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ABSTRACT The wide area situational awareness attempts at the expeditious detection of imminent system
abnormalities and alerting system operators to take appropriate measures. Because the critical situation may
arise in a system due to faults on transmission lines spanning over a long distance, phasor measurement
units (PMUs) have become an indispensable measuring device to provide a dynamic view of such a wide
area system. In this paper, the perception about a 200 km long transmission line has been achieved with the
help of phasor measurements from PMU, which has the capability of reporting 200 phasors per second. The
comprehension about the perceived event is accomplished by computing the deviations of current phasor
magnitude as well as phase angles derived from synchronized phasor measurements using the phaselet
algorithm. Based on the comprehension of the perceived event, a specific type of fault has been predicted
using the Gaussian Naïve Bayes approach. In order to validate the proposed methodology, it has been
implemented on a laboratory setup.

INDEX TERMS Phasor measurement units, power system protection, situational awareness, phaselet,
Gaussian Naïve Bayes.

I. INTRODUCTION
The phasor measurement units (PMUs) have drastically
enhanced the situational awareness (SA) of power system due
to their ability to measure synchronized phasors of voltage
and current of power system [1], [2] over a wide geographical
area. SA has been a very effective aid for real-timemonitoring
and control of dynamic systems, such as the modern power
system. The SA for the power system is defined as the percep-
tion about power system through measurements of different
parameters, comprehension of the acquired data related to
components for better situational awareness, and prediction
of the state of power system based on comprehension of the
acquired data [3], [4].
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A. MOTIVATION
Transmission lines carry bulk power from generating units
to the consumers traversing long distances. Thus, they are
the key components of the power system. Since there is a
separation of some hundreds of kilometers of distance from
the sending end to the receiving end of the transmission
lines, the synchronized phasor measurements (SPM) using
PMUs have been an effective tool for real-time monitoring
of both ends of the transmission line for wide area situational
awareness (WASA). There has been an ongoing digital rev-
olution pertaining to information and communication tech-
nologies (ICT). Consequently, there has been a paradigm shift
regarding the perception of the power system from supervi-
sory control and data acquisition (SCADA) to SPM. The data
acquisition rate for SCADA is about 1-2 seconds, whereas
the reporting rate of SPM is 50 phasors per second using full
cycle discrete Fourier transform (FCDFT). The motivation of
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this paper is to further enhance the perception for SA using
Phaselet transform based synchronized phasor measurements
with 4 times reporting rate, i.e., 200 phasors per second for
50Hz power system. Such a higher reporting rate of phasors
improves the SA of transmission line for fault monitoring and
control, as validated through real-time laboratory prototype
model.

B. RELATED WORK
The modern power system has emerged as supreme engi-
neering achievement comprising of the staggering number of
interconnected components, spread over a large geographical
area [5]. Thus, the synchronized phasor measurements have
emerged as a commensurate wide area monitoring system
(WAMS) using PMUs. The PMUs are the edifice of WAMS,
which provide with the WASA.

Kamwa et al. has developed a smartWASA system for han-
dling geomagnetic disturbance impacts on the grid through
fast control and automated devices that utilize the phasor
measurements. Wide area severity indices are derived from
synchronized phasor measurements and fed to the corre-
sponding predictors based on data mining models such as
decision trees, random forests, neural networks and support
vector machine to trade-off between accuracy and trans-
parency [6], [7].

The first step for SA is perception. The high reporting
rate, as well as the reliability of PMUs, directly contributes
towards significant improvement regarding the perception for
assessing WASA. Research findings reported in references
[1]–[7] deal with the impact of PMUs on perception for
evaluating SA. The effective perception of the transmission
system for SA evaluation based on synchrophasor data has
been utilized by many researchers for fault detection [8], [9].
These works have used the reporting rate of 50/60 phasors
per second for the 50/60 Hz system using FCDFT. Though
such real-time monitoring has improved the perception, there
has been a continuous effort for improving reporting rates of
phasors. The phaselet based synchrophasor computation uses
one-fourth of a cycle of synchrophasor data, unlike FCDFT
using data obtained from the full cycle. Thus, there has been
an enhancement of perception leading to enhanced WASA.

