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ABSTRACT With the advancement of computer and network technologies, Internet-based social networks
called social networking services have become popular. Trust is a crucial basis for interactions among parties
in social networks. Based on trust scores of direct links between parties, a trust sensitivity analysis can help
identify which direct link(s) in a social network contributes the most to a trust relationship between parties
who are not directly connected in the network. This paper generalizes the research object from two-state
social networks to multistate social networks since the trust grade for people in a real social connection
may have multiple levels. We model asymmetric multitrust level and multiparty social network systems and
propose a probabilistic method based on multivalued decision diagrams (MDDs) to perform trust sensitivity
analysis of social networks. Numerical examples are provided to demonstrate the application of the proposed
methodology.

INDEX TERMS Multistate system, multivalued decision diagrams, sensitivity analysis, social network, trust

evaluation.

I. INTRODUCTION

A social network is traditionally a conception of social
science that uses actors (individuals, groups, or organiza-
tions) and relations to indicate the social relationships or
interactions between actors [1]. With the advancement of
computer and network technologies, Internet-based social
networks called social networking services have become pop-
ular. Almost all Internet services that help people maintain
their connections with others, such as Facebook, Google+,
Twitter, and MySpace, can be regarded as a part of social
networks [2].

Trust is a crucial basis for interactions among parties in
social networks. A definition of trust was first developed
by Deutsch [3]. A trusting behavior is defined as a person
perceiving an ambiguous path, and the outcome of following
the path can be good or bad, contingent on the action of
another person. J@sang et al. [4] proposed that trust networks
consist of transitive trust relationships between people, orga-
nizations and software agents connected through a medium
for communication and interaction.

A trust relationship between parties is typically character-
ized by a trust score or rating, which indicates how much a
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party trusts the others. Evaluating trust scores has been a chal-
lenging problem for social networks. Golbeck [5] proposed
that a computational problem of trust is to determine how
much one person in the network should trust another person
to whom they are not connected. Avesani et al. [6] claimed
that trustworthiness is a user-centered notion that requires
the computation of personalized metrics. Different ways are
available to express a trust relationship. Guha et al. [7] incor-
porated distrust in a computational trust propagation setting
and developed a framework of trust propagation schemes,
each of which may be appropriate in certain circumstances.
Jgsang et al. [4] described a method for trust network analysis
using subjective logic (TNA-SL). It provided a simple nota-
tion for expressing transitive trust relationships and defined a
method for simplifying complex trust networks so that they
can be expressed in a concise form and be computationally
analyzed. Based on their research, Jiang et al. [8] proposed
a modified flow-based trust evaluation scheme, GFTrust,
in which they addressed path dependence using network flow
and modeled trust decay by the leakage associated with each
node. Then, Wang et al. [9] analyzed fine-grained feature-
based social influence evaluation in online social networks
and designed a social influence adjustment model based on
the PageRank algorithm by identifying the influence contri-
butions of friends.
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Trust evaluation algorithms are a hot topic in trust anal-
ysis research. Several trust evaluation algorithms have been
developed to quantify trust. Kamvar et al. [10] proposed an
Eigen Trust algorithm for peer-to-peer systems based on
peers’ historical performance. Katz and Golbeck [11] intro-
duced the Tidal Trust algorithm to infer trust relationships.
Tidal Trust utilizes a weighted-average approach based on
the assumption that the propagation of trust along a path
is multiplicative. Kuter and Golbeck [12] proposed a trust
inference model and provided a confidence measurement
based on probabilistic sampling. Golbeck [5] presented two
sets of algorithms for calculating these trust inferences: one
for networks with binary trust ratings and one for contin-
uous ratings. For each rating scheme, the algorithms are
built upon defined notions of trust. Each is then analyzed
theoretically and with respect to simulated and actual trust
networks. Liu et al. [13] proposed the OpinionWalk algo-
rithm that models trust by the Dirichlet distribution and uses
a matrix to represent the direct trust relations among users.
There have also been many studies on social network trust;
examples can be seen in Richardson et al. [14], Ziegler and
Lausen [15], Quercia et al. [16], and Hang et al. [17].

