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ABSTRACT The complete failure of the rolling bearing is a deterioration process from the initial minor fault
to the serious fault, it is meaningless for guiding maintenance when the serious fault is alarmed. This work
presents a novel initial fault diagnosis framework based on sliding window stacked denoising auto-encoder
(SDAE) and long short-termmemory (LSTM)model. In this approach, multiple vibration value of the rolling
bearings are entered into SDAE by sliding window processing. Then, multiple vibration value of the rolling
bearings of the next period is predicted from the signal reconstructed by the trained SDAE in the previous
period using LSTM. For the given input data, the reconstruction errors between the next period data and the
output data generated by trained LSTM are used to detect initial anomalous conditions. The proposedmethod
not only utilizes the ability of SDAE to learn the inherent distribution of data, but also ensures that LSTM
can extract timing relationships between data cycles, and the model is built using only normal data. The
initial fault detection as a key difficulty in the operating condition monitoring and performance degradation
assessment of the rolling bearing is effectively solved. Experimental and classic rotating machinery datasets
have been employed to testify the effectiveness of the proposed method and its preponderance over some
state-of-the-art methods. The experiment results indicate that the proposed method can effectively detect the
initial anomalies of the rolling bearing and accurately describe the deterioration trend with strong robustness,
and have high significance for maintenance guiding.

INDEX TERMS Rolling bearing, fault diagnosis, long-short-term memory.

I. INTRODUCTION
Rolling bearings are one of the key components of rotating
machinery. According to [1], more than 40% of motor fail-
ures are related to bearing faults. The degradation trend of
most rolling bearings usually follows the ‘‘U-shaped curve’’.
As shown in Figure 1, larger state parameters mean perfor-
mance degradation and it consists of four stages: (I) Run-in
phase, (II) Normal operation phase, (III) Early degradation
phase, (IV) Severe failure phase. From the early degradation
stage to the severe failure stage, the operating parameters of
the machine change significantly in a short period of time.
If potential faults are not detected in the early stages of
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degradation, progressive faults will cause a rapid deteriora-
tion of the equipment, it will lead to irreparable and serious
consequences.

Hence, accurate initial fault detection [2], [3] and predic-
tion [4], [5] are rewarding to decrease the maintenance cost
and reduce costly downtime. There are two main challenges
in the early stages of fault initiation and evolution: (1) The
degree of initial failure is small, and the fault characteristics
are not obvious. (2) The fault signal is hidden in strong
background noise, and the fault feature is disturbed by noise
and uncorrelated signals, which is difficult to extract.

Many effective methods have been proposed and applied
for rolling bearing intelligent diagnosis [6]–[11], these strate-
gies could be roughly classified into two categories [12]:
model-driven and data-driven. The model-driven approach
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FIGURE 1. Deterioration trend of rotating machinery.

isolates early faults by establishing the system degrada-
tion model or analyzing the fault frequencies by kinetic
analysis. Diagnostic performance depends on the accuracy
of the model. Due to the complexity, nonlinearity and strong
coupling of the equipment, it takes a lot of effort to fully
understand the mechanical structure of the dynamic system
and establish an accurate mathematical model. Data-driven
methods indicate early faults by performing various analysis
techniques on the collected data, which are more suitable to
monitor the modern large-scale industrial process.

In traditional methods, vibration analysis [13]–[15] is
the most used one and numerous indicators derived from
vibration signals are implemented as criteria in traditional
fault diagnosis. Approaches based on frequency domain sig-
nals are proposed in [16]. The accuracy of the frequency
domain method will decrease when the signal is a non-
stationary signal. Thus some signal processing approaches
in time-frequency-domain are adopted (e.g. Wigner dis-
tribution [17], and wavelet packets [18], Empirical mode
decomposition [19]). For early fault detection, The signal
acquisition process is accompanied by the signal weakening,
superposition and other phenomena. And the early fault sig-
nal is weak, the background noise is strong. So the signal pro-
cessing based methods are limited in detecting early faults.