The second step for SA is comprehension. The compre-
hension about the state of the transmission lines based on
synchronized phasor measurements has been possible in real-
time as reported by different researchers. Gopakumar et al.
has proposed a novel adaptive transmission line fault identifi-
cation and classificationmethodology based on the frequency
domain analysis of the equivalent voltage and current phase
angles estimated using PMU measurements at any one of the
generator buses in the grid [8]. Using Park’s transformation
of measured three phase voltage and current phasors by the
PMU at the generator bus, equivalent voltage and current
phasor angles are estimated. FCDFT has been used to ana-
lyze the phase angles in real-time and also to compute the
frequency spectrum coefficients. Thus, the comprehension
of the perceived event taken on the transmission line was

accomplished by computing the equivalent voltage and cur-
rent phasor angles. Gopakumar et al. presented a method-
ology for detecting and identifying the location of a fault
occurring anywhere in the network using the data obtained
from PMUs [9]. The comprehension about the health of
the transmission line has been achieved by considering the
equivalent voltage phasor angle. Koteswar et al. has discussed
the effect of static synchronous series compensator based sub-
synchronous resonance controller on the performance of dis-
tance relay. The problems associated with distance protection
have been investigated using synchrophasor measurements
based on the FCDT algorithm [10]. Asadi Majd et al. has
proposed a K-NN based event detection and classification
for distance protection by comparing each sample with its
fifth sample by taking a half-cycle moving window [11].
Thus, they have adopted an efficient PMU data processing
algorithm for better comprehension and improved situational
awareness.

The third step for SA is the prediction based on the com-
prehension of the perceived event. The effective prediction of
the fault on the transmission line for SA evaluation based on
synchronized phasor measurements has been used by many
researchers [12]–[14]. Fault prediction is accomplished by
Rajaraman et al. using the zero sequence, negative sequence
and positive sequence of currents [12]. The frequency coeffi-
cients of equivalent power factor angle variation and nominal
voltage coefficients are used as inputs to the support vector
machine (SVM) classifier for predicting the type of fault in
reference [13]. A synchrophasor assisted protection scheme
for the protection of a long transmission line compensated
with the shunt FACTS device is presented in reference [14].
The proposed scheme has the ability to predict and discrim-
inate internal and external faults using synchronized mea-
surements of voltage and current phasors from both the ends
of the transmission line. Thus, the prediction of fault on
transmission lines using the data obtained from the PMUs
leads to increased SA.

Thus, this paper attempts to adopt Phaselet based SA
assessment for enhancing perception and comprehension
about the health of the transmission line. The prediction based
on Gaussian Naïve Bayes (GNB) also contributes signifi-
cantly towards the enhancement of SA for the transmission
line.

C. UNIQUE CONTRIBUTIONS
The unique contributions of the proposedwork can be broadly
segregated into four following aspects.
i. Expeditious perception for SA evaluation due to

enhanced reporting rates (i.e., 4 times the conventional
reporting rate) using Phaselet transform.

ii. Comprehension regarding transmission line SA using an
efficient algorithm based on magnitude and phase angles
of synchrophasor measurements of currents acquired at
higher rates.

iii. Prediction of faults on a transmission line usingGaussian
Naïve Bayes (GNB).
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FIGURE 1. Single line diagram of a two-bus system.

iv. Validation of the proposed technique using real-time lab-
oratory experimental setup for pragmatic applications.

D. ORGANISATION OF THE PAPER
The situational awareness assessment for the transmission
line is discussed in section 2. In this section, the percep-
tion and comprehension about the state of the transmission
line based on the SA perspective are elaborated. The pre-
diction about the type of fault based on GNB is elaborated
in section 3. Section 4 presents the case studies and result
obtained from a real-time laboratory experimental setup.
Conclusions are drawn in section 5.

II. SITUATIONAL AWARENESS ASSESSMENT FOR
THE TRANSMISSION LINE
Synchronized phasor measurement (SPM) based real-time
power grid surveillance offers sufficient SA for grid oper-
ators. The perception about the state of the transmission
line during the normal condition, expeditious comprehension
about the transition from normal to faulty state and the pre-
diction of the specific type of fault using SPM are depicted
in the following subsections. Fig. 1 represents a 400 kV,
200 km transmission line for a two-bus system. It consists of
a generator, step-up transformer, sending end bus, one circuit
breaker, a step-down transformer, receiving end bus and a
three-phase load. Fig. 2 below gives an outline regarding the
assessment of SA for the transmission line.

This section depicts the steps related to perception and
comprehension for SA assessment so as to initiate a trip
command to the relevant circuit breaker (CB) to isolate the
faulty line at the earliest to minimize the hazard. Subsequent
section deals with the prediction of fault.

A. PERCEPTION ABOUT THE STATE
OF TRANSMISSION LINE
The perception about the state of the transmission line 400 kV,
200 km is based on the monitoring of the streaming phasors
obtained from the PMUs located at two ends of the transmis-
sion line, as shown in Fig. 1. The prevailing algorithms for the
computation of phasors by PMUs are based on FCDFT [1].
Such an algorithm employs a full cycle data window having
a time period of 20ms for 50Hz, based on the following
equation.

