
Received October 7, 2019, accepted November 10, 2019, date of publication November 19, 2019, date of current version December 2, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2953356

Wipi: A Low-Cost Large-Scale
Remotely-Accessible Network Testbed
ABDELHAMID ATTABY 1,4, NADA OSMAN2, MUSTAFA ELNAINAY2,3, (Senior Member, IEEE),
AND MOUSTAFA YOUSSEF2, (Fellow, IEEE)
1Wireless Research Center, Egypt Japan University of Science and Technology, New Borg El Arab 21934, Egypt
2Department of Computer and Systems Engineering, Alexandria University, Alexandria 21544, Egypt
3Information Systems Department, Faculty of Computer and Information Systems, Islamic University of Madinah, Medina 42351, Saudi Arabia
4(on leave) Faculty of Engineering at Shoubra, Benha University, Banha 13518, Egypt

Corresponding author: Abdelhamid Attaby (abdelhamid.rabia@ejust.edu.eg)

This work was supported in part by a grant from the Egyptian National Telecommunication Regulatory Authority (NTRA).

ABSTRACT The high cost of establishing a network experimental lab obstructs researchers from fulfilling
and validating their research proposal. Remotely accessible testbeds overcome this difficulty by allowing
researchers to access the testbed and the attached expensive wireless devices through the Internet. In this
paper, we introduce WiPi as a low-cost networking testbed that can be utilized remotely and supports large-
scale experiments. WiPi is implemented from the available off-the-shelf computing nodes, such as standard
laptops and Raspberry Pis, with the goal to be affordable to many institutions, especially in developing
countries. Multiple features, including users’ isolation, disk protection, ease of user experience, power
efficiency, multiple application domains, efficient disk utilization, and resource pooling, are implemented
as part of the testbed. The interface and functionality of WiPi target three different levels of researchers in
terms of their research experience: Expert, users with no prior knowledge with ns3, and novice. Besides,
WiPi can combine simulation, emulation, and experimentation over real devices in the same experiment to
further support larger-scale experiments. The web interface of the testbed allows researchers to partition and
map a virtual network with a large number of virtual nodes to a physical network with a limited number of
real nodes. Evaluation results show that WiPi can be utilized by a wide range of researches and can support
different networking applications. Furthermore, it can reduce the execution time of large-scale experiments
by almost 40%, highlighting its suitability as a low-cost, large-scale remotely-accessible network testbed.

INDEX TERMS Network experimentation, wireless networks, remotely accessible testbeds, low-cost
testbeds, network emulations.

I. INTRODUCTION
1Technologies in the field of wired and wireless networks
are evolving rapidly, leading to the emergence of new
protocols and standards. However, these protocols and stan-
dards need to be tested and validated by their inventors
and other researchers. Typically, this testing and valida-
tion can be achieved by multiple approaches, including net-
works simulations, emulation, and/or implementation on real
devices.

Researchers often prefer simulations at the beginning of
their work and when they want to validate their results and
idea initially. This is due to the low-cost and ease of use of
simulators. For instance, ns-2 [2], ns-3 [3] and OPNET [4]

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenchi Cheng .
1An earlier version of this paper appeared in the proceedings of the

2018 IEEE 87th Vehicular Technology Conference (VTC Spring) [1].

provide scalable, easy and modular tools for researchers to
build simulated wired or wireless networks.

Emulations, on the other hand, can take the validation
of the results to the next level by providing manageable
and reproducible environments while mitigating the exper-
iments with real applications. For instance, CORE [5],
EMPOWER [6] and ns-3 [3] provide tools for researchers
to build emulated wired or wireless networks. Each node in
these networks can be managed like a separate node with
full control over its TCP/IP layers. Nonetheless, emulations;
similar to simulations; do not provide the experimenters with
real device nor practical conditions to test their work which,
in turn, affect the research ability to match the real network.
Furthermore, dealing with such emulators requires some
experience to configure the system parameters and its nodes.

Implementation on real devices is the optimal choice to
handle real conditions on different devices under practical
scenarios. However, these implementations have multiple

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 167795

https://orcid.org/0000-0002-2310-9514
https://orcid.org/0000-0002-2009-0539

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

obstacles including the high cost of the real devices, the
overhead of setting up the hardware and software on a scale
and the experience required to run the desired experiment on
the installed testbed efficiently.

Recently, researchers have begun to rely on the remotely
accessible testbeds in testing their research over real devices.
Testbeds such as CRC [7], CORNET [8], CogFrame [9],
ORBIT [10], NITOS [11], and OneLab [12], have gained
momentum as they allow researchers to validate their results
through pre-installed, pre-configured and open testbeds that
can be used from anywhere through the Internet. The main
architecture of these testbeds consists of a number of process-
ing nodes that are connected to external networking devices,
e.g., RF devices, and managed by extra software tools for
configuration and collection of the results. Managing the
testbed is implemented using an abstract interface layer that
can be used to manage the users and deployed experiments.
These leading testbeds, though allowing a wide range of
researchers to validate their work, results, and systems in
realistic environments, still have space for improvements to
scale to new users, especially in developing countries where
cost is the main concern.

In this paper, we present WiPi as a remotely-accessible
testbed which has been implemented with particular design
goals including leveraging low-cost devices, utilizing het-
erogeneous devices, resource pooling, and supporting large-
scale experiments through mixing simulation and emulation.
The testbed leverages commodity hardware devices such as
standard laptops/desktops and Raspberry Pis (RPis) as low-
cost computing devices. Besides, it leverages low-cost RF
nodes such as standard WiFi adapters and low-cost Software
Defined Radios (SDRs) for communication. Also, it can
virtualize the testbed nodes and mix emulation and simula-
tion in the same experiment to support large-scale networks.
Moreover, it allows resource pooling to separate the com-
puting nodes (i.e., laptops or RPis) from the communication
nodes (i.e., WiFi, low-cost SDRs, or USRPs) to efficiently
utilize the available resources.

WiPi facilitates experimentation of large-scale networks
through two techniques: node virtualization and combining
simulation, emulation, and implementation on real devices in
the same experiment. In node virtualization, we multiply the
number of testbed nodes by virtualizing each physical node to
several virtual nodes to increase the testbed resources. On the
other hand, combining simulation, emulation, and experi-
mentation on real devices in a single experiment enables
evaluation of practical applications and protocols over a wide
range of wired and wireless network scenarios while achiev-
ing scalability of the testbed. For instance, in some experi-
ments, researchers are interested in probing and evaluating
the behavior of a part of the network (sub-network) in a
system consisting of a large number of nodes. Executing the
entire scenario on real devices can be resource exhaustive and
of little value, as the user is not interested in the exact behavior
of every single node but the outcome of the big network on
a subset of nodes. For such scenarios, the researcher may

implement the part of the interest on some of the WiPi nodes,
emulate the links between them and simulate the rest of the
experiment.

WiPi is designed to support three different levels of
researchers’ experience: Expert, users with no prior knowl-
edge with ns3, and novice. Expert users can utilize the testbed
devices directly without using the testbed utilities. Users that
have no prior knowledge about ns-3 [3], the used emulation
software in the testbed, can use the code generator utility
provided byWiPi to map a drawn network typology to scripts
required by the testbed nodes to execute. Finally, novice users
with low experience can use the testbed to partition and map
a network topology to several testbed nodes and monitor the
results.

The WiPi architecture uses a controller server that runs
the cOntrol and Management Framework (OMF) experiment
controller that manages and controls the testbed nodes [13].
In addition, the controller server runs a web portal that man-
ages researchers’ reservations, authentications and authoriza-
tions, a VLAN control module to isolate concurrent users in a
separated environment, a power control module that controls
powering on/off the Raspberry Pi nodes to add a control layer
over the Raspberry Pi nodes, a disk imaging module to save
and manage users’ images, and some pre-configured scripts
that can be used by researchers for the execution of large-
scale experiments. In addition, as part of its design, WiPi
needs to address a number of specific challenges related to the
low-cost and heterogeneous hardware including users’ isola-
tion, disk images handling, ease of use, the implementation
of large-scale experiments’ support, and power efficiency.

We evaluateWiPi from three perspectives: the power of the
low-cost devices in the middle of live experiments, the per-
formance of combining simulation and emulation in the same
experiment, and the performance of executing experiments
using WiPi. The evaluation using heterogeneous devices and
interfaces shows that the throughput of the low-cost nodes
can support a wide range of wireless networking applica-
tions. The evaluation of combining the simulation, emulation,
and implementation on real devices in the same experiments
against pure simulation or emulation only shows that this
approach can reduce the total execution time of experiments
by almost 40% as compared to simulating the same experi-
ments on a single physical node.

The rest of this paper is organized as follows: Section II
discuss related work. Our design goals and architecture are
explained in Section III. The implementation and different
execution scenarios of large-scale experiments are discussed
in Section III. The evaluation of theWiPi testbed is detailed in
Section IV. Finally, we conclude and discuss future directions
in Section VI.

II. RELATED WORK
In this section, we discuss the public wired and wireless
remotely accessible testbeds that are open for researchers to
signup and use the hardware devices installed by the testbeds’
operators. We will also cover the related work to overcome

167796 VOLUME 7, 2019

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

TABLE 1. A features comparison between WiPi and other testbeds.

the main limitation of using real hardware devices: the lack
of scalability, reliability, and consolidation.