Some of statistical method based have been utilized to iso-
late the early faults in recent years, mainly including principal
component analysis (PCA), autoregressive model, support
vector machine (SVM) and its extensive forms: one-class
SVM, support vector data description (SVDD).But these
methods rely on well-selected features to classify faults.
In recent years, deep learning has become one of the most
popular machine learning approaches. In the field of fault
diagnosis, Tamilselvan and Wang [20] conduct dimension
reduction on signals using compressed sensing and utilize
features extracted by deep belief network (DBN) to do fault
classification. An end-to-end CNN approach is proposed by
Chen et al. [21] for rolling bearing fault diagnosis. These
methods focus on fault classification and rely on complete
fault samples, not for early fault detection.

At present, there are few current algorithms make good
use of the long-term dependencies hidden in time-series data.
This long-term dependence refers to the temporal or spa-
tial correlation in sequential observations. Normal system
behavior strongly depends on the previous context and might
evolve over time, in particular, an anomalous pattern is often

defined as a series of behaviors that are normal individually
but abnormal only collectively. Vibration signal is a time-
series data arranged according to the time axis. Focusing on
the full historical trajectories of sequential data is necessary to
improve early fault detection. LSTM has been demonstrated
its effectiveness in awide range ofmachine learning problems
that involve sequential data.

In summary, for the initial anomaly detection of rolling
bearings, there are several problems to be solved.

(1) There is a large amount of raw normal data that is not
well utilized.

(2) Many methods do not consider the timing dynamics of
retained data when using the SDAE method.

(3) The timing dynamics of the data are not considered.
The essence of fault detection is to distinguish fault data

from normal data, but usually, the collected data is non-
stationary, non-linear, or damaged. To separate the fault data
from the normal data, there are two ways to enhance the
characteristics of the fault signal or to learn the robust char-
acteristics of the normal signal. The signal characteristics for
the initial anomaly are weak, the noise is strong, and it may
be damaged.

To address the above issues, this work presents a novel
initial fault diagnosis framework based on Sliding Win-
dow Stacked Denoising Auto-Encoder (SDAE) and Long
Short-Term Memory (LSTM) model, we called SDLSTM.
In this approach, To ensure that the SDAE learns more robust
features from the normal state and does not lose the temporal
dynamic characteristics of the data, multiple vibration value
of the rolling bearings are entered into SDAE by sliding win-
dow processing (SWDAE). Then, multiple vibration value
of the rolling bearings of the next period is predicted from
the signal reconstructed by trained SWDAE in the previous
period using LSTM. For the given input data, the recon-
struction errors between the next period data and the output
data generated by trained LSTM are used to detect initial
anomalous conditions. We use the SDLTSM algorithm to
learn the robustness and temporal correlation of normal data
and learn the characteristics of normal data more completely.

Compared with other existing methods, the proposed
method not only considers the nonlinear relationship between
data, but also the temporal dynamics of the data is used to
construct the prediction model to predict the trend of normal
data. What is important is that the model is built using only
normal data, and the initial failure of the rolling bearing can
be detected by the error between the predicted value and the
true value. Deep learning theory is used and does not rely on
handcrafted features. and the model is built using only normal
data. The initial fault detection as a key difficulty in the
operating condition monitoring and performance degradation
assessment of the rolling bearing is effectively solved.

The rest of the paper is organized as follows. Section II
makes a brief review of basic theory, Section III illustrates
proposed methods for rolling bearing initial fault diagnosis,
Section IV is used for experiments, and Section V makes the
conclusion.
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TABLE 1. Notations.

II. BASIC THEORY
In this section, notations, which are used in this paper fre-
quently, are summarized in Table 1. We brief structures of
denoising auto-encoder (DAE) and standard LSTM.

A. DENOISING AUTO-ENCODER
The basic auto-encoder (AE) is an unsupervised neural net-
work, which contains an input layer, a hidden layer, and
an output layer. The final goal of AE is that the output
is basically consistent with the input, through the encoder
and decoder. DAE is an improved method of AE, which
is trained to reconstruct a data sample from its corrupted
version. The x is a set of sequence data with T steps or T
samples and x = (x1, x2, · · · , xt , · · · , xT ), xt ∈ Rdx , x̃ =
(x̃1, x̃2, · · · , x̃t , · · · , x̃T ) is corrupted version. Two common
choices for data corruption are additive Gaussian (GS) noise
and Zero-Masking (ZM) noise where a fraction of input
values are randomly forced to 0. The fe is encoding function
that extracts features from the input data, and the formula for
converting from the input layer to the hidden layer is

h = fe (ah) = σ (Wxhx̃ + bxh) (1)

The σ is an activation function of sigmoid, The Wxh is the
weight matrix from the input layer to the hidden layer, The
bxh is the coefficient of offset.