X̂ (k) =

√
2
N

N−1∑
n=0

x (n) cos
(
2πn
N

)

− j

√
2
N

N−1∑
n=0

x (n) sin
(
2πn
N

)
(1)

where X̂ (k) is the phasor for fundamental when k=1 as well
as for harmonics for k ≥ 2; N is the total number of input
samples per window (one cycle); n is the nth sample and x(n)
is the input signal.

An expeditious phasor computation algorithm based
phaselet is being employed for computation of SA in the
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FIGURE 2. Flowchart for assessment of SA of transmission line.

proposed research work. Unlike the FCDFT based algorithm,
the quarter of full-cycle phaselets (QFCP) utilizes a one-
fourth cycle data window limited to 5ms [15], [16].

The computation of phasor based on phaselet transform is
done based on equation (2), as given below,

X̂pl (k) =
4
√
2

N

pl×PL+PL−1∑
n=pl×PL

x (n) cos
(
2πn
N

)

− j
4
√
2

N

pl×PL+PL−1∑
n=pl×PL

x (n) sin
(
2πn
N

)
(2)

where X̂pl (k) is the phasor for fundamental when k=1 as
well as for harmonics for k≥2; pl is phaselet index which
varies from pl=0 to pl=3 for 4 phaselets; PL is the no
of samples per phaselet (PL=50 for 200 samples/cycle);

FIGURE 3. Phaselet based phasor computation.

n is nth sample; N is total number of samples per cycle and
x(n) is the input signal.
For example, considering sampling frequency 10kHz;

Number of samples per cycle N=200; with a phaselet index
PL=50 (50 samples per phaselet). The computations of
phasors for each quarter cycle are illustrated using Fig. 3.
Fig. 3 shows a 50 Hz signal sampled at 103 samples/sec
for computation of four phaselets per cycle. Hence, there
are 200 samples in a cycle. Each cycle (of 20 millisec-
onds duration) contains 200 samples and thus each phaselet
contains 50 samples for a duration of 5 milliseconds. For
the first phaselet, pl=0. So the beginning index of sum-
mation of equation (2) is n= pl×PL= 0×50=0 and the
end index = pl×PL+PL−1= 0×50+50−1=49. Similarly,
for the second phaselet, pl=1. So the beginning index is
n=pl×PL=1×50 and the end index =pl×PL+PL−1= 1 ×
50 + 50 − 1 = 99. Likewise, for pl=2, the beginning index
is 100 and the end index is 149 and for pl=3, the beginning
index is 150 and the end index is 199. Thus, four phasors for
fundamental frequency are obtained for one cycle during nor-
mal operation when harmonics are negligible. The magnitude
and phase angle of the first phasor is represented by

∣∣Ipl0∣∣ and∣∣ϕpl0∣∣, based on the initial 50 samples. Similarly, the second
phasor magnitude

∣∣Ipl1∣∣ and phase angle
∣∣ϕpl1∣∣ is computed

based on the second phaselet. If the deviation of
∣∣Ipl1∣∣ from∣∣Ipl0∣∣ and ∣∣ϕpl1∣∣ from ∣∣ϕpl0∣∣ increases beyond the threshold

values τm and ϕm respectively, then the perception about the
transition from the normal state is perceived expeditiously
within a time-span of a quarter of a cycle, as shown in Fig. 2.
Since 4 phaselets

(
Ipl0, Ipl1, Ipl2, Ipl3

)
are being used for

every cycle, expeditious perception is possible by capturing
the changes in every quarter of cycle by each phaselet. Such
perception is captured using a situational awareness visual-
ization tool (SAVT), where the visual monitoring indicator
changes from green (normal state) to yellow (fault state) color
along with an alarm, as shown in Fig. 4. The specific type of
fault is identified by the red color indicator.

B. COMPREHENSION ABOUT FAULT OCCURRENCE
After the perception of transition from the normal state
based on streaming phasors computed using a quarter of
cycle data for the phaselets Ipl1 and Ipl2, the comprehension
about the occurrence of the fault ascertained by comparing
with another phaselet, namely Ipl3 computed using half-cycle
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FIGURE 4. Situational awareness visualization tool for perception of (a) Normal state, (b) Faulty state.

window (first quarter cycle as well as subsequent quarter
cycle). If the deviations

∣∣Ipl3 − Ipl2∣∣ and ∣∣ϕpl3 − ϕpl2∣∣ are
greater than threshold values τm and ϕm respectively, then
conclusive comprehension about the occurrence of a fault is
achieved. The SAVT indicates the comprehension about the
occurrence of fault through the blinking of a red indicator
as shown in Fig. 5. Thus the trip signal is initiated to open
the circuit breaker at sending end of the transmission line,
as shown in Fig. 1. The subsequent section deals with a
prediction about the type of fault.