Among the rich works on social network systems, consid-
erable research efforts have been devoted to sensitivity and
importance analysis. It is common that multiple communica-
tion paths exist between two parties for sharing information,
interests or activities in a social network. As introduced in
reference [2], some link(s) can be critical and thus become
potential hazards for delivering reliable and secure informa-
tion flow between two parties that are not directly connected
in social networks. It is important to identify which direct link
contributes the most to a trust relationship. Based on the trust
scores of direct links between parties, trust sensitivity analy-
sis can help identify which direct link(s) in a social network
contributes the most to a trust relationship between different
parties who are not directly connected in the network. Sensi-
tivity analysis has been well studied in the context of fault tree
reliability analysis [18]-[20]. Xing and Dugan [ 18] developed
a methodology to analyze the sensitivity of the unreliability
of generalized PMS to changes in the failure probability of a
component. Zeng et al. [21] proposed a TAPE (Trust-Aware
Privacy Evaluation) framework for quantitatively evaluating
users’ privacy levels in social networks. Xing and Amari [22]
analyzed two-party trust sensitivity in social networks and
presented a binary decision diagram (BDD)-based algorithm
for trust sensitivity analysis in social networks. Three differ-
ent sensitivity measures, including Birnbaum’s measure, crit-
icality importance factor, and structural importance measure,
were investigated and adapted for a two-party trust sensitivity
analysis.

Sensitivity analysis studies of social networks have mainly
focused on two parties and binary systems. In practice, how-
ever, social networks are usually very complex and may
consist of multiple parties. Additionally, trust always has
properties of being diversified and asymmetric. There are
not only two states of trust and distrust but also high trust,
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comparative trust, less trust, distrust, high distrust and so on.
In social networks, a trust score between two parties has the
characteristic of asymmetry. That is, the two parties usually
trust each other differently [23]. Binary and symmetrical
system models are inadequate for modeling and analyzing
some social networks exhibiting multiple states [24], [25].

To the best of our knowledge, no studies have been per-
formed on sensitivity and importance analysis of multiparty
and multistate social network systems. In this paper, our
efforts are focused on modeling asymmetric multitrust level
and multiparty social network systems and proposing a prob-
abilistic method based on multivalued decision diagrams
(MDDs) to perform trust sensitivity and importance analysis
of social networks.

The remainder of this paper is organized as follows:
Section II describes the basics of MDDs. Section III presents
the proposed MDD-based method for sensitivity analysis of
a two-party multistate social network. The sensitivity of a
multiparty multistate social network system is analyzed in
Section IV. Section V presents illustrative example analysis
results. Finally, Section VI gives conclusions and directions
for future work.

Il. MDD MODEL

A binary decision diagram (BDD) is a state-of-the-art data
structure for the representation and efficient symbolic manip-
ulation of logical functions [26], [27]. Based on a BDD
method, an MDD consists of a set of decision (nonsink) nodes
and two sink nodes labeled 0 and 1, representing the system
not being or being in a particular state, [28], [29], respectively.

Assume two MDD logical expressions G and H:

G = case (x,Go,G1, ...,Gr_1),
H = case (x,Hy, Hy,... ,H;_1).

The operating rule for combining them into one MDD model
is [30]:

GOH
= case (x,Gy, Gi, ...,Gr_1) O case (x,Hy, Hy, ... ,Hy_1)
case (x, GoOHy, ...,Gr_10H,_1),
index (x) = index(y)
_ case (x, GoOH, ...,Gx_10H), )

index (x) < index(y)
case (y, GOHy, ... ,GOH_1)
index (x) > index(y)

Based on the manipulation rules, the MDD model is gen-
erated with regard to a specific system performance metric.
In computer implementation, the MDD can be evaluated
using the recursive evaluation in equation (2) [27].

Pu(F) = pao®)Pm(Fo) + - - + pak—1@OPm(Fr—1) (2)

where P, (F) represents the system state probability associ-
ated with node F in state S,,,.