After getting the hidden layer, the output layer is calculated
by the decoding function fd . The formula for converting from
the hidden layer to the output layer is

r = fd (h) = σ (Whrh+ bhr ) (2)

The σ is an activation function of sigmoid, The Whr is the
weight matrix from the input layer to the hidden layer, The
bhr is the coefficient of offset.
The goal of AE is to minimize the reconstruction error,

therefore, the loss function for AE is written as

LAE =
1
2T
‖r − x‖2F (3)

where ‖‖F denotes Frobenius norm.
The unprocessed vibration signal contains a lot of noise,

and the signals characteristics of the initial fault are weak,

FIGURE 2. LSTM structure.

so most of the noise in the signal is removed by DAE pro-
cessing, and the hidden layer extracts robust features from
the signal.

B. LONG-SHORT-TERM MEMORY
Recurrent neural networks (RNNs) are a family of neural net-
works for processing sequential data. The Long Short-Term
Memory (LSTM) networks are a gated RNNs that effec-
tively solves the problem of long-term dependence. As shown
in Figure 2, the first sigmoid function determines what infor-
mation is forgotten, called forget gate. What information is
to be updated is determined by the second sigmoid function
and the tanh function, called the input gate. The third sigmoid
function determines which information is output, called the
output gate. The updating equations are given as follows:

ft = σ
(
Wf [ut−1, xt ]+ bf

)
(4)

it = σ (Wi [ut−1, xt ]+ bi) (5)

ct = ft × ct−1 + it × tanh (Wc [ut−1, xt ]+ bc) (6)

ot = σ (Wo [ut−1, xt ]+ bo) (7)

ut = ot × tanh (ct) (8)

where ft , it , ot are forget gate, input gate, output gate, respec-
tively. LSTM can choose to forget redundant information,
memorize useful information, and output important informa-
tion through the gating unit. More details about LSTM can be
found in the literature [20], [21].

III. PROPOSED METHOD
As mentioned before, the signals of the initial fault are
weak and nonlinearly correlated and temporally dependent.
In order to increase robustness against noise and local vari-
ations in original data, DAE is used by many methods.
But each data sample at each time instance is regarded
as independent. Therefore, the important timing correlation
characteristics inherent in time series data are ignored. This
will lead to reduced reliability of the fault detection model
and unsatisfactory results. To address this problem, a fault
detection method based on sliding window DAE and LSTM
(SDLSTM) is proposed by this work. As shown in Figure 3,
this method includes two stages: off-line construction and
online monitoring.
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FIGURE 3. Flowchart of initial fault detection consisting of offline training phase and online monitoring phase.

FIGURE 4. Framework of SDLSTM.

In the off-line modeling stage, the historical data collected
from the normal state is first processed by the sliding window,
and then the SWDAE is trained. The trained SWDAE can
not only learn the robust features of the normal data but also
have no loss of the timing dynamics of the data, and then
fix the parameters of the SWDAE. The data reconstructed by
SWDAE is used as the input of LSTM to learn the temporal
correlation characteristics.

In the on-line monitoring stage, real-time data is used as
input to the trained SDLSTM, trained LSTM will predict
the value of the next time based on the reconstructed value
by SWDAE at the current time. Then, the original signal
acquired at the next time is reconstructed by SWDAE, The
deviation value between the predicted value and the recon-
structed value is used to measure the state of the system.

A. MODEL-STRUCTURE
SDLSTM can be understood as the use of deviations between
predicted and actual values to measure whether the system
deviates from normal operation. Figure. 4 shows the graphical
structure of SDLSTM, which consists of three main modules,
input layer, SWDAE, and prediction layer, respectively.