III. PREDICTION OF FAULT USING GNB
The GNB classifier maps the feature vector ψpl(k)[ψpl(k =
0), ψpl(k = 1), ψpl(k = 2), ψpl(k = 3), ψpl(k = 4)]
obtained from equivalent current phase angles (ECPA) of d.c
component ψpl(k = 0), fundamental ψpl(k = 1), as well as
harmonics of phase currents computed using phaselet coeffi-
cients with class level as shown in Fig. 2 for the purpose of
training.

A Naïve Bayes is a simple model that is based on the
probability evaluated from the training data set. This training
data set comprises of ECPA coefficients both during normal
as well as during different faults. GNB is an extended Naïve
Bayes model suitable for real-time streaming data [17]–[19],
as described in this section.

The ECPA is calculated using the direct and quadrature
axis current components, namely Id (n) and Iq(n) obtained
from fundamental current phasors, as given in the equations
(3a) and (3b), as shown at the bottom of this page [20].
xR(n), xY (n) and xB(n) are the values of currents of nth

samples for phase R, Y and B respectively; and N is the
number of samples per cycle.

ECPA is calculated using equation (4) and the Phaselet
coefficients of the ECPA for d.c., fundamental and up to 4th

harmonics are calculated using equation 5(a)-5(e) [8].

ECPA(φei(n)) = tan−1
(
Iq(n)
Id (n)

)
(4)

where φei(n) is the ECPA for nth component. The component
for n=0 denotes d.c., n=1 denotes fundamental and n =2, 3,
4 represents 2nd, 3rd and 4th harmonic values respectively for
current phasors.

Phaselet coefficient of ECPA for d.c. component is as
follows

ψpl(k) = ψpl(0) =

(
4
√
2

N

) pl.PL+PL−1∑
n=pl.PL

φei(n) (5a)

Phaselet coefficient of ECPA for fundamental frequency

ψpl(k)=ψpl(1)=

(
4
√
2

N

) pl.PL+PL−1∑
n=pl.PL

φei(n).e
−

(
2πn
N

)
(5b)

Similarly, the phaselet coefficients of ECPA for second, third
and fourth harmonics are computed using the following equa-
tions (5c), (5d) and (5e).

ψpl(k)=ψpl(2)=

(
4
√
2

N

) pl.PL+PL−1∑
n=pl.PL

φei(n).e
−

(
4πn
N

)
(5c)

ψpl(k)=ψpl(3)=

(
4
√
2

N

) pl.PL+PL−1∑
n=pl.PL

φei(n).e
−

(
6πn
N

)
(5d)

ψpl(k)=ψpl(4)=

(
4
√
2

N

) pl.PL+PL−1∑
n=pl.PL

φei(n).e
−

(
8πn
N

)
(5e)

Id (n) =
2
3

[
xR(n). sin

(
2πn
N

)
+ xY (n). sin

(
2πn
N
−

2π
3

)
+ xB(n). sin

(
2πn
N
+

2π
3

)]
(3a)

Iq(n) =
2
3

[
xR(n). cos

(
2πn
N

)
+ xY (n). cos

(
2πn
N
−

2π
3

)
+ xB(n). cos

(
2πn
N
+

2π
3

)]
(3b)
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FIGURE 5. Situational awareness visualization tool for comprehension of (a) LG fault condition (b) LL fault condition (c) LLG fault condition (d) LLL
fault condition.

The feature vector comprising of Phaselet coefficients ψpl(k)
contains attributes pertaining to normal state and 4 faulty
states. The normal class cn belongs to the normal state of
the transmission line. The possible faulty states are a line-
ground fault (LG), line- line fault (LL), line-line-ground
fault (LLG) and line-line-line fault (LLL). The classes for
the faulty class represented as cn, cf1, cf2, cf3 and cf4.
Thus, the class level vector Y∈ (cn, cf 1, cf 2, cf 3, cf 4) con-
tains 5 classes. Then the data set ψpl(k) is segmented into
each of 5 classes, viz. cn for the normal state, cf1 for LG
fault, cf2 for LL fault, cf3 for LLG and cf4 for LLL fault
respectively. Each feature vector Ci comprises of ψpl(k) val-
ues for k=0, 1, 2, 3 for each phaselet. For example, for
the first Phaselet (pl=0), the feature vector is ψpl(k) =
[ψ0(0), ψ0(1), ψ0(2), ψ0(3), ψ0(4)]. For a feature class cn,
the ψpl(k) are values obtained for the normal state. Similarly,
feature classes (cf 1, cf 2, cf 3, cf 4) comprise of feature data
obtained during corresponding faults.