A. REMOTELY ACCESSIBLE NETWORKING TESTBEDS
One of the most popular wired and wireless testbeds,
is ORBIT [10]. It consists of 20×20 grid of processing nodes.
Each node is connected to a software-defined radio device
(SDR). The researchers can reserve the testbed to perform
their experiments. ORBIT is using OMF tomanage controller
servers and other resources. ORBIT depends on relatively
high-cost nodes and devices.

CORNET [8] is another wireless testbed that consists
of 48 software-defined radio nodes. The researchers inter-
ested in the wireless field, especially in the algorithms of
Cognitive Radios (CR) and its applications, can use CORNET
to perform their tests and validate their results. The testbed
still has a lack of important functionalities such as a disk
imaging system and a reservation system.

NITOS [11] presents a testbed built from multiple wireless
interfaces to support experimentation with heterogeneous
(Wi-Fi, WiMAX, LTE, Bluetooth) wireless technologies
in different environments (e.g., indoor, outdoor). It con-
sists of 100 nodes (some of them are mobile). Similar to
ORBIT [10], it relies on high-cost nodes and devices to build
a NITOS testbed.

CRC [7] is another wireless testbed that is using the OMF
framework, Frisbee disk imaging system, a reservation sys-
tem, and other features. However, it does not support large-
scale experiments and still require expensive hardware.

Federated testbeds is another class of testbeds in which
multiple testbeds located in different sites can be integrated
to facilitate cross-domain experiments. Fed4Fire [14] is a
project that is open, remotely accessible, and introduces reli-
able facilities that supports a wide variety of diverse Internet
research areas. GENI (Global Environment for Networking
Innovation) [15] is an open infrastructure that facilitates
research and education for large-scale networks and dis-
tributed systems. FIBRE [16] is a testbed that connects local
laboratories together to form a virtual network laboratory to
be accessible by students and researchers.

WiPi, on the other hand, is implemented using hetero-
geneous low-cost devices. Besides, it facilitates large-scale
wired and wireless experiments. The homogeneity in the

installed operating systems across all the different heteroge-
neous used devices improves the user experience. Besides,
the dynamic network topology that is created on-demand uti-
lizes the testbed resources more efficiently and increases the
accessibility of the testbed expensive devices. Furthermore,
the storage management system of WiPi offers a set of pre-
defined standard disk images, allows saving user images, and
utilizes the time and bandwidth needed to load such images
to multiple nodes. Finally, the interface and functionality of
WiPi support different level of users in terms of their research
experience.

A comparison between the features implemented in WiPi
and other testbeds is summarized in table 1.

B. APPROACHES TO SCALE NETWORKING EXPERIMENTS
In this section, we explore the different approaches used to
perform large-scale experiments and emulate wireless envi-
ronments, including simulation, node virtualization, network
emulation, and wireless emulation.

1) NETWORK SIMULATION
Network simulation is one of the most effective evaluation
methodologies in the area of computer networks, mainly for
the development of new communication architectures and
network protocols. Network simulators allow researchers to
model computer networks by defining both the behavior of
the network nodes and communication channels. Popular
simulators such as ns-2 [2], ns-3 [3], OMNeT++ [17], and
OPNET [4] has been used by a wide range of researchers.

Ns-2 [2] is one of the early efforts in this field. Network
simulations using ns-2 require researchers to write a C++
code to model the behavior of the simulation nodes. Also,
they need to write oTcl scripts to control the simulation and
specify additional aspects, for example, the network topol-
ogy. However, a significant shortcoming of ns-2 is its limited
scalability in terms of simulation time and memory consump-
tion. This shortcoming affects the usability of ns-2 because
new research domains in the field of computer networks, such
as peer-to-peer networks, wireless sensor networks (WSNs),
and grid architectures, require the simulation of extensive
networks, probably with thousands of nodes.

Ns-3 [3] is the successor of ns-2 that overcomes the
shortcomings of ns-2. Network simulation using ns-3 can be

VOLUME 7, 2019 167797

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

performed entirely using C++ code only while Python code
can be used to release parts of the simulation. Ns-3models are
not compatible with the ns-2 simulator, so, they to be ported
to ns-3 manually.

OMNeT++ [17] is a general-purpose discrete event-based
simulator that is applied mainly in the network simulation
domain. Network simulation using OMNet++ can be per-
formed using C++ code to generate so-called simple mod-
ules. Simple modules can be merged using NED, the network
description language of OMNeT++, to form so-called com-
pound modules. NED supports writing variable parameters,
e.g., the number of nodes, in the network description. In this
case, the modules representing the nodes can be dynamically
instantiated by the simulator during the time of running.

OPNET (Optimized Network Engineering Tools) [4] is a
discrete event commercial network simulator. Network sim-
ulations in OPNET are performed using its GUI interface to
define a network topology and to configure parameters start-
ing from the application layer to the physical layer. OPNET
uses a predefined set of devices and protocols. Therefore,
researchers cannot test new protocols nor alter the behavior
of existing ones.

In summary, simulation tools offer a flexible and scalable
way to produce reasonably detailed physical and link models
and to repeat and control target network conditions at the
user’s requirement. Whereas they are beneficial in evaluating
specific solutions, they become inaccurate and computation-
ally unmanageable when used for cross-layer evaluation of
applications running on large-scale networks. As the TCP/IP
protocol stack is written from scratch in most of the simula-
tion tools, it does not precisely emulate real-world protocol
stacks, which can significantly affect performance.

2) NODE VIRTUALIZATION
In this approach, the virtual nodes are hosted on the phys-
ical nodes of the network infrastructure. Each virtual node
can be implemented using one of the virtualization soft-
ware such as OpenVZ [18], Xen [19] or VMware [20].
For large-scale experiments, various virtual nodes can be
defined, established, and mapped onto the corresponding
resources of the testbed. Users can define the number of
nodes as well as the connectivity/topology of the different
virtual and physical nodes. Each virtual node has its own
private filesystem, process hierarchy, network interfaces, and
IP addresses, and set of users and groups. The parameters of
the connection channel between different virtual and phys-
ical nodes (e.g., packet loss, bandwidth, and delay) have to
be implemented to emulate wireless channels. Furthermore,
the user has to model, calculate, and implement the effect of
map position, e.g., GPS coordinates, of each wireless node
over the channels between nodes. Therefore, the researcher
has to define and implement all these parameters. As an
example, Emulab [21] uses the concept of virtual nodes to
involve a large number of nodes in the same experiment by
allowing testbed users to control virtual nodes using either
Emulab commands or Xen Project Management API (XAPI)

FIGURE 1. An example of three physical nodes of the same testbed and
each node has its own ns-3 simulated network and connected together
through the Emu NetDevice type [3].

commands [22]. Emulab uses the concept of node virtualiza-
tion to mainly support the researchers that target the wired
network experiments.

ORBIT [10], as another example, uses virtual machines to
facilitate the on-demand creation of additional nodes to allow
researchers to run non-performance critical back-end soft-
ware, various controllers, or monitoring and reporting tools.
Similarly, CRC [7] used the concept of system virtualization
to allow slicing the physical node into static virtual nodes
with predefined specifications (disk space, RAM, network
interfaces, etc.). Each virtual machine has exclusive access to
one of the wireless interfaces attached to the physical node.

In summary, the node virtualization approach has the flex-
ibility of having a number of virtual nodes implemented over
one physical node. However, it suffers from requiring the
user to manually emulate the wireless channel characteristics
between physical or virtual nodes.

3) NETWORK EMULATION
This approach extends the node virtualization technique to
addmore control over the whole network, including the wired
and wireless devices. Users can draw the physical and the
logical topology of the network, define the nodes parameters
and their locations, and control each virtual node separately.
The software automatically defines the channel characteris-
tics based on the locations of the user-defined nodes and the
parameters specified by the users. For example, the Common
Open Research Emulator (CORE) [23] is a software that can
emulate networks on one or more physical machines. Emu-
lated networks can be connected to real networks through
physical interfaces.

Ns-3 [24], as another example, has been designed to
integrate with testbeds and virtual machine environments.
ns-3 supports two kinds of network devices. The first kind,
called Emu NetDevice, allows the nodes in the simulation
to send data on the physical network. The second kind,
called Tap NetDevice, allows physical nodes to participate

167798 VOLUME 7, 2019

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

FIGURE 2. An example of connecting virtual machines to the ns-3 simulation virtual machine on the same physical node through the Tap
NetDevice [3].

in the simulation as if they were one of the simulated nodes.
The simulation can include a combination of the two kinds.
Figures 1 and 2 illustrate the Emu NetDevice and Tap Net-
Device in the ns-3 simulation respectively. Expert researchers
can integrate ns-3 with ORBIT [10] and Emulab [21] testbeds
in their experiments to benefit from ns-3 simulation and
emulation capabilities.

To further support large-scale experiments, a virtual net-
work with a large number of simulated nodes can be mapped
to a physical network with a small number of physical nodes.
This mapping operation varies from testbed to another based
on the definition of the cost of each physical node. For
example, in EmuLab [21], a random search method is used to
find the mapping. EmuLab divides the search into two stages:
a minimum graph cut to initially partitioning the topology
to smaller topologies and then solving the mapping problem
for each sub-topology. By random search, each simulated
node is assigned to an available physical node, assuming all
available physical nodes are used in the mapping. For each
assignment, the performance of the mapping is evaluated,
and the mapping that gives the best performance is used.
However, the consumed time by random search could always
be a problem for large topologies.