Let X = {xi}ni=1 ∈ Rm×n be the collected normal sensor
data from rolling bearing, where m is the number of sensor
variables and n denotes the number of data samples. Since
the motion of the rolling bearing is a periodic rotation, these
variables have timing correlation characteristics. And the data
collected by the sensor is mixed with noise. On the one
hand, the noise will cause the characteristics of the data to
be inconspicuous. And on the other hand, some data will be
missing to some extent.
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B. SLIDING-WINDOW
When training the DAE, it is very important to select the input
size of the data. After the signal is reconstructed by the DAE,
the characteristics of the signal are already obvious. For DAE
without cyclic structure, the nonlinear characteristics of the
data should be learned and the temporal correlation of LSTM
learning should not be lost. So the form of the data input to
the DAE is very important. However, small lengths of input
data may result in loss of information, and too long input data
may cause a large increase in model complexity and training
time. Even if the input data has a suitable length, if the input
data are independent of each other. The timing correlation of
the data will be lost.

Thus, the sliding window is used to process the data and
get the appropriate input data for the DAE. We first run
an overlapping sliding window with length ω on the orig-
inal multivariate time-series data. As shown in Figure. 4,
we can obtain sets of overlapping windowed subsequences
sj =

(
xj, xj+1, . . . , xj+ω1

)
∈ Rm×ω, sj can be reviewed

as a small subset of accounting for temporally correlated
information in several successive observed values for each
variable, the represents the sequence of the windows. All
subsequences constitute a new augmented time-series data
Y ∈ RM×N , M = mω, N = n − ω + 1. It is obvious that
contains the current and previous information in a small time
window. Typically, ifω = 1, is simply the original time-series
data.

C. SDAE MODEL TRAINING
Afterward, we perform (1)–(3) on the data Y to learn opti-
mal parameters Wxh, bxh, Whr , bhr , and obtain the hidden
representation h and the reconstructed output r . Since the
new augmented data Y incorporates temporal information for
each variable, the trained DAE model not only captures the
nonlinear correlation between variables and removes noise,
but also preserves the time dependence of the variables. Then,
the learned relations are embedded in learned weight metrics
and bias vectors.

The trained SWDAE already has the ability to denoise,
and the reconstructed data does not lose its own tim-
ing correlation, then fix its parameters, and then train the
LSTM.

D. LSTM MODEL TRAINING
The data reconstructed by well-trained SWDAE is r , so the
input form of LSTM is shown in Figure 4.

Y = f (r; θ) , θ =
{
Wf ,Wi,Wc,Wo, bf , bi, bc, bo

}
(9)

where r represents the denoised data reconstructed by
SWDAE, θ represents the parameters of the model and Y is
output. Generally, LSTM is constructed by minimizing the
loss function as follows:

J (θ) =
1
ω

∑
i

1
2l
‖yi − ri‖2 +

λ

2

∑(
wij
)2 (10)

where r ti and yti represent the denoised reconstructed value
of the original data and its predicted value for i-th dimen-
sion at time t , respectively. To avoid the overfitting prob-
lem, an additional regularization term is usually added to
the cost function. The goal is to obtain minimum of cost
function where the parameters are the optimal values for
the model. Many optimization algorithms such as stochastic
gradient descent (SGD) and RMSProp can serve for getting
the minimum of the cost function. Considering about the
non-stationarity of vibration signals, RMSProp approach is
applied in this paper.

E. DIAGNOSIS STRATEGY
For the purpose of initial anomaly detection, SDLSTM is
trained using normal data to have the ability to predict normal
behavior of the system along the time axis. Therefore, when
online data is input of the well-trained SDLSTM, it can
reconstruct each input data and predict the value of the
next moment. The different SDLSTM trained by datasets of
various vibration patterns contain different characteristics.
For instance, when the system is normal, the reconstruction
error is very small. When the system is abnormal, the recon-
struction error will be significantly bigger. More importantly,
the reconstruction errors of different types of initial failures
are also different. So, there is reason to believe that the
operating state of the system can be judged by the recon-
struction error. Various types of initial abnormal vibration
signals and normal state vibration signals are input to the
SDLSTM and the reconstruction error is obtained, and an
SVDD is trained using the abnormal reconstruction error and
the normal reconstruction error to indicate the operating state
of the system.