An MDD is more suitable for describing systems with
multiple state characteristics and multiterminal features.
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Compared with the traditional precise method of reliability
modeling, an MDD based on Shannon decomposition theory
can describe the implicit state space of a system and ease
the state space explosion problem. An MDD is an effective
method for dealing with complex systems, especially for in-
depth analysis of system design mechanisms and dynamic
mastery of system performance. It is an increasingly powerful
research tool with powerful and flexible characteristics in the
field of reliability research.

Ill. SENSITIVITY OF A TWO-PARTY MULTISTATE

SOCIAL NETWORK

As a conception in social science, a social network uses
actors and relations in the form of a graph model to indi-
cate relationships or interactions between different actors [1].
An actor (also referred to as a party) in the social network may
represent an individual, a social group, or an organization
and is represented by a node in the graph model. The direct
interaction relationship between two actors is represented by
a link connecting the nodes modeling the two actors in the
graph. Any two actors within the same social network can be
related through either a direct link (if applicable) or multiple
hops along one or multiple paths.

In this work, a social network is represented using a prob-
abilistic directed graph G(V, E). It contains a set V of nodes
and a set E of direct links between parties with a direct
trust relationship. A two-party social network describes a
social network with only one source node and sink node.
The links are directed since trust in social networks is usually
asymmetrical.

Assume that there are P links in a social network system
represented by e, ez, ..., ep. Each link can assume multi-
ple trust levels ranging from the lowest level O (total distrust)
to the highest trust level n. p(ef.) represents the probability
that link ¢; isin the state j i = 0, ...,p,j =1, ..., n). Social
networking systems also have multiple states, expressed as
numbers 1,2, ..., m, of which 1 indicates that the entire
social network is in the worst trust state and m indicates the
optimal trust state for the entire social network system. There
are two steps to analyze the sensitivity of a social network.
The first is a path search, and the second is generating the
MDD model and evaluating the sensitivity.

A. PATH SEARCH

The process of solving the sensitivity depends on the path
in each system state. Order the social network links using a
variable ordering heuristic as follows:

er) <em, < < e,

where my, 7w, ...,
1, 2, ..., p.

Then, look for all paths in state k(k € {1, 2, ..., m}) of the
social network system according to the search method shown
in Fig. 1. There is a total number of paths Ny that meet state k
of the system: Path’f, Path® S e, Pathl;,k ; then, the [-th path

7, are the rankings for integers
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Construct an ordered set A,
and define the order of graphs and edges in A

‘ Choose the edge with the smallest order ‘

‘ Add it to the tail of set A HCM& the edge with a larger order

| Specify that the tail element of set A is u.nblucked|

Delete the tail element of set A

FIGURE 1. Heuristic search flow of all paths in a social network from
source nodes to sink nodes.

Pathé‘ can be represented by the following formula:

p
Path® = ﬂl(e/,’,i, k, 1)

i=1

where e’,',,. denotes link 7; in state j and /(-) is an indicative
function as follows:

(e, k. 1)

€., €y, is inthe I-th link which causethe system in state k
1, &, is notinthe I-thlink whichcause the system instatek

(€)

B. SENSITIVITY ANALYSIS
By Birnbaum’s measure (Zhao etal. [20]; Akers [26]),
the importance or sensitivity of a direct link e; in the social
network is defined as the partial derivative of the two-party
trust probability between source S and sink 7, denoted
by Trust(S, T), with respect to the link trust score p(e;),
that is [2],
. dTrust(S, T)

Ipm (i) (e 4)
Then, the sensitivity index in a multistate social network
system can be expressed as equation (5):

oTrust(S, T, k)
ap(e)
where Trust(S, T, k) represents the trust value in the
k-th state of the social network between S and T and ei
denotes link i in state j. For trust sensitivity analyses of two-

party multistate social networks, we propose an algorithm
based on Birnbaum’s measure as follows.

Ipn (i, j, k) = 5)
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Theorem 1: In a two-party multistate social network sys-
tem, the state of the links ¢; is 0, 1, ..., n, respectively,
and the sensitivity S(i, k) of edge e; to state k of the social
network system is:

1

Si.k)= |1 - —— (6)
1 + Z (IBM(ivj7 k) - IBM(iv n, k))2
j=0
where

oTrust(S, T, k)
ap(e})
The indicator Iy (i, j, k) indicates the influence degree of
the small change of trust value in the specific state j of edge e;
on the change of trust value in the k-th state of social network,

while S(i, k) measures the influence of whole edge e; on
k-th state of network.