MaxiNet [25] proposed an emulation technique to mix
simulation and emulation using a set of physical nodes. They
used theMETIS [26] graph partitioning technique to partition
the topology over the available physical nodes. The minimum
graph cut is found based on edges weights and nodes weights.
MaxiNet proposes to set edges weights to the capacity of the
links in the topology and nodes weights to the cardinality of
the nodes. This way, the topology will be partitioned so that
less communication is used in the emulated links.

In WiPi, we use the two kinds of network devices provided
by ns-3 to mix simulation and emulation at the same time
in order to support large-scale experiments. We take into
consideration the different specifications, the demand rate,

and the maximum rate of real links of each physical node
in the mapping operation. In addition, WiPi facilitates the
execution of these experiments by automating the generation
of ns-3 scripts for non-expert researchers.

To sum up, the network emulation approach has both the
benefits of virtualization and wireless channel characteriza-
tion. It also integrates physical nodes and virtual nodes into
the same experiment to achieve the user need for monitoring
the behavior of one or more nodes in the middle of large-scale
networks.

4) WIRELESS EMULATION
In this subsection, we will cover the different approaches
used to achieve emulated wireless environments, including
radio propagation emulators and channel emulators. The
approaches used in this subsection are used in the experiments
where multiple wireless communications and channels need
to be tested and evaluated.

a: RADIO PROPAGATION EMULATORS
In this type of wireless emulation, computers with only
wired connectivity behave as if they have wireless con-
nectivity. A controller creates a network quality degrada-
tion description, which corresponds to the real-world events
to emulate the wireless network features (e.g., network
delays, bandwidth availability, and packet loss). For exam-
ple, QOMET [27] implemented a two-stage scenario-driven
technique for wireless network emulation to convert a real-
world scenario to a sequence of network-condition descrip-
tors that support a wide range of experiments.

QOMB [28], NITOS [11], PlanetLab [29] and
EmPower [30] testbeds use these emulators to emulate wire-
less connections in experiments.

In summary, this type of wireless channel emulation
requires a central software that maps the nodes virtual loca-
tions, channels noise, and other parameters that affect the

VOLUME 7, 2019 167799

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

TABLE 2. The virtualization and emulation approaches provided by the
current testbeds.

wireless channel into quality degradation effects. The soft-
ware also needs to have control over the physical interfaces
of different nodes to apply these effects.

b: CHANNEL EMULATORS
In this type of wireless emulation, testbeds use Field Pro-
grammable Gate Array (FPGA) to emulate radio wave inter-
ference and multiple-input and multiple-output (MIMO)
channel-like software-based discrete event simulators. For
example, in [31] the emulator takes in the signals gener-
ated by wireless network cards through the antenna port,
subjects the signals to the same effects that occur in a real
physical space (e.g. attenuation, multi-path fading, etc), and
feeds the combined signals back into the wireless cards while
FPGAs transform the signals using realistic signal propaga-
tion models.

ORBIT [10] and Emulab [21] are typical examples of
testbeds that use wireless channel emulation devices to sup-
port researchers need to test sophisticated wireless channel
characteristics. Through time, the demand for these devices
raises to test new protocols and technologies. Recently, many
commercial wireless channel emulators appeared on the mar-
ket to ensure accurate testing of sophisticated technologies
such as LTE, HSPA, HSPA+, EV-DO,WLAN, andWiMAX.

In conclusion, this type of wireless channel emulation
need special hardware or devices to add the wireless channel
characteristics and parameters to the connections between
different physical nodes.

Table 2 provides a brief comparison of the virtualization,
network emulation, and wireless emulation implementation
in different testbeds. One testbed may implement different
techniques at the same time to provide wide choices to their
users.

The WiPi testbed, as compared to testbeds mentioned
above, considered the most cost-effective testbed. The low-
cost of RPis and its ability to be connected with external sen-
sors thought GPIO pins make the testbed flexible to extension
and supportive to next-generation applications, especially in
Internet of Things (IoT) and wireless fields, and large-scale
experiments. It also presents added features such as a reser-
vation system, disk imaging system, users isolation, device
pooling, and others.

FIGURE 3. Example of a Raspberry Pi node connected to a USRP1 via a
USB interface in WiPi.

III. THE WIPI TESTBED
This section introduces theWiPi testbed including the testbed
design goals and the proposed architecture.

A. DESIGN GOALS
1) LOW COST
We designed the testbed with low-cost devices to make the
final cost of building similar testbeds affordable as well as
scale the testbed to a larger number of nodes. For exam-
ple, a single RPi node costs around $25 - $35. Similarly,
the testbed uses off-the-shelf laptops to act as powerful pro-
cessing nodes in case computational-heavy experiments are
needed. In addition, one workstation acts as a server that
holds the required services and software used to operate the
necessary packages to run the testbed. Figure 3 shows an
example of a typical node in the testbed, where a Raspberry
Pi node is connected to a USRP1 device through a USB cable.

2) HETEROGENEITY
We utilized off-the-shelf heterogeneous devices to establish
a useful testbed that supports the wireless research com-
munity and inspires builders of testbeds and network labs
with the ability to handle heterogeneous devices in the same
testbed. The proposed testbed contains different types of
devices, including Raspberry Pis 3 Model B, laptops, and a
workstation.

3) BETTER USER EXPERIENCE
The testbed users may face difficulties when dealing with
different operating systems to run their experiments and
collect the results. We designed the testbed with an eye on

167800 VOLUME 7, 2019

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

improving the user experience because it is hard for users to
learn different coding styles to deal with different operating
systems. One of the main features in the proposed testbed
is the homogeneity in the installed operating systems across
all the different heterogeneous devices used. We use Rasp-
bian, Ubuntu and Debian operating systems for Raspberry Pi
nodes, laptop nodes, and the controller server, respectively.
All the mentioned operations systems are Debian-based,
which is common and well known in the community. This
provides users with better user experience.

4) RESOURCES POOLING
The limited number of USRPs and their relatively high cost
raises the need for efficient utilization of these high-cost
devices. Other testbeds typically assign a USRP device to
each node so that users can configure and use the USRPs
from the connected nodes. Instead, we amortize the cost of
the high-cost USRPs using the concept of resource pooling,
i.e., putting all USRP devices in a pool and assigning a USRP
only to the node upon request. The node-to-USRP connection
is established only during the reserved time slot and based
on the user’s request. This pooling approach, however, raises
multiple challenges, including USRPs and nodes isolation.

FIGURE 4. Dynamic VLANs creation for resources pooling and users
isolation as used in WiPi.

5) DYNAMIC NETWORK TOPOLOGY
The concurrent users and different USRP-to-Node assign-
mentmay conflict if there is no control over the network of the
testbed devices. The reserved nodes and devices have to be
isolated from other concurrent users’ ones. For that, we group
different users’ devices and nodes by controlling the topology
of the testbed network dynamically to ensure the isolation of
different reservations using virtual LANs. Figure 4 illustrates
how two concurrent users with two different reservations
can be isolated dynamically based on the reserved devices.
As shown, each user’s reserved devices are attached to a
virtual LAN dynamically at the time of reservation.

6) POWER-EFFICIENT TESTBED
The low-power consumed by Raspberry Pi devices saves
much power in the whole testbed as compared to using
traditional computing devices. To further reduce the energy
consumption of the WiPi testbed, we control the powering
operations of Raspberry Pis through the Power over Eth-
ernet (PoE) technology. Specifically, each Raspberry Pi is
connected to a PoE module that can power on/off the RPi.
The PoE module takes power from a PoE port of the main
switch through LAN cable (Pin 4,5) and outputs the power
to the power-in ports of RPi. Through a PoE switch and PoE
modules, we can power on/off RPi nodes using scripts that are
integrated with the reservation system. The system powers on
the reserved nodes only at the reserved time and turns off the
nodes when the reservation ends or users log out at the end of
their reservation times. Figure 5 illustrates how a PoEmodule
of a Raspberry Pi work; a PoE switch provides the module
with the data and the necessary power through a single cable,
while the module separates them into proper terminals.

FIGURE 5. The PoE module used in controlling Raspberry Pis in WiPi.

PoEmodules can also be used to force Raspberry Pis, when
required, to reboot and initiate the process of loading a user’s
image from the network. This is useful for user isolation and
controlling nodes reservations. More details about the boot-
ing procedure of Raspberry Pis are covered in Section III-B2.

7) EFFICIENT STORAGE AND BANDWIDTH UTILIZATION
We provide base images that can be loaded into the reserved
nodes based on the user choice. These pre-built images
save learning time and setup problems for testbed users.
In addition, images built and shared by users can be uti-
lized by other users to save their time. After the users finish
their experiments, they need to save back the changes made
to the base image to their allocated space in the storage
server. We use Frisbee [32] to handle disk imaging opera-
tions. Frisbee enables multi-cast operations in transferring
disk images to targeted nodes. This allows a single disk
image to be loaded into multiple nodes at the same time with
minimal bandwidth overhead. We conducted an experiment
to evaluate the efficiency of using Frisbee as a multi-cast disk
imaging tool in loading the same disk image, i.e., in parallel,
into multiple RPi nodes, instead of loading the disk image
sequentially into each node. We created a compressed base
disk image of Raspian operating system using the frisbee [32]
client software with a total size of 2.43 GB. A storage server
with frisbeed [32] software was used to load the same disk
image to multiple Raspberry Pis in parallel. Figure 6 shows
the average loading time, starting from initiating the transfer
until successfully loading the base image when loading the

VOLUME 7, 2019 167801

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

FIGURE 6. The average loading time for loading a base image into a
different number of nodes in parallel.

same disk image to a different number of nodes in parallel.
From the results, we can see that using Frisbee [32] can speed
up the process of loading the same disk image into multiple
nodes instead of loading it sequentially.