GNB uses two significant measures such as model con-
struction and prediction to predict the type of fault as shown
in Fig. 6. The model construction comprises of information
table consisting of the mean (µ) and standard deviation
(σ ) of every attribute is calculated using equation (6), as
shown at the bottom of the next page, and equation (7) viz.
ψpl(0), ψpl(1), ψpl(2), ψpl(3) and ψpl(4) for the training data

set with a known fault class. Then the class probability of
each class is calculated using equation (8). In the prediction
stage, the probability distribution function (pdf) is calculated
for each attribute of online test data using equation (9). Then
the conditional probability is calculated for each class using
equation (10). Finally, the fault is predicted by considering
the class having the highest conditional probability.The mean
for the normal state, LG fault, LL fault, LLG fault, and LLL
is calculated as follows using equations (6a)-(6e). Similarly,
the variance in normal state, LG fault, LL fault, LLG fault
and LLL fault are calculated using equation (7a) -(7e).

σ 2 [cn(k)] =
[
ψpl,z(k)− µ [cn(k)]

]2 (7a)

σ 2 [cf 1(k)] =
[
ψpl,z(k)− µ [cf 1(k)]

]2 (7b)

σ 2 [cf 2(k)] =
[
ψpl,z(k)− µ [cf 2(k)]

]2 (7c)

σ 2 [cf 3(k)] =
[
ψpl,z(k)− µ [cf 3(k)]

]2 (7d)

σ 2 [cf 4(k)] =
[
ψpl,z(k)− µ [cf 4(k)]

]2 (7e)

where ψpl,z(k) denotes the phaselet coefficient of pth phase-
let, zth sample; k=0 denotes the dc components; k=1 denotes
fundamental component; k=2,3,4 denotes the second, third
and fourth harmonics; z=1,2,3,4. . . . . . .Z.
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FIGURE 6. Prediction of the fault using GNB.

The class probability of class cn as shown in equation (8a)
is defined as follows

Pcn =
Number of elements for class cn
Total no of elements for all classes

(8a)

Similarly, the class probability for class cf1, class cf2, class
cf3 and class cf4 are given in equation (8b) to equation (8e).

Pcf 1 =
Number of elements for class cf1
Total no of elements for all classes

(8b)

Pcf 2 =
Number of element for class cf2
Total no of elements for all classes

(8c)

Pcf 3 =
Number of elements for class cf3
Total no of elements for all classes

(8d)

Pcf 4 =
Number of elements for class cf4
Total no of elements for all classes

(8e)

The probability density function (PDF) is given in equation
(9). The probability density function for the normal state is

µ [cn(k)]

=
ψ0,1(k)+ ψ1,1(k)+ ψ2,1(k)+ ψ3,1(k)+ ψ0,2(k)+ ψ1,2(k)+ ψ2,2(k)+ ψ3,2(k)+ .....+ ψ0,z(k)+ ψ1,z(k)+ ψ2,z(k)+ ψ3,z(k)

Z × 4
(6a)

µ [cf 1(k)]

=
ψ0,1(k)+ ψ1,1(k)+ ψ2,1(k)+ ψ3,1(k)+ ψ0,2(k)+ ψ1,2(k)+ ψ2,2(k)+ ψ3,2(k)+ .....+ ψ0,z(k)+ ψ1,z(k)+ ψ2,z(k)+ ψ3,z(k)

Z × 4
(6b)

µ [cf 2(k)]

=
ψ0,1(k)+ ψ1,1(k)+ ψ2,1(k)+ ψ3,1(k)+ ψ0,2(k)+ ψ1,2(k)+ ψ2,2(k)+ ψ3,2(k)+ .....+ ψ0,z(k)+ ψ1,z(k)+ ψ2,z(k)+ ψ3,z(k)

Z × 4
(6c)

µ [cf 3(k)]

=
ψ0,1(k)+ ψ1,1(k)+ ψ2,1(k)+ ψ3,1(k)+ ψ0,2(k)+ ψ1,2(k)+ ψ2,2(k)+ ψ3,2(k)+ .....+ ψ0,z(k)+ ψ1,z(k)+ ψ2,z(k)+ ψ3,z(k)

Z × 4
(6d)

µ [cf 4(k)]

=
ψ0,1(k)+ ψ1,1(k)+ ψ2,1(k)+ ψ3,1(k)+ ψ0,2(k)+ ψ1,2(k)+ ψ2,2(k)+ ψ3,2(k)+ .....+ ψ0,z(k)+ ψ1,z(k)+ ψ2,z(k)+ ψ3,z(k)

Z × 4
(6e)
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calculated using equation 9(a).