Ipn (i, j, k) =

1) TWO-STATE SOCIAL NETWORK

For a two-state social network, the system and edges have two
states, 0 and 1. Then, for edge e;, Trust(S, T) and p(el.l) can
be expressed as:

Trust(S, T) = P(Pathy + Pathy + - - - + Pathy,)
= P(Pathy) + P(Pathy) + - - - + P(Pathy,).

Trust(S, T) = fo(p(eM) +fi(ple))) + F
e +pleh) =1

where fjo and f;; represent the functions of Trust(S, T') asso-
ciated with edges e? and el.l, respectively and F represents
the function that is not related to e? and el.l for Trust(S, T).
Two state sensitivities can be analyzed in different ways,
and equation (2) can be calculated. The full differential in
equation (5) is as follows:
dfio(p(e?
dTrust(S. T)= ﬂ(ol»dp(e?yr
ap(e;)
dp(e?) + dp(e}) = 0.

For equation (6), from the analytical geometry aspect: let
_ _ @) p _ fae)) o
y=dTrust(§, T), A = = =, B = = 0r=. %0 = dp(e;),
and x; = dp(e} ); then, equation (6) becomes

(N

ofi1 (p(e})) d

1
aneh T ®)

y = Axg + Bx
xo +x1 =0,

which yields y = (B — A)x;. Then,

dTrust(S,T) _Y _ B_A
dp(e;) x1

For the line y = (B — A)xy, if the angle between the line
and the horizontal plane is 6, then y/x; = tan 6. Therefore,
for 6 or the expression of 6 equivalent to the role of the
Birnbaum importance index, the closer 6 is to 90°, the greater
the sensitivity index value is. The Birnbaum importance index
can be replaced by the angle between the normal vector
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(B — A, —1) and the negative axis of y. The normal vector of
the line y = (B — A)x is (B — A, —1), and the angle between
(B—A, —1) and the negative axis of y is equal to 6. Therefore,
the Birnbaum importance index can be expressed by the angle
between the normal vector and the negative axis.

2) MULTISTATE SOCIAL NETWORK
For the k-th state of a multistate social network,

Trust(S, T, k) = fio((e)+fi (e ) +- - - +fin(p(eM)+F,
e +ple)+---+pleh) = 1,

©
Then, the full differential on both sides of (9) is:
ofidp(el)) fip(e}))
dTrust(S, T, k)= ——Zdp(e))+- - -4+ ———Zdp(e’
( ) () p(e;) ap(@) p(er)
dp(e))+dp(e})+- - -+dp(el!) = 0
afi(p(e :
y =dTrust(S,T, k), A;j= M xj = dp(e}).

ap(e;)

Then, equation (9) can be expressed as:

y=Aoxp +A1x; + -+ Apxy
xo+x1+---+x,=0

which can be expressed as:
y= (A0 —Apxo + A1 —Apx1 + - + (A1 — Apxu—1

There are an infinite number of normal vectors in the plane.
To ensure that the angle between the normal vector and the
negative axis of the y axis is an acute angle, a normal vector
in the plane is selected as:

)‘1 = (AO _An» Al _Am ey An—l _Am _1)~

The vector corresponding to the negative axis of y is:
A2=(0,0,...,0, =1

Because 6 can reflect the size of the sensitivity index,
to make the value of the sensitivity index size within the
range of (0, 1) and with an increasing function of 6 (always
an acute angle), the sine function used in this paper repre-
sents the value of the multistate social network sensitivity
index S(i, k) as:

A A
S@i, k) = sin = 1 —cos?0 = —L "2 _
HAL]] - 1[A2]]
1
= |1- .
n—1
1+ Z (Aj _An)2
j=0
Based on the definition of f;;,
ofi(p(eh))  aTrust(S, T, k
ay= 0D TS LD i,

ap(e)) ap(e))
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Then, the result is:

. 1
S, k)= |1—

n—1
1+ Z (Ipm (i, j, k) — Ipm (i, n, k))2
J=

IV. SENSITIVITY OF A MULTIPARTY MULTISTATE

SOCIAL NETWORK SYSTEM

A multiparty social network is a social network that has
multiple source nodes with one sink node, multiple sink nodes
with one source node, or multiple sink nodes with multiple
source nodes. Without loss of generality, in the multiparty
social network G(V,E), assume S;, Sp, ..., Sa and
T, T, ..., Tp denote the source nodes and sink nodes,
respectively.