8) DISK PROTECTION
All users to the WiPi testbed get root access to the RPi nodes.
This gives them full flexibility in running their experiments.
However, having root access, users can overwrite the SD
card plugged into Raspberry Pis, which can affect the entire
operation of the Raspberry Pi. To avoid that, we force RPi3-B
models to boot from the network upon restart and ignore the
SD card. Then, the booted operating system will initiate the
disk image writing procedure. For RPi1-B, the model does
not support booting from the network; so, we use u-boot [33]
to add network booting feature to RPi1-B nodes.

Implementing features such as disk imaging, storage
server, and disk protection add complexity for the users to
run their experiments. The users have to load the desired
disk image, either their saved or shared images, to the nodes
before starting using them. The added features increase the
time needed to start the experiment. However, we overcome
this issue by loading the required images to the desired nodes
before the reservation starts, besides, implementing these
features allow each user to have root access to the testbed
nodes so that they can fully control them.

9) MULTI-APPLICATIONS DOMAIN
Besides the importance of the testbed in wireless research,
it can be extended to include more research fields. Specifi-
cally, the Raspberry Pi’s GPIO pins can be used to connect a
different kind of sensors to support new application domains,
e.g., sensor networks and IoT.

B. ARCHITECTURE
Figure 7 shows the architecture of the testbed. It consists
of Raspberry Pi nodes installed with their PoE modules to
control the nodes’ power, in addition to, USRP devices that
can be connected via LAN port and laptop nodes that are
connected, in some of them, to USRP1 devices via USB
ports. All the nodes and USRP devices are connected via
a managed PoE-support switch and a controller server. The
controller server plays a set of roles and can be accessed by
researchers at their reservation time with limited privileges.
Details about the hardware and software used are covered in
the next subsections.

1) HARDWARE
We implemented the WiPi testbed using the following
hardware:

a: LAPTOP NODES
The testbed includes laptopswith various brands and different
specifications. As USRP1 devices can be accessed from its
USB port only, some of the laptops are connected directly
to USRP1 devices through a USB cable. The researcher can
reserve a laptop connected to a USRP1 device or a standalone
laptop. Standalone laptops can run various applications or be
connected to one of the USRP2 pooled devices attached to
the testbed network. Therefore, the testbed utilizes avail-
able devices and nodes efficiently instead of dedicating a
USRP2 device to each laptop or RPi.

b: RASPBERRY PI NODES
The testbed includes RPi3-B nodes installed with their PoE
modules. The testbed can be extended using other models of
Raspberry Pis. There are few differences in their specifica-
tions and booting procedure that may affect their integration
with the system. We show later how this can affect images
loading procedure and how we solved it.

c: PoE MAIN SWITCH
A GigaEthernet PoE switch was installed to connect RPi
nodes, laptop nodes, USRP devices, and the controller
server. The switch provides the necessary power to Raspberry
Pi nodes through their PoE modules. Also, it can be config-
ured using its console port by the VLANs control module and
power control module. The reserved nodes and devices are
grouped in a new dynamically-created VLAN that prevents
other users from accessing the reserved devices. We devel-
oped a VLAN control module that automatically connects
to and configures the main switch to add the ports assigned
to the reserved nodes into a new VLAN during the reserved
time. As shown in Figure 4, suppose that two independent
users reserved different devices and nodes at the same time.
Assume that User 1 reserved two USRP devices, two lap-
top nodes, and one Raspberry Pi node. Also assume that
User 2 reserved one laptop node connected to aUSRP1 device

167802 VOLUME 7, 2019

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

FIGURE 7. The WiPi testbed architecture.

through a USB connection, one USRP device, and two Rasp-
berry Pi nodes. The system will automatically detect the
concurrency, and the controller server will run scripts that will
access the main switch to create two VLANs, one for each
user. The nodes and devices reserved by the first user will
automatically be assigned to VLAN 1. Similarly, the nodes
and devices reserved by the second user will automatically be
assigned to VLAN 2. Pooling and isolation can be achieved
without any interference with other users zones using this
method.

d: USRP DEVICES
Software Defined Radio (SDR) devices with model num-
ber USRP1 and USRP2 are installed with their daughter
boards. The high-bandwidth and high-dynamic-range pro-
cessing capability of the product provide researchers with
powerful devices for testing their experiments and results.

e: CONTROLLER SERVER
We prepared a workstation to act as the controller server
thatmanages theweb portal, reservation system, experiments,
VLANs control module, power control module, and disk
imaging software. The server can be fully controlled by
testbed operators or partially accessed by researchers during
their reservation times with limited privileges.

2) SOFTWARE
The controller server and the nodes were prepared to accept
different packages to facilitate the operation of the testbed.
The main packages include:

a: RESOURCE CONTROLLER AND
EXPERIMENT CONTROLLER
To provide an efficient framework to manage and measure
different researchers’ experiments, we used OMF [13] to
manage the experiments and OML to measure the results.
Using OMF, researchers can write the experiment description
into a script that specifies the participating nodes and the
required commands to be executed in each node at specific
times. The script written by the OMF Experiment Descrip-
tion Language (OEDL) can realize the experiment using a
sequence of events to be executed on each node. During that,
OML collects the results and stores them in a database to
be recovered later. We use OMF because of its popularity
and efficiency in experiments’ management and measure-
ment. OMF and OML source codes do not support Raspbian
operating system and are not compiled for ARM processors.
To integrate the required software with our testbed, we edited
the source code and cross-compiled it to work over Raspberry
Pis with Raspbian operating system.

b: DISK IMAGING
Before the user reservation time begins, the system loads
the user-selected base-images into the reserved nodes’ disks.
We provide base-images installed with common protocols
and tools e.g., NS2 [2], ns-3 [3]. After researchers finish
their edits and other software installations, they can save the
entire disk image into the server’s images storage. The saved
image can be loaded next time by the same user. Using this,

VOLUME 7, 2019 167803

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

the users cannot affect each other, and they can resume from
their final edits. To achieve that, we configure the laptops
and Raspberry Pis to boot initially from the network, pull
their IP address from the DHCP server, and load from the
TFTP server a minimal operating system that later loads the
user-specified OS. Specifically, we compiled a tiny operating
system (TinyOS) [34] with the required Frisbee [32] client
and disk imaging tools. The TinyOS kernel and files are
loaded into the testbed nodes first. After that, the Frisbee
client call the Frisbee server to load the image of the specific
user into that node.

Note that older models of Raspberry Pi, e.g., Raspberry
Pi 1, do not support network booting. To overcome this
problem, we install a u-boot operating system [33] on the SD
Card of Raspberry Pi 1 nodes to initiate the TFTP booting
procedure. Furthermore, the low-memory of Raspberry Pis
(512 MB for RPi1 and 1 GB for RPi3) obstruct Frisbee
client’s operation during the loading process. We overcome
the problem by dividing the image into small size blocks and
load each block separately.

c: WEB PORTAL
The web portal allows both testbed operators and researchers
to authenticate and access the system. Researchers have to
reserve the required nodes and devices from the reservation
system module of the web portal. Their reservation details
are provided to both the VLANs Control Module to separate
the reserved items during reservation time and Power Control
Module to power on the reserved Raspberry Pis before the
reservation time and initiate the user’s disk images loading
procedure. Users can access the controller server and run their
experiments either through a web interface or SSH.

IV. SUPPORTING LARGE-SCALE EXPERIMENTS
Supporting large-scale experiments that include a large num-
ber of resources is a complex task for testbeds with limited
physical resources. In WiPi, we enhance the testbed scala-
bility using two techniques: Node Virtualization and Node
Emulation.

In node virtualization, system virtualization is used to
allow slicing the physical node into virtual nodes with pre-
defined specifications (Disk Space, RAM, Network Inter-
faces, etc.) The created virtual nodes are able to dynamically
access any of the available physical resources such as network
interfaces.

For simplicity, we use static slicing of the physical nodes
in our implementation. A set of static virtual nodes with
predefined specifications are created in each physical node.
Each virtual node has exclusive access to one of the wireless
interfaces attached to the physical node.

To further increase the scale of the testbed, node emula-
tion is used. In some experiments, researchers are interested
in probing and evaluating the behavior of a small num-
ber of nodes in a system consisting of a large number of
nodes. For example, in evaluating a wireless routing protocol,

the researcher might want to physically test a scenario on a
few nodes that are part of a bigger wireless network. Run-
ning the entire scenario on real hardware can be resource
exhaustive and of little value, as the user is not interested
in the exact behavior of every single node, but rather the
behavior of the big network on a subset of nodes. For such
scenarios, combining real-world and simulation experiment
through emulation can be advantageous.

ns-3 is one of the simulation tools that provide emulation
capabilities to support the integration of simulated networks
with real network devices. ns-3 supports two kinds of network
devices [3]: The first kind is called Emu NetDevice. It allows
the nodes in the simulation to send data on the physical
network. The second kind is called Tap NetDevice. It allows
physical nodes to participate in the simulation as if they were
one of the simulated nodes. The simulation can include a
combination of the two kinds. As mentioned before, Figure 1
and Figure 2 illustrate the EmuNetDevice and TapNetDevice
in the ns-3 simulation respectively.

FIGURE 8. Steps required by the user to run a large-scale experiment.