The initial fault signal is weak and the signal may be
damaged. And there are fewer fault samples in the actual
process, so it is not suitable to use a supervised model for
monitoring. So we consider estimating the health pattern
by learning historical normal data and then measuring the
damage based on the distance indicator

SDAE can learn more powerful data distribution charac-
teristics by entering corrupted data and expecting to output
data without damage. The gated design of the LSTM gives it
a powerful advantage in analyzing the overall logic between
sequence data. So SDAE can be used to learn the distribution
characteristics of possible damaged signals, and LSTM is
used to estimate the health pattern. The SADE cannot learn
the temporal correlation from the data, which will cause the
LSTM to estimate the health mode to be inaccurate. There-
fore, it is necessary to perform sliding window processing on
the data when training SDAE.

IV. EXPERIMENT RESULTS AND ANALYSIS
In order to verify the effectiveness of our proposed method
in early fault detection, two classic data sets are used in this
paper, i.e. a rolling bearing fault data set and a run-to-failure
rolling bearing data set.
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FIGURE 5. Testbed for CWRU rolling bearing data set.

FIGURE 6. Testbed for IMS rolling bearing data set.

A. DATA DESCRIPTION
1) ROLLING BEARING FAULT DATA SET
The data set was acquired from the rolling bearing data
center of the CaseWestern Reserve University (CWRU). This
test stand consists of a motor, a torque transducer/encoder,
a dynamometer, and control electronics (shown in Figure. 5).
The type of rolling bearing used is SKF, single-point faults
were introduced to the test rolling bearings using electro-
discharge machining. The fault data set consists of four cat-
egories: normal state (N), and fault in the inner race (FI),
the outer race (FO), and the ball (FB), respectively. For
the same fault, the degree is 0.007, 0.014, 0.028, and the
motor speeds of 1797 RPM. The test rolling bearings were
reinstalled into the drive end. Accelerometers were placed at
the 12 o’clock position at both the drive end and fan end of the
motor housing, and the motor supporting base plate. Digital
data was collected at 12,000 samples per second.

2) RUN-TO-FAILURE ROLLING BEARING DATA
The experimental data set was acquired from intelligent
maintenance system (IMS) of University of Cincinnati [22].
The rolling bearing test rig hosts four rolling bearings
on one shaft, which is driven by an ac motor (shown
in Figure 6). The rotation speed kept 2000 r/min. And a radial
load of 6000 lbs is added to the shaft and rolling bearing by
a spring mechanism. An oil circulation system measures the
flow and the temperature of the lubricant. Besides, a magnetic
plug installed in the oil feedback pipe collects debris from the
oil as evidence of rolling bearing system degradation. The
system will stop while the accumulated debris adhered to
the magnetic plug exceeds a certain level. A high sensitivity

TABLE 2. The running condition and fault type of run-to-failure rolling
bearings.

accelerometer was installed on each rolling bearing housing.
Vibration data were recorded at 10-min intervals. The data
sampling rate is 20 kHz and each vibration signal snapshot
length contains 20480 points. At the end of the test-to-failure
experiment, outer race failure occurred in rolling bearing
1 and 984 snapshots were collected. And first 500 snapshots
represent system normal state and its detailed information is
listed in Table 2.

B. MODEL ESTABLISHMENT
1) INPUT PREPARATION
The vibration signal is different from the field in Natural Lan-
guage Processing. The length of the vibration signal collected
per second usually exceeds one thousand points, usually
depending on the sampling frequency of the sensor. As the
input sequence length for SDLSTM will directly affect the
complexity and performance of the whole model, an effective
input preparation strategy becomes quite important. In order
to reduce the complexity of the model, and better use the
useful information hidden in the data. So input data needs to
be fused appropriately via the same input preparation process.
This data-fusion strategy makes our method be extended to
multi-sensor data. For a time-series signal segment from n
sensors, a preparation function fp is defined to form sampling
points in m continuous time steps into one vector as the input
at time step:

xt = fp (smt:mt+m) (11)

In this work, we simply take the identity function as fp and
xt ∈ Rm×n will be reshaped into Rmn as an input vector.