Pdf
(
ψpl(k), µ [cn(k)] , σ [cn(k)]

)
=

1

σ [cn(k)]
√
2π

×e
−

(
(ψpl (k)−µ[cn(k)])

2

2σ [cn(k)]2

)
(9a)

Similarly for LG fault (cf1), LL Fault (cf2), LLG fault (cf3)
and LLL fault (cf4), the PDFs are calculated using equations
(9b)-(9e) respectively.

Pdf
(
ψpl(k), µ [cf 1(k)] , σ [cf 1(k)]

)
=

1

σ [cf 1(k)]
√
2π

×e
−

(
(ψpl (k)−µ[cf 1(k)])

2

2σ [cf 1(k)]2

)
(9b)

Pdf
(
ψpl(k), µ [cf 2(k)] , σ [cf 2(k)]

)
=

1

σ [cf 2(k)]
√
2π

×e
−

(
(ψpl (k)−µ[cf 2(k)])

2

2σ [cf 2(k)]2

)
(9c)

Pdf
(
ψpl(k), µ [cf 3(k)] , σ [cf 3(k)]

)
=

1

σ [cf 3(k)]
√
2π

×e
−

(
(ψpl (k)−µ[cf 3(k)])

2

2σ [cf 3(k)]2

)
(9d)

Pdf
(
ψpl(k), µ [cf 4(k)] , σ [cf 4(k)]

)
=

1

σ [cf 4(k)]
√
2π

×e
−

(
(ψpl (k)−µ[cf 4(k)])

2

2σ [cf 4(k)]2

)
(9e)

The conditional probability for class cn is found using equa-
tion (10a) as follows

Pcon,cn
= P

(
Pdf (ψpl(0), µ [cn(0)] , σ [cn(0)])

)
×P

(
Pdf (ψpl(1), µ [cn(1)] , σ [cn(1)])

)
×P

(
Pdf (ψpl(2), µ [cn(2)] , σ [cn(2)])

)
×P

(
Pdf (ψpl(3), µ [cn(3)] , σ [cn(3)])

)
×P

(
Pdf (ψpl(4), µ [cn(4)] , σ [cn(4)])

)
(10a)

Similarly, the conditional probability for class1, class2,
class3 and class4 is found using equation (10b)-(10e)

Pcon,cf 1=P
(
Pdf (ψpl(0), µ [cf 1(0)] , σ [cf 1(0)])

)
×P

(
Pdf (ψpl(1), µ [cf 1(1)] , σ [cf 1(1)])

)
×P

(
Pdf (ψpl(2), µ [cf 1(2)] , σ [cf 1(2)])

)
×P

(
Pdf (ψpl(3), µ [cf 1(3)] , σ [cf 1(3)])

)
×P

(
Pdf (ψpl(4), µ [cf 1(4)] , σ [cf 1(4)])

)
(10b)

Pcon,cf 2=P
(
Pdf (ψpl(0), µ [cf 2(0)] , σ [cf 2(0)])

)
×P

(
Pdf (ψpl(1), µ [cf 2(1)] , σ [cf 2(1)])

)
×P

(
Pdf (ψpl(2), µ [cf 2(2)] , σ [cf 2(2)])

)
×P

(
Pdf (ψpl(3), µ [cf 2(3)] , σ [cf 2(3)])

)
×P

(
Pdf (ψpl(4), µ [cf 2(4)] , σ [cf 2(4)])

)
(10c)

Pcon,cf 3=P
(
Pdf (ψpl(0), µ [cf 3(0)] , σ [cf 3(0)])

)
×P

(
Pdf (ψpl(1), µ [cf 3(1)] , σ [cf 3(1)])

)

×P
(
Pdf (ψpl(2), µ [cf 3(2)] , σ [cf 3(2)])

)
×P

(
Pdf (ψpl(3), µ [cf 3(3)] , σ [cf 3(3)])

)
×P

(
Pdf (ψpl(4), µ [cf 3(4)] , σ [cf 3(4)])

)
(10d)

Pcon,cf 4=P
(
Pdf (ψpl(0), µ [cf 4(0)] , σ [cf 4(0)])

)
×P

(
Pdf (ψpl(1), µ [cf 4(1)] , σ [cf 4(1)])

)
×P

(
Pdf (ψpl(2), µ [cf 4(2)] , σ [cf 4(2)])

)
×P

(
Pdf (ψpl(3), µ [cf 4(3)] , σ [cf 4(3)])

)
×P

(
Pdf (ψpl(4), µ [cf 4(4)] , σ [cf 4(4)])

)
(10e)

where Pcon,cn,Pcon,cf 1,Pcon,cf 2,Pcon,cf 3 and Pcon,cf 4 are the
conditional probability with respect to class cn, class cf1,
class cf2, class cf3 and class cf4 respectively; P is the proba-
bility with respect to a particular class.