The proposed node emulation approach integrates the ns-3
tool with the testbed physical nodes. We include ns-3 base
images to the predefined list of base images in WiPi. The
balance of this section covers the proposed node emula-
tion approach, starting with implementation goals, and going
through the detailed implementation and supported features.
Figure 8 summarizes the steps required by the users to accom-
plish their large-scale experimentation.

167804 VOLUME 7, 2019

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

A. NODE EMULATION IMPLEMENTATION GOALS
1) MIXING SIMULATION AND EMULATION
IN LARGE-SCALE EXPERIMENTS
Fulfilling the resources requirements of large-scale experi-
ments could exhaust the resources of the testbed, while the
researcher may only be interested in the behavior of a part
of the network. Therefore, it is reasonable only to use the
physical resources to emulate the part of the network under
concern, while simulating the rest of the network. The main
goal of node emulation is to enhance the scalability of the
testbed by applying the concept of mixing simulation and
emulation in large-scale experiments. A simulation will be
used for most of the network, while emulation will only be
used for the parts that have the greatest effect on the evalua-
tion study. Figure 9 provides an example of a topology that is
partitioned into two parts, where the sub-network in each part
will be simulated on a different physical node, while the link
in red color is the one of interest; and it will use a real network
interface between the two physical nodes (Emulated).

FIGURE 9. An example of mixing simulation and emulation, so that only
the parts of interest in the network are emulated, while the rest are
simulated.

2) TARGETING DIFFERENT USER EXPERIENCES
Designing and running node emulation experiments using ns-
3 requires a certain level of experience. Three node emulation
levels are provided to the users to increase the testbed usabil-
ity. Each node emulation level targets one of the following
three different users based on their experiences:

1) Expert User: This user is the one with the highest expe-
rience. He or she can design and partition the experi-
ment using the node emulation concept. He or she also
can write and run the ns-3 emulation scripts as well as
work with shell commands to prepare and initialize the
used resources.

2) Non-ns-3 User: This user is expected to be able to
design his or her own partitioning of the experiments,
but he or she is not an ns-3 user and cannot write ns-
3 scripts. The testbed is supposed to provide a way of
taking users’ experiment designs as an input and auto-
matically generate and run the required ns-3 scripts.

3) Novice User: This user only has his or her experiment
topology but does not know how to partition it to

use node emulation and cannot write ns-3 emulation
scripts. The testbed shall provide automatic partition-
ing tool to find the best mapping between the user
topology and available physical nodes, in addition to
generating and running the required ns-3 scripts.

3) RESOURCES UTILIZATION
The main goal of node emulation is to support large-
scale experiments with limited available resources. Hence,
the mapping technique that maps emulated partitions into
physical resources should take into account resources utiliza-
tion. In particular, it should minimize the resources used and
lower the experiment time as much as possible, while not
affecting the expected performance of the experiment.

When choosing the physical nodes that will be participated
in emulation experiments, three aspects should be taken into
consideration:

1) The number of physical resources available in the node
(RAM,CPU, . . .): These resources should be optimized
with respect to the part of the topology to be run on that
physical node.

2) The demand rate of the node: A resource that is highly
demanded in the testbed should be excluded or used
less in the automatic emulation mapping.

3) The frequency of choosing a physical node in the auto-
matic mapping: If the same physical node is always
selected to be used in emulation experiments, this node
will be exhausted, while there could be other nodes
that are less frequently used. A round-robin approach
is used for selecting nodes in emulation experiments to
avoid exhausting physical nodes.

B. IMPLEMENTATION
As mentioned earlier, node emulation is divided into three
levels based on the user experience. In this subsection,
we describe the implementation of each level in details.

1) MANUAL EXPERIMENTS
Manual experiments are considered to be the highest level
of node emulation, i.e., only expert users would be able to
perform them. To manually design and run node emulation
experiments, the user must have at least a basic experience in
the following:
• Topology partitioning techniques, to be able to design
the emulation experiment, given the available resources.

• ns-3 and its emulation capabilities, to be able to write the
required ns-3 scripts.

• UNIX shell commands, to set up testbed nodes and
network interfaces to be used for node emulation.

The following steps are needed to run manual experiments:
a) Reserve Testbed Nodes: The user needs first to find

and reserve testbed nodes. When a node is reserved,
the user is permitted to choose the initial operating sys-
tem image to be loaded on the node. As node emulation
uses ns-3, the WiPi testbed provides a basic image that
has ns-3 installed and ready to be used.

VOLUME 7, 2019 167805

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

b) Partition the large-scale network topology: The large
network topology needs to be partitioned into smaller
sub-networks. Also, these sub-networks need to be
mapped to the reserved testbed nodes. The users are
fully responsible for the partitioning task because they
are fully aware of their experiments, they can determine
the parts of interest in the topology, and they can spec-
ify the parts to be emulated not simulated. Given the
number of reserved nodes and the computing power of
each node, the user should partition the topology, and
design the emulation experiment.

c) Write the required ns-3 scripts: As shown in Figure 1,
each testbed node should run an ns-3 emulation
module. The user should prepare the ns-3 script that
will be run on each reserved testbed node. Each ns-
3 module should use the suitable emulation device
provided by ns-3, either Emu NetDevice, or Tap Net-
Device. In addition to emulation devices, each module
needs to contain the part of the topology to be simulated
on the corresponding testbed node.

d) Prepare the network interfaces: The user should define
and prepare the network interfaces that will be used
for each emulation module. If the experiment uses only
Ethernet devices, Ethernet connections between nodes
are already set up by the testbed. Otherwise, the user
needs to set up the needed connections. For example,
if the experiment will use WiFi interfaces, an Ad-hoc
wireless network should be created to allow for the
needed connections. Furthermore, the used network
interfaces should be put in promiscuous mode, as it is
a mandatory requirement by ns-3 emulation devices.

e) Run the experiment and acquire results: ns-3 provides
two approaches to obtain experimental results. The
first approach is by creating PCAP files that contain
experiment traces. The second is by using the flow
monitor module. This module computes most of the
performance metrics that could be needed in an experi-
ment, such as throughput, delay, packet loss, etc. After
running the experiment, the user can acquire the results
by finding and extracting the needed performance
metrics from the generated PCAP and flow monitor
files.

2) NS-3 EXPERIMENT AUTOMATION
In this level of node emulation, the testbed assumes a user
with no prior experience in writing and running ns-3. The user
is required to provide a detailed design of his or her emulation
experiment that specifies the following:
• Physical nodes that will be used in the experiment.
• The number of required partitions (sub-networks).
• The sub-networks to nodes map.

The testbed will use these parameters to produce the required
ns-3 scripts automatically and to run the generated scripts.

The implementation of the experiment automation is exe-
cuted in two phases, experiment design and experiment
execution:

a) Experiment Design: The goal of this phase is to design
an experiment and to provide the design to the testbed.
An XML description language based on the Topol-
ogy_Generator tool [35] is used to describe the experi-
ment. This description-language includes the following
main elements:

• Physical node: This element specifies the physical
testbed nodes to be used in the experiment. A phys-
ical node is described by four values: a virtual
name chosen by the user, the real name of the
node in the testbed, the IP address of the interface
attached to the testbed’s network, and the MAC
address of that interface.

• Node: This describes a simulated node in the topol-
ogy, and it could be one of three types: PC node,
Emu node, or Tap node. It also contains a value that
refers to the physical node that hosts the simulated
node.

• Hardware device: A simulated hardware device,
and it could be one of the following: Hub,
Switch, or Router.

• Link: A wired or a wireless link, and it points to a
list of physical nodes that host its connected nodes.

• Application: This element describes a running
application (sender, receiver, UDP/TCP, transmis-
sion rate, and transmission time).

FIGURE 10. An example of designing an emulation experiment using the
GUI application provided by the WiPi testbed.

To facilitate the creation of the XML description file,
we have developed a graphical user interface applica-
tion with drag and drop capability to allow for an easy
way for designing an experiment. The GUI application
allows the user to create physical nodes and use them
to host nodes, links, and hardware devices. It then gives
the user the option to assign each created physical node
to a reserved node from the testbed. Figure 10 provides
an example of an experiment designed using the GUI
application.

b) Experiment Execution: After the experiment design is
provided in XML format, the testbed is required to
perform the following tasks:

167806 VOLUME 7, 2019

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

FIGURE 11. End-to-end flow of the ns-3 automation level of node emulation in WiPi.

• Prepare and initialize the testbed nodes to run in
node emulation mode.

• Generate the required ns-3 scripts based on the
provided experiment design.

• Run the generated ns-3 scripts on their correspon-
dent testbed nodes.

• Provide a way to collect the experiment results.
The experiment controller module of WiPi is the entity

responsible for performing all of the required tasks to run
the experiment. When the experiment controller is triggered
to run an experiment, it first defines and prepares the used
testbed nodes by setting up the needed network connec-
tions between them and putting the used network devices in
promiscuous mode.

The next step is to generate ns-3 scripts; the controller
uses an ns-3 code generator application that is based on the
Topology_Generator [35] to generate the needed ns-3 scripts.
The generator takes the given XML experiment design as an
input and generates a number of ns-3 scripts equal to the
number of physical machines defined in the design. Each
generated ns-3 scripts contains only the part of the topology
that will be simulated on its correspondent testbed node.

After generating ns-3 scripts, the experiment controller
moves each generated ns-3 script to its correspondent
reserved physical node. To control and run an ns-3 script on
testbed nodes, the OMF controller is used. An OMF script is
used to create the needed ns-3 applications on the reserved
nodes and to run the created application for the required
simulation time. The simulation time of the experiment is
defined by the maximum time needed for all of the running
applications in the experiment to terminate.