FIGURE 2. Schematic diagram of a multiparty (four parties) social
network.

Fig. 2 shows a schematic diagram of a multiparty (two
source nodes and two sink nodes) social network.

A. SENSITIVITY ANALYSIS

For multiparty multistate social network systems, sensitivity
analysis is based on the results of a two-party multistate
system.

Theorem 3: In a multiparty multistate social network,
the state of links e; is O, 1, ..., n, respectively, and the
sensitivity S(i, k) of edge e; to state k of the social network
system is:

1
S, ky= |1-— — (10)
1+ Y Upm(i,j, k) — Ipu (i, n, k))?
j=0
A B
where Iy (i, j, k) = Z > Ipu(i,j. k,Gap) and
a=1 b=1
IBM(iv jv kv Ga,b) = %‘;})Tk)

A multiparty social network can decompose into multiple
two-party social networks. Let G, , denote a subfigure of G,
where G, p is a two-party social network probability graph
from source node S, to end node 7}. The multiparty social
network has A source nodes and B end nodes. Then, proba-
bility graph G could be split to A x B two-party multistate
social network subgraphs as follows:

Gi,1, Gi12, ..., Gi,B, G21, Gap2, ...,

G2,..., Ga1, Gao, ..., Gag,

167718

and the set of all paths in the probability graph model G is:

Path=Path; 1 UPathy 2U--- U Path, p, U - - - U Patha g (11)

where Path, j, is the set of all paths from source node S, to
sink node T}.

Path® a. Tefers to the set of all paths in the k-th system state
of graph Gap. Trust(Sq, Tp, k) is the trust value of the
k-th social network state of subgraph G, 5. Then,

Trust(Sq, Tp, k) = P(Path b)-

Trust(S, T, k) denotes the trust value of state k in mul-
tiparty multistate social network probability figure G. Based
on equation (11), Trust(S, T, k) is obtained as follows:

Trust(S, T, k)

= P(Path")

= P(Path} | U Path{ , U - -- U Pathl, , U - - - U Pathl; )
=P(Path )+ P(Path} )+ - -+P(Path; )+ - -+P(Pathl; p)

A B
=Y Trust(Sa. Tp. k). (12)
a=1 b=1
As
.. 0Trust(Sq, Tp, k)
Teu Gy j, k. Gap) = k)

ap(el)
from equations (12) and (13),
oTrust(S, T, k)
ap(ef>

B

= Z Z Trust(Sy, Tp, k)

31’(9] ) a=1 b=1
A B 9Trust(Sa, Tp, k)
ap(el)

Ipm (i, j, k) =

> 1M
1= EDM=

Ipn (i, j, k, Ga,p)- (14)

Il
—
S
I
-

a

Based on the results in Section II, the sensitivity of a
multiparty multistate social network is:

1
Siky= |[1-——
L+ Y Upm(i,j, k) — Igu (i, n, k))?
=0
A B
where Ipy (i, j, k) = Z > Ipu(i,j. k,Gap) and
a=1 b=1
Igm G, j, k. Gap) = W

V. EXAMPLES

A. TWO-PARTY MULTISTATE SOCIAL NETWORK

As shown in Fig. 3, in a two-party multistate social network
diagram, a circle represents an individual, and a link repre-
sents a trust connection between individuals.
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FIGURE 3. Two-party multistate social network diagram.