C. SDLSTM BASED INITIAL FAULT DIAGNOSIS
1) RESULTS ON ROLLING BEARING FAULT DATA SET
The CWRU data set is used to evaluate the fault diagnosis
performance of the algorithm. As described in Section 4.1,
the CWRU data contains four operating states common to
the rolling bearing (N, FI FO, FB). This section uses a part
of the normal data training model, and then data of four
operating states are entered into the trained model and judges
the state of the system by the reconstructed error. After the
data preprocessing step, the data from the two sensors (DE,
FE) is fused, in order to better evaluate the performance of
the algorithm, the sample with the least fault diameter is
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TABLE 3. Detailed descriptions of datasets, Num. denotes the number of
samples for each type of.

TABLE 4. Structural hyperparameters of the proposed method for CRWU
testing.

selected, and its detailed information is listed in Table 3.
For the proposed method, all structural hyperparameters are
shown in Table 4.
In the model, we use the SDAE algorithm. Section 2.1

describes the SDAE algorithm in detail. In the face of two data
collection difficulties that often exist in the actual process,
namely noise influence and data loss, the SDAE algorithm
can achieve more robust feature learning. Figure 7 shows
the reconstruction results of the SDAE. In order to simulate
the data loss problem, we randomly select the sample points
of the two sensors in one cycle and set them to 0 with
a probability of 0.2, and then reconstruct them by SDAE.
Figure 7 shows, from top to bottom, raw normal data, damage
data, and reconstructed data. It can be seen that SDAE can still
reconstruct a distribution similar to the original data when the
data is damaged.
In this experiment, the sampling frequency of the sensor is

12 kHz, and the motor speed is 1797 RPM, so 30 cycles of
data can be acquired per second, and there are 400 sampling
points per cycle. In order to learn the timing correlation
between data period and period, the input and output size
of the model is 400. Because the data collected by two
sensors are used, the input and output size is 800. Each sensor
selected a total of 120,000 sample points for 10 seconds, and
80,000 sample points were used to train the model, 20,000 for
verification, and 20,000 for testing. After training the model
with normal data, we test the model using different types of
fault samples.
In the model, we use the SDAE algorithm. Section 2.1

describes the SDAE algorithm in detail. In the face of two data
collection difficulties that often exist in the actual process,
namely noise influence and data loss, the SDAE algorithm
can achieve more robust feature learning. Figure 7 shows

FIGURE 7. Reconstructed results after SDAE processing.

FIGURE 8. CWRU sample.

the reconstruction results of the SDAE. In order to simulate
the data loss problem, we randomly select the sample points
of the two sensors in one cycle and set them to 0 with
a probability of 0.2, and then reconstruct them by SDAE.
Figure 7 shows, from top to bottom, raw normal data, damage
data, and reconstructed data. It can be seen that SDAE can still
reconstruct a distribution similar to the original data when the
data is damaged.
In Figure. 8, data for four cases of one cycle collected by

two sensors. Black lines represent normal conditions, green
lines represent rolling element faults, blue lines represent
inner ring faults, red lines represent outer ring faults. Obvi-
ously, the rolling element failure is the easiest to distinguish,
but the other two types of failure are difficult to distinguish
from the normal situation. Figure 9 shows the test results of
the model.
In Figure. 9, black lines represent normal conditions, green

lines represent rolling element faults, blue lines represent
inner ring faults, and red lines represent outer ring faults.
As can be seen from Figure 9. (1) The reconstruction error
of the normal (black line) conditions fluctuates around 2.5,
the ranges of the reconstruction error of the abnormal state
(IR, OR, B) are from 3.7 to 20. There is a clear distinction
between the normal state and the abnormal conditions. Rep-
resenting the ability of the model to detect anomalous con-
ditions. (2) The ranges of the reconstruction error of rolling
element faults (green line) are from 3.7 to 4.5, the reconstruc-
tion error of the inner ring faults (blue line) fluctuates around
7.5, the ranges of the reconstruction error of outer ring faults
(red line) are from 3.7 to 4.5. Three different fault conditions

VOLUME 7, 2019 171565



H. Shi et al.: Rolling Bearing Initial Fault Detection Using LSTM Recurrent Network

FIGURE 9. Results of CWRU sample diagnosis.