WiPi allows two ways to provide the results to the user:
• Allow the user to collect it manually by viewing and
analyzing the generated PCAP and flow monitor files.

• Use OML to collect the results and store them to an
accessible database for the user to acquire. OML defines
a set of measurement points and computes performance
metrics at each defined point. The collected points are
then stored in the measurements database.

Figure 11 illustrates the end-to-end flow of the ns-3
automation level of node emulation. As shown, the user can
first use the provided GUI application to generate the XML
file that describes the experiment, then trigger the experiment
controller to start running the experiment by providing the
input XMLfile. To be able to trigger the controller for running
the experiment, the used testbed nodes must be reserved in
advance.

The experiment controller generates the required ns-3
scripts and uses OMF to run them on the reserved testbed
nodes based on the assignment of nodes provided in the given
experiment design.

3) TOPOLOGY MAPPING
In this level of node emulation, the WiPi testbed targets
novice users who do not have any indication on how to parti-
tion the network topology of their experiments over physical
nodes nor the number of physical nodes required to complete
their experiments. The testbed interface is supposed to take
the virtual network topology as an input and automatically
produce the near-optimal partitions of this topology as an
output. This operation is divided into two parts: The first part
is mapping each simulated node in the virtual network to a
physical node in the testbed. The second part is emulating a
set of virtual links established between simulated nodes in the
virtual network to a set of real links in the testbed.

The topology mapping requires each physical node to
be represented by a cost function to distinguish between

VOLUME 7, 2019 167807

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

different types and specifications of each physical node. The
following parameters are taken into consideration:

1) The physical capacity of the physical node (CPU,
RAM, etc.), which defines the load on the node, given
the part of the network simulated on it.

2) The demand ratio of the node, which ensures not to
exhaust the same nodes every time a new topology
mapping is performed.

3) The maximum data rate of the real links attached to the
node, which ensure not to overload real links with data
more than their maximum capacity.

FIGURE 12. Experiment topology.

Traditionally, when performing topology mapping [26],
the load of physical nodes is not taken into account nor the
demand ratio of physical nodes when performing partition-
ing. To illustrate the inefficiency of the current traditional
solutions, let us assume that we have the topology shown
in Figure 12. The topology has 52 nodes to be simulated, and
links are labeled with their capacities. Assume the testbed has
eight available physical nodes, then the topology can be parti-
tioned into up to eight testbed nodes. We use the METIS [26]
partitioning software to perform the required partitioning,
with each link weight is equal to the link capacity, and each
node weight is the cardinality of the node. Figure 13 shows
the resulted partitions over the eight testbed nodes. In the
previous example, each physical node runs 4-8 simulated
nodes, while the available resources in a physical node could
afford to simulate more virtual nodes, leading to a waste of
testbed resources.

On the other side, not only the load on the nodes
but also the total simulation time of the experiment must

FIGURE 13. Partitioned topology. Different colors represent a different
mapping of virtual nodes to a physical node.

be considered. From our experiments, there is a positive
relationship between the number of simulated nodes run per
physical node and the total simulation time. So, a good dis-
tribution of virtual nodes over physical nodes in the mapping
operation will decrease the total simulation time.

Searching the mapping space for the best-evaluated point
given a cost function is an NP-hard problem [36]. Therefore
a greedy search method could be used to find a near-optimal
solution for the mapping.

Our approach in finding the near-optimal solution is
divided into an initial run and further runs. Initially, the user
can select a performance level on a scale from 1-10. This
performance level is a direct map to the total simulation
time, where the 10th level will run the whole virtual network
topology on a single physical node (pure simulation), and the
1st level will use all of the available physical nodes to run
the experiment. The levels in between will use a portion of
the available nodes based on the selected level.

After specifying the number of physical nodes, the par-
titioning problem can be described as follows: let n be the
number of virtual nodes, k is the number of physical nodes,
and Wij is the virtual link capacity between node i and j.
We construct an undirected graph that consists of n vertices.
Each edge lies between vertex i and vertex j has a weight
Wij. Subsequently, the partitioning technique tries to find the
minimum k cuts based on the edge weights. Hence, it will
tend to avoid emulating virtual links with high capacities
(high weight on edges).

In practice, the actual amount of traffic passing through
a real link could differ from the capacity of the mapped

167808 VOLUME 7, 2019

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

FIGURE 14. Evaluating the data rate between the testbed nodes and the USRPs using the USB or LAN interfaces.

virtual link. The traffic could be larger or lower than the
capacity by a considerable deviation. Therefore, using link
capacities is not assured of achieving the target of lowering
the traffic passing through emulated links, and it would be
better to use the actual amount of traffic instead of link
capacities. This is achieved incrementally by monitoring the
output of the different runs of the same simulation exper-
iment. Specifically, if the users are not satisfied with the
emulation performance, i.e., the total simulation time, they
can use the extra information collected during the run in next
runs to enhance the partitioning performance (as usual, any
performance evaluation is based on multiple runs, and the
average results are reported). In the new run of the experi-
ment, instead of using link capacities, the amount of actual
traffic passing through each link will be used as the weight
of the link/edge. Thus, this second run will tend to lower
the actual traffic passing through emulated links, which is
expected to improve the performance of the partitioning.

V. EVALUATION
In this section, we evaluate WiPi from three perspectives.
The first one is the capabilities of low-cost devices when
participating in testbeds as processing nodes. The second
one is the performance of our approach of combining the
nodes/networks simulation and emulation in the same exper-
iment as compared to using the simulation or emulation
independently. The last one is the performance of executing
large-scale experiments using WiPi testbed as compared to
using a single machine.

A. LOW-COST DEVICES
In this part, we evaluate the capabilities of low-cost devices,
as processing nodes, when connected to external SDR
devices. The evaluation studies the throughput (data rate)
between nodes, either Raspberry Pis or laptops and USRP
devices. Tables 3 and 4 summarize the specifications of the
testbed processing nodes and the SDR devices, respectively.

The data can be transferred in terms of streams between the
FPGA of a USRP device and a node using a host interface.
We evaluated the streaming rate through benchmark_rate
command that inputs the testing rate in Mega Samples per
Second (MS/s), the sample type, the direction of the transfer,

TABLE 3. Installed nodes specifications.

TABLE 4. Installed SDR devices specifications.

and other options. We fixed the type of samples to be I/Q
sample, which is used by most applications and the data
format to be 16-bit complex< float>. The total size of
each sample is 32-bit. We monitored the number of sam-
ples that can be sent/received/dropped between nodes and
different USRP devices in addition to the number of over-
flows/underflows detected, and then we calculated the actual
rate. Figure 14 summarizes the results obtained using the two
types of USRPs and the testbed nodes.

1) RASPBERRY PI NODES
Using a Raspberry Pi as a software-defined radio process-
ing node has some limitations due to the limited capabili-
ties of Raspberry Pis. However, if the experiment and the
required processing are small, it can be handled by Raspberry
Pis. We show here the throughput between Raspberry Pis
and USRP devices. We connected Raspberry Pis with a
USRP1 device via a USB cable and monitored the sam-
ples sent/received to/from USRP1 device. Figure 14a, 14b
summarize the 95% confidence interval of the average of
sending/receiving rate to/from a USRP1 device through
USB2 connection. As shown in the figures, a Raspberry
Pi 3-B can perfectly handle the small and high date rates
sent/received to/from a USRP1 device up to the maxi-
mum host streaming rate of the USRP1 device (256 Mbps).
Furthermore, due to themaximum connection rate of Ethernet
technology (100 Mbps), a Raspberry Pi 3-B cannot handle,
on average, more than 93.5 Mbps practically when con-
nected to an N210 USRP device through a LAN connection.
Figure 14c, 14d shows 95% confidence interval of the average

VOLUME 7, 2019 167809

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

of the actual rates that can be streamed between a Raspberry
Pis and a USRP N210 device.

2) LAPTOP NODES
Nodes consisting of laptops or laptops connected to
USRP1 devices are considered the main processing unit to
the researchers who are using the WiPi testbed. We eval-
uated the maximum throughput that a laptop can handle.
Figure 14a, 14b shows the relation between the testing rate
and the actual rate in 10 seconds when a laptop is connected
to a USRP1 device. The results show that a laptop can work
as a perfect software-defined radio processing node using
a USB connection and up to the maximum allowed rate
of USRP1 devices (256 Mbps). Figure 14c, 14d summa-
rize the same test when using a LAN connection to USRP
N210 device; it shows that a laptop equipped with a GigaEth-
ernet interface can handle date rates sent/received to/from
an N210 USRP devices up to its maximum capabilities
(800 Mbps).

From the results above, we can conclude that low-cost
devices can be utilized in different applications and exper-
iments. Using such devices in the WiPi testbed will not
obstruct the experimentation process.

B. COMBINING SIMULATION AND EMULATION
We conducted some experiments to evaluate the effect of
mixing simulation and emulation, against having a pure sim-
ulation or pure emulation. In the first experiment, the effect of
using a real link/emulated link was evaluated with respect to
simulation time and CPU load. For simulation, a single phys-
ical node was used to simulate both the server and the client.
This way, the traffic between the two nodes is simulated by
CPU clocks, as shown in Figure 15.

FIGURE 15. Simulation using a single physical node.

For emulation, instead of using one physical node, two
physical nodes were used, where one physical node used to
simulate the sender and one to simulate the receiver. The traf-
fic between the two simulated nodes passes through the real
link between the two physical nodes, as shown in Figure 16.
The capacity of both the real link and the simulated link in this
experiment is 1Gbps, and hence, the traffic passing through
the links is limited to this capacity.