Each link has three states: “complete distrust™, “doubtful”
and ““full trust”, denoted as O, 1 and 2, respectively. For
links e;, i =1, 2,3,4,5, e; denotes that the link is in state O,
and e; indicates that the link is in state 1 or 2. ejl represents
that edge ¢; is in state j, where i = 1,2,3,4,5,j =0, 1,2,
and the probabilities of occurrence of the three states are:

(P(eY), P(e}), P(e})) = (0.2, 0.3, 0.5).

The social network has three states: 0, 1, and 2. In a land
concentration from the source node to the end node, except
for an edge with state O, for all the remaining edges, if no
edge is in state 2, then the social network is in state 0; if there
is one and only one edge in state 2, then the social network
is in state 1; and if at least two edges are in state 2, the social
network is in state 2. Social network statuses of 0, 1, and 2 are
understood to be the worst, general, and best three states of
social network credibility, respectively.

1) STEP (1): ORDER THE SOCIAL NETWORK LINKS

There are 5 edges in the above figure: ey, ez, e3, es4, es.
Assume that the following ranking method is applied: first,
find any path from the source node to the end node, for
example, e1, e2; then, step back and find the path to the end
node. The order in which the edges are finally obtained is:

el < ey < e3 < es<eyq, abbreviated as ey, ep, e3, es, eq.

2) STEP (2): FIND THE PATH

There are 5 edges in the probability map model, and each
edge is either “‘blocked” or “unblocked”; the 5 sides have
23 = 32 plans. The obtained path is:

e1ey, e1e3es, exe3es, e4es. (15)

According to the state definition of the social network, all
paths corresponding to each state can be obtained. For a social
network status of 0, there are 48 paths as follows:

02

Path = &Y¢),  Path) = &lel, Pathg =e|e;,

Pathl = elé), Pathg =ele), Pathg = e?egeg,

0,0 1

Pathg = e|ezes, Path® = e?egeg, Pathd = e?e%eg,

0,20

0 _ 200
Pathj, = e|e3es,

0o _ 100 0 _
Path], = ejezes, Pathi, = ejezes,

0,1 1

0o _ 0o _ 0,12 0o _ 021
Pathj; = e|eses, Path|, = e|ezes, Path|s = eje3es,

022

0o _ 0 _ 10,1 0 _ 102
Pathjs = e|eze5, Path|; = eje3es, Pathjg = ejezes,
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Path(l)g = e%ege;, Pathgo = e%egeg, Pathgl = e e3¢5,

0o _ 120 0o _ 210 0o _ 220
Path,, = eje3e5, Pathy; = efezes, Path,, = eje3es,

0O _ 000 0o _ 00,1 0o _ 0 2
Pathys = e eze;,  Pathye = ejeze;, Pathy; = ejezes,

0o _ 010 0o _ 020 0o _ 1 0
Pathyg = e eze;, Pathyg = ejeze;, Pathyy = ejeze;,

0o _ 200 0o _ 011 0 _
Pathy, = ejeze;, Pathy, = ejeze;, Pathy; = ejezes,

0,22 1,01

0 _ 0,21 0 __ 0 _
Pathy, = ejeze;, Pathys = ejeze;, Pathy, = ejeze;,

1,02

0 _ 202
Pathy; = ey eze;,

Pathg8 = eﬁegeé, Pathg9 = ejeze;,

1,10

Pathgo = eyez6;, jeied

1,20 0
ejezey, Pathy, = ejeze;,

Path)),

220

Path?B = ejeze,, Pathg4 = egeg, Pathgs = ege;,

0 1,0 0 2.0

Pathgé = egeg, Pathy; = ejes, Pathyg = ejes.

For a social network status of 1, there are a total of 20 paths
as follows:

1 _ 1,1 1_ 12 1_ 2.1
Path) = eje,, Path, = e|e;, Pathy = eje,,
Path} = elelel, Pathl = elele?, Path} = elelel,

Pathé = e%e%eg, Pathé = e%e%eg,

Pathh = e}‘eéeé, Path%z = eieée%,

Path} = e%eé eé )

1 _ 221
Path;, = eje3es,
1 _ 121
Path13 = ey €36,

1 _ 212
Path g = ejeze;,

Pathi4 = eieéeé, Pathi5 = eie%e%,
Path}, = e3e3e), Pathlg = elel,

2 1

Path%9 = e}‘eg, Pathéo = ejes.

