted dynamic coverage in a heterogeneous
cellular system,’’ IEEE Netw., vol. 31, no. 4, pp. 56–61, Jul./Aug. 2017.

[6] G. Tuna, T. V.Mumcu, K. Gulez, V. C. Gungor, and H. Erturk, ‘‘Unmanned
aerial vehicle-aided wireless sensor network deployment system for post-
disaster monitoring,’’ in Proc. 8th Int. Conf. Emerg. Intell. Comput. Tech-
nol. Appl., 2012, pp. 298–305.

[7] S.-Y. Park, C. S. Shin, D. Jeong, and H. Lee, ‘‘DroneNetX: Network recon-
struction through connectivity probing and relay deployment by multiple
UAVs in ad hoc networks,’’ IEEE Trans. Veh. Technol., vol. 67, no. 11,
pp. 11192–11207, Nov. 2018.

[8] Y. Liu, D. Lu, G. Zhang, J. Tian, and W. Xu, ‘‘Q-learning based content
placement method for dynamic cloud content delivery networks,’’ IEEE
Access, vol. 7, pp. 66384–66394, 2019.

[9] T. Jie, H. Zhang, D. Wu, and D. Yuan, ‘‘QoS-constrained medium access
probability optimization in wireless interference-limited networks,’’ IEEE
Trans. Commun., vol. 66, no. 3, pp. 1064–1077, Mar. 2018.

[10] Z. Yao, G. Zhang, D. Lu, and H. Liu, ‘‘Data-driven crowd evacuation:
A reinforcement learning method,’’ Neurocomputing, vol. 366,
pp. 314–327, Nov. 2019.

[11] A. V. Savkin and H. Huang, ‘‘Deployment of unmanned aerial vehicle base
stations for optimal quality of coverage,’’ IEEE Wireless Commun. Lett.,
vol. 8, no. 1, pp. 321–324, Feb. 2019.

[12] J. Lyu, Y. Zeng, and R. Zhang, ‘‘Cyclical multiple access in UAV-aided
communications: A throughput-delay tradeoff,’’ IEEE Wireless Commun.
Lett., vol. 5, no. 6, pp. 600–603, Dec. 2016.

[13] C.-C. Lai, C.-T. Chen, and L.-C. Wang, ‘‘On-demand density-aware UAV
base station 3D placement for arbitrarily distributed users with guaranteed
data rates,’’ IEEE Wireless Commun. Lett., vol. 8, no. 3, pp. 913–916,
Jun. 2019.

[14] Q.Wu and R. Zhang, ‘‘Common throughput maximization in UAV-enabled
OFDMA systems with delay consideration,’’ IEEE Trans. Commun.,
vol. 66, no. 12, pp. 6614–6627, Dec. 2018.

[15] N. Rupasinghe, A. S. Ibrahim, and I. Guvenc, ‘‘Optimum hovering loca-
tions with angular domain user separation for cooperative UAV networks,’’
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1–6.

[16] E. Kalantari, M. Z. Shakir, H. Yanikomeroglu, and A. Yongacoglu,
‘‘Backhaul-aware robust 3D drone placement in 5G+ wireless net-
works,’’ in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops),
May 2017, pp. 109–114.

[17] M.Mozaffari, W. Saad, M. Bennis, andM. Debbah, ‘‘Efficient deployment
of multiple unmanned aerial vehicles for optimal wireless coverage,’’ IEEE
Commun. Lett., vol. 20, no. 8, pp. 1647–1650, Aug. 2016.

[18] Q. Wu, Y. Zeng, and R. Zhang, ‘‘Joint trajectory and communication
design for multi-UAV enabled wireless networks,’’ IEEE Trans. Wireless
Commun., vol. 17, no. 3, pp. 2109–2121, Mar. 2018.

[19] L. Xie, J. Xu, and R. Zhang, ‘‘Throughput maximization for UAV-enabled
wireless powered communication networks,’’ IEEE Internet Things J.,
vol. 6, no. 2, pp. 1690–1703, Apr. 2019.

[20] J. Chen and D. Gesbert, ‘‘Optimal positioning of flying relays for wireless
networks: A LOS map approach,’’ in Proc. IEEE Int. Conf. Commun.
(ICC), May 2017, pp. 1–6.

[21] R. Kovalchukov, D. Moltchanov, A. Samuylov, A. Ometov, S. Andreev,
Y. Koucheryavy, and K. Samouylov, ‘‘Analyzing effects of directional-
ity and random heights in drone-based mmWave communication,’’ IEEE
Trans. Veh. Technol., vol. 67, no. 10, pp. 10064–10069, Oct. 2018.

[22] C. Dong, J. Xie, H. Dai, Q.Wu, Z. Qin, and Z. Feng, ‘‘Optimal deployment
density for maximum coverage of drone small cells,’’ China Commun.,
vol. 15, no. 5, pp. 25–40, May 2018.

[23] H. Chen, D. Li, Y. Wang, and F. Yin, ‘‘UAV hovering strategy based
on a wirelessly powered communication network,’’ IEEE Access, vol. 7,
pp. 3194–3205, 2019.

[24] H. Zhao, H. Wang, W. Wu, and J. Wei, ‘‘Deployment algorithms for
UAV airborne networks toward on-demand coverage,’’ IEEE J. Sel. Areas
Commun., vol. 36, no. 9, pp. 2015–2031, Sep. 2018.