In Figure 17, we change the traffic passing through the
links (simulated/emulated) on the X-axis, and record the

FIGURE 16. Emulation using two physical nodes.

FIGURE 17. Simulated link vs. emulated link with respect to simulation
time (Link capacity = 1Gbps).

FIGURE 18. Simulated link VS emulated link with respect to CPU load
(single node vs sender & receiver nodes).

corresponding average experiment time on Y-axis. From the
figure, we can see that time is always greater for emulation
than simulation. This is due to the real movement of the traffic
in real links instead of just performing CPU clocks in the
simulation.

Figure 18 compares average CPU load, where the average
load on the single physical node used in the simulation is
compared to the average load on the two physical nodes used

167810 VOLUME 7, 2019

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

in the emulation. It is noticeable that simulating the sender
and the receiver on the same physical node consumes more
CPU than simulating them in two separate physical nodes.
Accordingly, using simulation only in large-scale experi-
ments is limited to the CPU power of the machine running
the simulation.

In the second experiment, we evaluated the effect of par-
titioning the traffic on two physical nodes and an emulated
link (mixing simulation and emulation). Instead of simulat-
ing/emulating the whole traffic, the traffic is partitioned over
simulation and emulation. As shown in Figure 19, the traffic
is partitioned on three links: a real link, a simulated link on
the first physical node, and a simulated link on the second
physical node.

FIGURE 19. Mixing simulation and emulation using two physical nodes.

FIGURE 20. Examples on partitioning the traffic using both simulation
and emulation. This is an example of the used approach in supporting
large-scale experiments in the WiPi testbed.

Figure 20 shows the total time required to finish the experi-
ment for different partitioning scenarios in terms of the actual
traffic passed through the emulated link. Note that when
the emulated traffic is equal to zero; this means that this
is a pure simulation executed internally inside the physical
nodes. However, when the emulated traffic is equal to the
real link capacity (1G in this experiment), this means that this
is a pure emulation, i.e. all traffic is carried on the emulated
link between the two physical nodes without any simulation

traffic between the internal virtual nodes. We conducted the
experiment for three different values of the total traffic sent
between nodes in the same network topology: 1Gbps, 2Gbps,
and 3Gbps. The capacity of the simulated links was set to
the value of the traffic passing through the link to prevent
losses. From Figure 20, we can see that at the beginning of the
1Gpbs total traffic curve (the blue curve), when the emulated
traffic is equal to 0, the CPUs on the physical nodes are
fully utilized by the simulated traffic. This CPU bottleneck
makes the total simulation time takes 22 seconds on average.
However, the total simulation time starts to decrease when
the Network Interface Cards (NICs) start to handle part of
the traffic (when emulation starts) until it reaches an optimum
point at 600Mbps emulated traffic, where the total simulation
time is 18 seconds on average. After this point, the perfor-
mance starts to decrease (increase in the simulation time) as
the bottleneck ismoved to the buffers of the NICs that become
overloaded. The total simulation time in this case, where the
emulation overhead is the dominating factor, is 37 seconds
on average. Note that the maximum emulated traffic cannot
exceed the link capacity (1000 Mpbs in this scenario). This
is why we did not see this behavior in the case of 2Gbps and
3Gbps total traffic curves (red and green curves). The previ-
ous results show that combining simulation and emulation in
one experiment enhances the total experiment time.

The previous experiment shows that partitioning the traffic
over physical nodes and increasing the traffic on the emulated
link instead of running the total traffic on one physical node,
reduces the experiment time. Furthermore, increasing the
emulated traffic, which is the traffic passing through the real
link, also reduces the time, where, the minimum experiment
time is reached when the real link is fully utilized. The total
execution time of experiments can be reduced by almost 40%
as compared to simulating the total traffic on a single physical
node.

In the analysis above, we show that combing simulation
and emulation in the same experiment enhances the total time
required to perform experiments. In addition, the CPU load of
each of the devices that participated in these experiments is
minimized. In large-scale experiments, where a single low-
cost device cannot hold out the CPU and memory required to
perform such experiments, combining simulation and emula-
tion can be advantageous.

C. LARGE-SCALE EXPERIMENTATION
In this part, we evaluate WiPi in terms of the performance
of executing large-scale experiments. The setup of the exper-
iment is shown in Figure 21, where the total number of
simulated nodes is n × m divided over m physical nodes.
Each physical node has two network interfaces, wired and
wireless, and connected to its neighbor node through one of
these interfaces. One physical node is simulating a random
network topology that consists of n nodes. The experiment
ends when each simulated node sends or receives an ICMP
packet from all other nodes. We performed two experiments
in this context. In the first one, the number of physical testbed

VOLUME 7, 2019 167811

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

FIGURE 21. A large-scale experiment that consists of m physical nodes
(eight in the figure) connected together using real links (eight in the
figure), each node is connected to a random virtual topology that consists
of n simulated nodes (maximum of 10000). The total simulated nodes
vary between 8000 and 80000.

nodesm participated in the experiment is fixedwhile the num-
ber of nodes n simulated on each physical node is dynamic.
In the second one, the total simulated nodes n × m is fixed,
and the number of physical testbed nodes m participated in
the experiment is dynamic. The details of each experiment
results are shown below.

TABLE 5. Simulation machines specifications.

The first experiment evaluates experimentation over WiPi
using a significant amount of physical nodes as compared to
using a single machine with different specifications. Table 5
shows the specifications of the machines used in this evalu-
ation. These machines are not part of the WiPi testbed and
they are used for evaluation purposes only. Note that the
whole topology that consists of n × m nodes is simulated
on each of these machines. We performed the experiment
multiple times and recorded the 95% confidence interval of
the average. Figure 22 summarizes the average time required
to finish the experiment.We can see that executing large-scale
experiments over WiPi can reduce the total time required to
finish the experiment as compared to using a single machine.

The second experiment shows the effect of using more
physical nodes in the total experiment time. We ran the
same experiment but using a different number of the testbed
nodes m. We performed the experiment multiple times
and recorded the 95% confidence interval of the average.
Figure 23 summarizes the average time required to finish the
experiment. From the figure, we can notice that increasing the

FIGURE 22. The total experiment time required to run a large-scale
experiment with topology shown in Figure 21 over WiPi compared to
running it over different machines.

FIGURE 23. The total experiment time required to run a large-scale
experiment with topology shown in Figure 21 using a different number of
physical nodes.

number of participated physical nodes m in the same exper-
iment can reduce the total experiment time by a significant
amount.

In this subsection, we noted the total time of large-scale
experiments executed in single machines with different speci-
fications as compared to executing the same experiment in the
WiPi testbed. In summary, executing large-scale experiments
using more physical nodes of the WiPi testbed minimizes the
time required to complete the experiment.

VI. CONCLUSION AND FUTURE DIRECTIONS
We presented the WiPi testbed as a low-cost testbed that can
be accessed remotely to provide researchers with processing
nodes and wireless devices to test their work and results in

167812 VOLUME 7, 2019

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

small and large-scale experiments; therefore, increase their
research credibility. The testbed is implemented using het-
erogeneous devices and supports multiple features including
homogeneous operating systems, resource pooling, powering
control, users isolation using VLANs, disk protection, multi-
application domain, and efficient disk utilization. We also
addressed the challengeswe faced during implementation and
how we handled them, especially large-scale experimenta-
tion support. The results show that Raspberry Pis can act
as software-defined radio processing nodes, in the case of
small data rates, and the used laptops can process wireless
physical operations perfectly. The evaluation of large-scale
experiments shows that WiPi can handle different types of
users experience level to support a wide range of researchers.

Currently, we are expanding the testbed in different direc-
tions, including handling mobile nodes, supporting sensor
and IoT networks, as well as providing better mapping
algorithms.

REFERENCES
[1] A. Attaby and M. Youssef, ‘‘WiPi: A low-cost heterogeneous wireless

testbed for next generation applications,’’ in Proc. IEEE 87th Veh. Technol.
Conf. (VTC Spring), Jun. 2018, pp. 1–5.

[2] Fall. (2007). The Network Simulator (NS-2). [Online]. Available:
http://www. isi.edu/nsnam/ns

[3] T. R. Henderson, M. Lacage,, G. F. Riley, C. Dowell, and J. Kopena, ‘‘Net-
work simulations with the ns-3 simulator,’’ SIGCOMM Demonstration,
vol. 14, no. 14, p. 527, 2008.

[4] X. Chang, ‘‘Network simulations with OPNET,’’ in Proc. Winter Simula-
tion Conf. Simulation—A Bridge Future, Dec. 1999, pp. 307–314.

[5] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, ‘‘CORE: A real-
time network emulator,’’ in Proc. IEEE Mil. Commun. Conf., Nov. 2008,
pp. 1–7.

[6] P. Zheng and L. M. Ni, ‘‘EMPOWER: A network emulator for wireline
and wireless networks,’’ in Proc. 22nd Annu. Joint Conf. IEEE Comput.
Commun. Societies, Mar./Apr. 2003, pp. 1933–1942.

[7] S. S. Hanna, A. Guirguis, M. A. Mahdi, Y. A. El-Nakieb, M. A. Eldin,
and D. M. Saber, ‘‘CRC: Collaborative research and teaching testbed for
wireless communications and networks,’’ inProc. 10th ACM Int. Workshop
Wireless Netw. Testbeds Exp. Eval. Characterization, 2016, pp. 73–80.