(IR, OR, B) can also be well distinguished, representing the
ability of the model to diagnose faults.
And the advanced feature of this method is: (1) The con-

struction and training of the model only use normal situation
data. The distribution and characteristics of normal data are
well learned by the model, and is sensitive to the abnormal
situation of the change, indicating that the model can cope
with the lack of fault data in the actual process. (2) After
collecting enough types of fault data, we can label the data
and add it to the model database to update the model and
improve the model’s fault diagnosis capabilities.

2) RESULTS ON RUN-TO-FAILURE ROLLING BEARING DATA
SET
Unlike the CWRU data, the IMS data obtained through the
accelerated aging test of the rolling bearing contains all the
processes from the healthy running state to the failure of
the rolling bearing. Figure 8 shows the acquisition data of
rolling bearing 1 in the second group of experiments in IMS.
After the end of the experiment, the outer ring fault occurred
in the rolling bearing. It can be seen that as the sample
point is increased, that is, the rolling bearing running time
increases. The rolling bearing undergoes a process of gradual
degradation from the initial state of health to the onset of an
initial anomaly, followed by a failure, and finally a serious
failure.
Figure 10 shows the original time domain vibration signal

of the entire life cycle of TB1. It can be seen from the fig-
ure 10 that the time-domain vibration signal collected before
about 740 files (about 100 hours) is relatively stable, and there
is a very obvious impact phenomenon after about 750 files,
the bearing has obvious damage, and short-lived troughs
appear in several times of shock signals. The appearance of
such troughs is a typical ‘‘cure’’ in the fault of the outer
ring of a rolling bearing. The position where the damage
occurs is gradually smoothed to smooth under the impact
force. The degradation trend of the bearing is roughly seen
from the original signal, but the initial stage of degradation
of the rolling bearing and the stage of degraded performance
cannot be directly obtained from the original time-domain
signal.
We select the first 400 files to get normal data and only

use that data to train the model. The remaining 584 files

FIGURE 10. IMS rolling bearing degradation signal data.

TABLE 5. Structural hyperparameters of the proposed method for IMS
testing.

FIGURE 11. TB1 of IMS rolling bearing life cycle curve.

contain normal and fault conditions for evaluating the perfor-
mance of the model. all structural hyperparameters are shown
in Table 5.
The essence of fault detection is to distinguish fault data

from normal data, but usually, the collected data is non-
stationary, non-linear, or damaged. To separate the fault data
from the normal data, there are two ways to enhance the
characteristics of the fault signal or to learn the robust charac-
teristics of the normal signal. The signal characteristics for the
initial anomaly are weak, and the noise in the signal is strong,
and the signal may be damaged during transmission. We use
the SDLTSM algorithm to learn the robustness and temporal
correlation of normal data and learn the characteristics of
normal data more completely.
Figure 11 shows the performance of the SDLSTM algo-

rithm in the IMS dataset. By using the normal data train-
ing model, the variation of the data under normal operating
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FIGURE 12. Partial magnification of the IMS TB1 rolling bearing life curve.

conditions is well learned by the model, and the reconstruc-
tion errors of the predicted and true values are used tomeasure
the status of the system. Since the IMS data set was obtained
through the accelerated aging test of the rolling bearing, the
rolling bearing finally suffered an outer ring failure, and it
can be seen that the model first appeared abnormally in the
10070th cycles (As shown in Figure 12(a)) of the test data
(About 90 hours from the beginning). And then the data tends
to normal, which also meets the process of the rolling bearing
from health to complete failure. When the rolling bearing has
an initial abnormality in the outer ring, as the rolling bearing
continues to operate, the small fault of the outer ring will
be polished by the moving rolling element to smooth, and
the abnormal vibration of the rolling bearing will gradually
weaken, so there will be a short-term normal-like data. The
rolling bearing with the initial fault continues to run, and this
abnormal and similar normal data will be repeated (As shown
in Figure 12(a)), but the time interval will gradually become
shorter, and the degree of each abnormal signal will gradually
increase until the devastating complete fault occurs.