[25] H. Huang and A. V. Savkin, ‘‘A method for optimized deployment of
unmanned aerial vehicles for maximum coverage and minimum interfer-
ence in cellular networks,’’ IEEE Trans. Ind. Informat., vol. 15, no. 5,
pp. 2638–2647, May 2018.

[26] V. Sharma, M. Bennis, and R. Kumar, ‘‘UAV-assisted heterogeneous net-
works for capacity enhancement,’’ IEEE Commun. Lett., vol. 20, no. 6,
pp. 1207–1210, Jun. 2016.

[27] M. M. Azari, F. Rosas, K.-C. Chen, and S. Pollin, ‘‘Ultra reliable UAV
communication using altitude and cooperation diversity,’’ IEEE Trans.
Commun., vol. 66, no. 1, pp. 330–344, Jan. 2018.

[28] E. Turgut and M. C. Gursoy, ‘‘Downlink analysis in unmanned aerial
vehicle (UAV) assisted cellular networks with clustered users,’’ IEEE
Access, vol. 6, pp. 36313–36324, 2018.

[29] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, ‘‘Energy-efficient UAV
control for effective and fair communication coverage: A deep reinforce-
ment learning approach,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp.
2059–2070, Sep. 2018.

[30] X. Xi, X. Cao, P. Yang, Z. Xiao, and D. Wu, ‘‘Efficient and fair network
selection for integrated cellular and drone-cell networks,’’ IEEE Trans.
Veh. Technol., vol. 68, no. 1, pp. 923–937, Jan. 2018.

[31] W. Shi, J. Li, W. Xu, H. Zhou, N. Zhang, S. Zhang, and X. Shen,
‘‘Multiple drone-cell deployment analyses and optimization in drone
assisted radio access networks,’’ IEEE Access, vol. 6, pp. 12518–12529,
2018.

[32] Y. Chen, N. Li, C.Wang,W. Xie, and J. Xv, ‘‘A 3D placement of unmanned
aerial vehicle base station based on multi-population genetic algorithm for
maximizing users with different QoS requirements,’’ in Proc. IEEE 18th
Int. Conf. Commun. Technol. (ICCT), Oct. 2018, pp. 967–972.

[33] L. Zhang, Q. Fan, and N. Ansari, ‘‘3-D drone-base-station placement with
in-band full-duplex communications,’’ IEEE Commun. Lett., vol. 22, no. 9,
pp. 1902–1905, Sep. 2018.

VOLUME 7, 2019 168335



J. Li et al.: Post-Disaster UAV Base Station Deployment Method Based on ABC Algorithm

[34] D. Lu, X. Huang, G. Zhang, X. Zheng, and H. Liu, ‘‘Trusted device-
to-device based heterogeneous cellular networks: A new framework for
connectivity optimization,’’ IEEE Trans. Veh. Technol., vol. 67, no. 11,
pp. 11219–11233, Nov. 2018.

[35] J. Chen, D. Lu, G. Zhang, J. Qiao, P. Liu, and R. Han, ‘‘Cost opti-
mization for the coupled video delivery networks,’’ IEEE Access, vol. 7,
pp. 79136–79146, 2019.

[36] G. Zhang, D. Lu, and H. Liu, ‘‘Strategies to utilize the positive emotional
contagion optimally in crowd evacuation,’’ IEEE Trans. Affect. Comput.,
to be published, doi: 10.1109/TAFFC.2018.2836462.

[37] H. Liu, B. Xu, D. Lu, and G. Zhang, ‘‘A path planning approach for crowd
evacuation in buildings based on improved artificial bee colony algorithm,’’
Appl. Soft Comput., vol. 68, pp. 360–376, Jul. 2018.

JIALIUYUAN LI is currently pursuing the M.S.
degree with the School of Information Science and
Engineering, Shandong Normal University, Jinan,
China. His research interests include heteroge-
neous networks and UAV deployment of wireless
communication networks.

DIANJIE LU received the Ph.D. degree in com-
puter science from the Institute of Comput-
ing Technology, Chinese Academy of Science,
Beijing, China, in 2012. He is currently an Asso-
ciate Professor with the School of Information
Science and Engineering, Shandong Normal Uni-
versity, Jinan, China. His research interests include
the cognitive Internet of Things, heterogeneous
cellular networks, and cloud computing.

GUIJUAN ZHANG received the Ph.D. degree
in computer science from the Institute of Com-
puting Technology, Chinese Academy of Sci-
ence, Beijing, China, in 2011. She is currently an
Associate Professor with the School of Informa-
tion Science and Engineering, Shandong Normal
University, Jinan, China. Her research interests
include distributed computing and computational
intelligence.

JIE TIAN received the Ph.D. degree in communi-
cation and information systems from the School of
Information Science and Engineering, Shandong
University, China, in 2016. She is currently a Lec-
turer with the School of Information Science and
Engineering, Shandong Normal University, Jinan,
China. Her research interests include cross-layer
design of wireless communication networks, radio
resource management in heterogeneous networks,
and signal processing for communications.

YAWEI PANG received the B.Eng. degree in
electric information engineering from the Hefei
University of Technology, Hefei, China, in 2010,
the M.S. degree in computer science from Texas
Southern University, Houston, Texas, in 2015, and
the Ph.D. degree in electrical and computer engi-
neering from the University of Florida, in 2019.
He is currently an Assistant Professor with the
School of Computer and Software, Nanjing Uni-
versity of Information Science and Technology,

China. His research interests include the Internet of Things, mobile wireless
networks, and vehicular networks.

168336 VOLUME 7, 2019

http://dx.doi.org/10.1109/TAFFC.2018.2836462