[8] T. R. Newman, A. He, J. Gaeddert, B. Hilburn, T. Bose, and J. H. Reed,
‘‘Virginia tech cognitive radio network testbed and open source cogni-
tive radio framework,’’ in Proc. 5th Int. Conf. Testbeds Res. Infrastruct.
Develop. Netw. Communities Workshops, Apr. 2009, pp. 1–3.

[9] A. Saeed, M. Ibrahim, K. A. Harras, and M. Youssef, ‘‘A low-cost large-
scale framework for cognitive radio routing protocols testing,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), Jun. 2013, pp. 2900–2904.

[10] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,
R. Siracusa, H. Liu, and M. Singh, ‘‘Overview of the ORBIT radio grid
testbed for evaluation of next-generation wireless network protocols,’’ in
Proc. IEEE Wireless Commun. Netw. Conf., Mar. 2005, pp. 1664–1669.

[11] K. Pechlivanidou, K. Katsalis, I. Igoumenos, D. Katsaros, T. Korakis, and
L. Tassiulas, ‘‘NITOS testbed: A cloud based wireless experimentation
facility,’’ in Proc. 26th Int. Teletraffic Congr. (ITC), Sep. 2014, pp. 1–6.

[12] S. Fdida, T. Friedman, and T. Parmentelat, ‘‘OneLab: An open federated
facility for experimentally driven future Internet research,’’ in New Net-
work Architectures. Springer, 2010, pp. 141–152.

[13] T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar, ‘‘OMF: A control
and management framework for networking testbeds,’’ ACM SIGOPS
Operating Syst. Rev., vol. 43, no. 4, pp. 54–59, 2010.

[14] A. Gavras, A. Karila, S. Fdida, M. May, and M. Potts, ‘‘Future Internet
research and experimentation: The FIRE initiative,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 37, no. 3, pp. 89–92, Jul. 2007.

[15] M. Berman, J. S. Chase, L. Landwebe, A. Nakao,M. Ott, D. Raychaudhuri,
R. Ricci, and I. Seskar, ‘‘GENI: A federated testbed for innovative network
experiments,’’ Comput. Netw., vol. 61, pp. 5–23, Mar. 2014.

[16] T. Salmito, L. Ciuffo, I. Machado, M. Salvador, M. Stanton, N. Rodriguez,
A. Abelem, L. Bergesio, S. Sallent, and L. Baron, ‘‘FIBRE—An interna-
tional testbed for future Internet experimentation,’’ Tech. Rep., 2014.

[17] A. Varga and R. Hornig, ‘‘An overview of the OMNeT++ simulation
environment,’’ in Proc. 1st Int. Conf. Simulation Tools Techn. Commun.
Netw. Syst. Workshops, 2008, p. 60.

[18] OpenVZ.AContainer-Based Virtualization For Linux. [Online]. Available:
http://wiki.openvz.org/MainPage

[19] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, ‘‘Xen and the art of virtualization,’’ ACM
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177, Dec. 2003.

[20] VMware. [Online]. Available: https://en.wikipedia.org/wiki/VMware
[21] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,

K. Webb, and J. Lepreau, ‘‘Large-scale virtualization in the Emulab net-
work testbed,’’ in Proc. USENIX Annu. Tech. Conf., 2008, pp. 113–128.

[22] XAPI. [Online]. Available: https://wiki.xen.org/wiki/XAPI_Command
_Line_Interface

[23] J. Ahrenholz, ‘‘Comparison of CORE network emulation platforms,’’ in
Proc. Mil. Commun. Conf., Oct./Nov. 2010, pp. 166–171.

[24] G. Carneiro, ‘‘Ns-3: Network simulator 3,’’ in Proc. UTM Lab Meeting,
Apr. 2010.

[25] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. H. Zahraee, and
H. Karl, ‘‘MaxiNet: Distributed emulation of software-defined networks,’’
in Proc. IFIP Netw. Conf., Jun. 2014, pp. 1–9.

[26] G. Karypis and V. Kumar. (2009).METIS—Unstructured Graph Partition-
ing and Sparse Matrix Ordering System Version 2.0. Accessed: Jul. 2013.
[Online]. Available: http://glaros. dtc. umn. edu/gkhome/views/metis

[27] R. Beuran, J. Nakata, T. Okada, L. T. Nguyen, Y. Tan, and Y. Shinoda,
‘‘Amulti-purpose wireless network emulator: QOMET,’’ in Proc. 22nd Int.
Conf. Adv. Inf. Netw. Appl.—Workshops, Mar. 2008, pp. 223–228.

[28] R. Beuran, L. T. Nguyen, T. Miyachi, J. Nakata, K.-I. Chinen, Y. Tan, and
Y. Shinoda, ‘‘QOMB: A wireless network emulation testbed,’’ in Proc.
IEEE Global Telecommun. Conf., Nov./Dec. 2009, pp. 1–6.

[29] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, ‘‘PlanetLab: An overlay testbed for broad-coverage ser-
vices,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 33, no. 3, pp. 3–12,
Jul. 2003.

[30] R. Riggio, T. Rasheed, and F. Granelli, ‘‘EmPOWER: A testbed for net-
work function virtualization research and experimentation,’’ in Proc. IEEE
SDN Future Netw. Services (SDN4FNS), Nov. 2013, pp. 1–5.

[31] K. C. Borries, G. Judd, D. D. Stancil, and P. Steenkiste, ‘‘FPGA-based
channel simulator for a wireless network emulator,’’ in Proc. IEEE 69th
Veh. Technol. Conf., Apr. 2009, pp. 1–5.

[32] M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. Barb, ‘‘Fast, scalable disk
imaging with frisbee,’’ in Proc. USENIX Annu. Tech. Conf. Gen. Track,
2003, pp. 283–296.

[33] U. Das. (2002). Boot–The Universal Boot Loader Verfügbar unte r.
[Online]. Available: http://www. denx. de/wiki/U-Boot

[34] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill,M.Welsh, E. Brewer, andD. Culler, ‘‘TinyOS: An operating
system for sensor networks,’’ Ambient Intell., 2005.

[35] [Online]. Available: https://github.com/idaholab/Topology_Generator
[36] S. A. Cook, ‘‘The complexity of theorem-proving procedures,’’ in Proc.

3rd Annu. Acm Symp. Theory Comput., 1971, pp. 151–158.

ABDELHAMID ATTABY was born in Cairo,
Egypt, in 1988. He received the B.S. and M.S.
degrees in computer science engineering from the
Faculty of Engineering, Benha University, Egypt,
in 2009 and 2014, respectively. He is currently pur-
suing the Ph.D. degree with the Egypt Japan Uni-
versity of Science and Technology (EJUST). He is
a Teaching Assistant of computer engineering with
the Computer Science Engineering Department,
Benha University. His research interests include

image processing, computer networking, and software architecture.

VOLUME 7, 2019 167813

A. Attaby et al.: Wipi: A Low-Cost Large-Scale Remotely-Accessible Network Testbed

NADA OSMAN was born in Alexandria, Egypt,
in 1993. She received the B.S. degree in com-
puter engineering from the Computer and Systems
Engineering Department, Alexandria University,
Egypt, in 2016, where she is currently pursuing the
M.S. degree in computer engineering.

From 2016 to 2018, she was a Software Engi-
neer with Ejada Systems Ltd., Alexandria. Since
2017, she has been a Teaching Assistant of com-
puter engineering with the Computer and Systems

Engineering Department, Alexandria University. In 2018, she started being
a Research Assistant with CRC Laboratory, Alexandria University. Her
research interests include computer networking, machine learning, and deep
learning.

MUSTAFA ELNAINAY (M’08–SM’17) received
the B.Sc. andM.Sc. degrees in computer engineer-
ing from Alexandria University, in 2001 and 2005,
respectively, and the Ph.D. degree in computer
engineering from Virginia Tech, in 2009. He is
currently on leave and affiliated with the Faculty
of Computer and Information Systems, Islamic
University ofMadinah, Saudi Arabia. He is also an
Associate Professor of computer engineering with
the Computer and Systems Engineering Depart-

ment, Alexandria University, Egypt. His research interests include wireless

and mobile networks, cognitive radio and cognitive networks, as well as
software testing automation and optimization. His focus is on the use of
artificial intelligence to solve problems in different domains, including com-
munications and networking, indoor localization, and software engineering.
He has served as a Reviewer, TPC member, and TPC chair/track chair for
various international journals and conferences.

MOUSTAFA YOUSSEF is currently a Professor
with Alexandria University, and also the Founder
and Director of the Wireless Research Center of
Excellence, Egypt. He has tens of issued and pend-
ing patents. His research interests include mobile
wireless networks, mobile computing, location
determination technologies, pervasive computing,
and network security. He is a recipient of the
2003 University of Maryland Invention of the Year
Award, the 2010 TWAS-AAS-Microsoft Award

for Young Scientists, the 2013 and 2014 COMESA Innovation Award,
the 2013 ACM SIGSpatial GIS Conference Best Paper Award, the 2017
Egyptian State Award, multiple Google Research Awards, among many
others. He is the Lead Guest Editor of the upcoming IEEE Computer
Special Issue on Transformative Technologies, an Associate Editor for the
IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) and ACM TSAS, and has
served as an Area Editor for ACM MC2R as well as on the organizing and
technical committees of numerous prestigious conferences. He is an ACM
Distinguished Speaker and an ACM Distinguished Scientist.

167814 VOLUME 7, 2019