Table 6 shows the test results of the SDLSTM algorithm
proposed in this paper on the entire IMS data set. The
TB1 rolling bearing has an abnormality around 88h, and
finally develops an outer ring fault. The model detected an
abnormality in about 90 hours, which was 2 hours later
than the actual situation. The TB3 rolling bearing showed an
abnormality around 302h, and finally developed into an inner
ring fault. The model detected anomalies around 305 hours,
3 hours later than the real one. The TB4 rolling bearing
showed an abnormality at about 262h, and finally developed

TABLE 6. Fault detection results.

FIGURE 13. Comparison of various features.

into a rolling element failure. The model detected an abnor-
mality of about 263 hours, which was one hour later than the
real one.

D. COMPARISON WITH OTHER METHODS
In order to verify the effectiveness of the SDLSTM model,
the proposed method is compared with several fault detection
and anomaly detection methods, namely, Kurtosis factor, and
SADE features.

Figure 13 shows the trend graphs of the features extracted
by several fault detection algorithms on the IMS dataset.
Since we use the original time-domain data for fault detec-
tion, we compare the SDLSTM algorithm proposed in this
paper with the commonly used method of extracting time-
domain features. In the figure 13, the red line represents the
SDLSTM algorithm, the green line represents the Kurtosis
statistical indicator, the blue line represents the RMS statisti-
cal indicator, the orange line represents the characteristics of
SDAE and RMS extraction, and the purple line represents the
features extracted by SDAE and Kurtosis.

As shown in Figure 13, It is clear that SDLSTM can
describe the development of damage, and very sensitive to
initial anomalies through Figure 14 (a) and Figure 14 (b).For
the Kurtosis, it is sensitive to abnormal changes in the sig-
nal, because Kurtosis characterizes the number of peaks of
the probability density distribution curve at the mean value,
reflecting the sharpness of the peak.When the running rolling
bearing is abnormal, the vibration signal will have a transient
spike, so Kurtosis will have a more obvious change. It can
be seen from Figure 14 (a) that Kurtosis and the method
proposed in this paper have similar effects on the diagnosis of
initial abnormalities, but it can be seen from Figure 14 (b) that
Kurtosis does not reflect the deterioration trend of the rolling
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FIGURE 14. Partial magnification of the IMS TB1 rolling bearing life curve.

TABLE 7. Fault detection results of other methods in TB1.

bearing very well. It is not possible to provide a very valuable
diagnostic feature for the evaluation of the condition of the
rolling bearing. The other two methods, through SDAE, have
learned stable features, though, but are not sensitive to state
changes.

SDLSTM method proposed in this work uses SVDD to
indicate the signal position at the time of the fault. Therefore,
we use SVDD in combination with several other methods
in Table 7 to evaluate the effectiveness of different methods
by comparing the operating time when a fault alarm occurs.
According to the results, SDLSTM could declare the fault
alarm at 10070 cycles, this result is better than other meth-
ods. In addition, the combination of SWDAE-processed data
and time-domain statistical indicators has a better diagnostic
effect than direct use of statistical indicators, which also indi-
cates that SWDAE extracted data features are more stable.

V. CONCLUSION
This paper designed an end-to-end diagnostic strategy that
uses only raw time-domain signals, independent of expert
knowledge and signal processing knowledge. We called the

SDLSTM algorithm, first, the sliding window algorithm is
used in the SDAE algorithm, then, learning the trend of
normal data over time by the LSTM algorithm. The recon-
struction error of the predicted value and the true value is
used to measure the system status. The algorithmwas verified
by experimental data, SDAE algorithm not only learns the
distribution of data but also preserves the temporal correlation
characteristics between the data, prediction of normal data
behavior through LSTM. Compared with the SVM method,
the initial anomaly was detected about 7 hours earlier by
our proposed method, and the degradation process of rolling
bearings is well described by the proposed model, which is
important for the degradation monitoring of rolling bearings.
By comparing the diagnostic results of SWDAE and tradi-
tional methods, it is verified that the SDAE algorithm pro-
cessed by the sliding window can more effectively describe
the data distribution with time-correlation characteristics and
significantly improve the accuracy of diagnosis.
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