IV. CASE STUDIES AND RESULTS
The proposed methodology has been implemented on an arti-
ficial transmission line to validate it in real-time. The block
diagram of the experimental setup is shown in Fig. 7 and
laboratory experimental setup is shown in Fig. 8. The
experimental set up comprises of an equivalent per unit
source, an isolation transformer, a three-phase autotrans-
former, a PMU interfaced with Dell Workstation, a 4-pole
contactor, a 400 kV, 200 km transmission line and a three-
phase star connected load. The line parameters are scaled-
down by keeping the same per unit value of the experimental
setup and the practical transmission line. The 440V, 3-phase
AC supply has been considered as a generator. For safety
reasons, a 440V/110V isolation transformer is placed after
the generator. For performing the experiment with the vari-
able voltage 110V/(0-110V), an autotransformer is connected
after the isolation transformer. For isolating the transmission
line in case of transmission line fault, a 4-pole contactor is
provided after the autotransformer, which acts as a circuit
breaker. It operates immediately after receiving the trip sig-
nal to isolate the transmission line. The circuit breaker is
connected at the sending end of the transmission line. The
transmission line consists of 4-π sections, each equivalent to
50 km, cascaded together to form a 200 km transmission line.
The resistance, inductance and capacitance of each π section
are 0.2�, 8.4mH and 2.0µ F respectively, which corresponds
to 400 kV twin moose line. Each section is provided with
tap-points to apply the fault using a fault block and taking
the measurements. The fault block consists of push-button
switches, which can create different short circuit (considering
zero fault impedance) faults among the lines and ground.
The current measurements of the transmission line are taken
at the beginning of the first section (i.e., at 0km, sending
end) and different types of faults are applied at 200 km (i.e.,
receiving end) of the transmission line. At the receiving end
of the transmission line, a three-phase balanced resistive load
of 1K�, 300V, 1.2 A and a three-phase 230V, 200W balanced
lamp load has been used to carry out the experiment.

PMU comprises of data acquisition system consisting of
a cRIO-9066 controller along with a NI-9246, NI-9242, a
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FIGURE 7. Block diagram of an experimental setup.

FIGURE 8. Laboratory experimental set up for transmission line with PMUs for synchronized phasor measurements.

TABLE 1. Phaselet based perception and comprehension of transmission line fault.

NI-9467 C Series GPS Synchronization Module and NI-
9401 C series digital input-output module.

I. CompactRIO (NI cRIO-9066): It is an embedded real-
time controller with reconfigurable FPGA for C Series
Modules with 8 slots, build with 667 MHz Dual-Core
CPU, 256 MegaByte DRAM and 512 MegaByte stor-
age. In this setup, cRIO-9066 holds the C series mod-
ules, one in each slot. cRIO acts as an intermediate
between Dell Workstation which runs LabVIEW to per-
form required computations in real-time and C series
modules [21].

II. NI-9246: It is a 24-bit, 20 Ampere (rms), 30-Ampere
peak-to-peak, three-phase AC current input module
which is used as a current transformer (CT) for sensing
three-phaseAC current from the transmission linewith a
single NI-9246module. It can sample the analog current
at a rate of 50,000 samples per second per channel which
can provide the sampling rate up to 50 kHz. In the
present work, the sampling rate is 10 kHz [22].

III. NI-9242: It is a three-phase AC voltage input mod-
ule of 250 Volt (rms) Line to neutral, 400 Volt (rms)
Line-Line, 24 bit, three-channel voltage input module.
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TABLE 2. Information table.
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TABLE 2. (Continued) Information table.
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TABLE 3. GNB based prediction of fault type.

This module acts as a potential transformer (PT) for
sensing the 3-phase transmission line voltage. The sam-
pling rate of NI-9242 is the same as that of NI-9246 [23].

IV. NI-9467: It is a C series GPS synchronization module
used to provide the necessary synchronized sampling
clock pulse per second (PPS) signal to the PMU along
with the location information (latitude and longitude) of
the PMU [24].

V. NI-9401: It is a 5V/TTL, 8 channel, 100ns C series
digital relay driver module used to generate the trip
signal to open the circuit breaker for protecting the
transmission line in the case of a fault. The trip signal is
a 5 Volt DC which is fed to the relay module to drive the
circuit breaker with a faster rate, which in turn isolates
the transmission line in case of fault detection [25].

The experimental setup, cRIO-9066 along with the C series
module measures three-phase voltage and current signals
at the sending end of the transmission line are passed
through an anti-aliasing filter with 1 kHz of the lower cut-
off frequency. The three-phase current signal is transmitted
to Dell Workstation for further processing. The LabVIEW
software installed on the Workstation is used for analyz-
ing and visualizing the signals using phaselet transform for

perception, comprehension and prediction of the transmission
line faults at a higher speed.

A. PHASELET BASED PERCEPTION AND
COMPREHENSION OF THE TRANSMISSION LINE
The fault perception based on the phasor computed over one
cycle of the AC signal of 50 Hz takes more than 20 ms.
It is obvious that the fault perception time using FCDFT is
much more than 20ms. Hence, the trip signal is issued only
after 20ms [15]. In reference [12], Rajaraman reported the
real-time fault analysis, which is completed within 2–3 cycles
after fault inception. The perception based on the phase-
let algorithm is more compared to that of FCDFT, which
computes phasor for every 20 ms. Hence the fault perception
time based on the phaselet algorithm is much less than that
of FCDFT. Table 1 shows the fault perception time using
a Phaselet algorithm for detecting the fault. Instant of fault
indicates the time at which the fault has applied. Instant of
detection indicates the time at which the fault was detected.
The difference between the fault instant and the instant of
detection gives the total time taken to detect the fault (fault
perception). Table 1 shows that the detection time of the
fault is on an average of 8 ms. Thus, the perception of
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fault using the phaselet algorithm on the transmission line is
much greater compared to that of the conventional FCDFT
algorithm.

B. PREDICTION USING GAUSSIAN NAÏVE BAYES (GNB)
Gaussian Naïve Bayes (GNB) technique has been used for
predicting the type of fault. A number of tests have been
conducted by applying different types of fault using a fault-
creating block to demonstrate the prediction capability for
real-time fault. Mean and standard deviation of phaselet are
estimated for each fault (i.e., normal state, LG fault, LL fault,
LLG fault, and LLL fault) condition at different frequencies
(d.c., fundamental, 2nd harmonic, 3rd harmonic and 4th har-
monic) for model construction as shown in Table 2. For exam-
ple, under no-fault condition, at k=0 (D.C. component), mean
of 0.0227913 and standard deviation of 0.000703 is achieved
for 1st Phaselet (ψ0). Similarly, the mean of 0.0227500 and
a standard deviation of 0.000789 is achieved for the second
Phaselet (ψ1). The information in table 2 is utilized for
finding the PDF using equation (9). Table 3 represents the
prediction stage by considering a new data set of phaselet
coefficients derived from the three-phase current, whose fault
type is to be predicted. The first five columns show the equiv-
alent three-phase Phaselet coefficients of ECPA of the input
currents at d.c., fundamental frequency, second harmonic,
third harmonic and fourth harmonic. Columns six through
ten presents the conditional probability of each fault, which
is calculated for each attribute. The highest probability value
of the corresponding fault class shown in the bold letter is
considered as prediction obtained using the GNB method.

For example, consider the first row of table 3, which rep-
resents Phaselet coefficients 0.022964, 0.003748, 0.001928,
0.00132 and 0.001016 at d.c., fundamental, 2nd harmonic,
3rd harmonic and 4th harmonic respectively. The condi-
tional probability found for each class is 0.268547, 5.7859E-
82, 2.11624E-53, 2.16095E-33 and 1.353210E-01 for class0
(normal state cn), class1 (LG fault cf1), class2 (LL fault cf2),
class3 (LLG fault cf3) and class 4 (LLL fault cf4) respec-
tively. It can be observed that the highest conditional proba-
bility of 0.268547, belongs to class0 (i.e. no-fault condition).
Thus, the new test data is predicted as class0 (normal state).
The predicted result is compared with the actual prediction
obtained by the SEL-311C transmission protection relay. It is
found that the result is showing an accuracy of 100% with
quick detection.

V. CONCLUSION
PMUs with their real-time phasor measurements enhance
the situational awareness of the power system. This paper
proposes an expeditious detection of faults on the trans-
mission line, using Phaselets calculated from Synchronized
phasor measurements from PMUs. The synchrophasor mea-
surements from the PMUs are taken online and the Phaselets
are calculated. Subsequently, the Gaussian Naïve Bayes tech-
nique has been used for predicting the type of fault, thereby
enhancing situational awareness. The proposed Phaselet

based expeditious detection method was implemented using
LabVIEW as it is equipped with visual displays that can
be used by power system operators for initiating enhanced
SA based control and protection decisions. LabVIEW based
virtual instrumentation has the feature of designing of SAVT
for laboratory prototype implementation. The real-time anal-
ysis validates the most important requirement for speed and
efficiency in restoring the defective transmission line during
different faults. The future scope of the proposed work is
to predict the location of the fault accurately on the trans-
mission line and thus further leading to increased situational
awareness.
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