For a social network status of 2, there are 4 paths as follows:

Path% = e%e%, Path% = e%e%e%,

Pathi = e3e3es,  Path} = elel.
3) STEP (3): GENERATE THE MDD MODEL
A multivalued decision graph is generated for each social

network state. The multivalued decision graphs are shown
in Figs. 4-7.

states of social network|

el @ state 0
/ \ ) state‘\z
/ W \. state
e2 e2 ez
7 ) - W\ /T\\
Q/g\o e6oe o0

FIGURE 4. The multivalued decision graph for a social network state
of e;e;.

e states of social network]
T @ sated
@ state1
@ state2
e €3 e3

es es es es es es es es es
[ [

| |
000000000 000000000 000000000

FIGURE 5. The multivalued decision graph for a social network state
of e;ezes5.
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FIGURE 6. The multivalued decision graph for a social network state
of ey e5e4.
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FIGURE 7. The multivalued decision graph for a social network state
of ejes.

4) STEP (4): SENSITIVITY AND CRITICALITY
IMPORTANCE FACTOR
According to equation (3), when k = 0,

Trust(S, T, 0)

48
=Y P(Path)

=1
= P(el)P(ez) + -
= 1.736
Ipy (1, 0, 0)
_ dTrust(S, T, 0)
S aped)
= p(e3) + p(eb) + p(e3) + p(ep(ed) + p(e)p(ed)
+P(33)P(95) +P(e3)l7(€5) +P(e3)P(e5) +p(e3)p(65)
+p(eh)p(e3) + pe3)p(el) + ple3)p(e3)
= 2.

Iy (1, 1, 0)
_ oTrust(S, T, 0)

ap(e})
= P(ez) +P(€3)I7(95) +P(e3)17(@5)
+p(e)p(e3) + pe})p(ed) + p(e3)p(ed)
= 0.56

-+ pEpEeped) + - - - + pled)p(ed)

Ipn (5, 2, 0)
_ oTrust(S, T, 1)

ap(e?)
= p(e4) +P(6’1)I7(5’3) +p(€1)p(63)
+p(eDp(e3) + ple}p(ed) + ple)p(el)
= 0.56.
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For any i and j, Iy (i, j, 0) of social network status k = 0
can be expressed by Tab. 1 as follows:

TABLE 1. Igy(i,j, 0) of social network status k = 0.

1 0.56 | 0.56 | 0.6 | 0.56 | 0.56

2 0.56 | 0.56 | 0.6 | 0.56 | 0.56

When k = 1:
20
Trust(S, T, 1) = Y _ P(Pathy).

=1
oTrust(S, T, 1)

Igy(1, 0, 1) = ——— =0.
ap(e?)
oTrust(S, T, 1
Iu(1, 1, = O Dy gy
ap(e;)

OTrust(S, T, 1)
3[)(65)

Iy (i, j, 1) of social network status k = 1 can be expressed
by the following Tab. 2:

IBM(Sa 27 1) = - 0.69.

TABLE 2. Igy(i,j, 1) of social network status k = 1.

iNGl 1| 23| 45

0 0 0 0 0 0

1 144 | 144 | 1.28 | 1.44 | 1.44

2 0.69 | 0.69 | 0.78 | 0.69 | 0.69

When k = 2, Ipy(i,j, 2) can be expressed by Tab. 3 as
follows:
Based on Theorem

S, ky= |1-— = !
1+ Z UM (i, J» k) — Ipy (i, n, k))2
j=0

S(i, k) is as follows:

The results of Icyr (i, j, k) for different system states k are
shown in Tabs. 5-7 as follows:

Then, C(i, k) can be expressed by Tab. 8 as follows:
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TABLE 3. Igy(i,j, 2) of social network status k = 2.

2 0.75 10.75 10.5 [0.75 |0.75

TABLE 4. Values of S(i, k).

0 0.821 [0.821 |0.814 | 0.821 |0.821

1 0.714 10.714 {0.680 |0.714 |0.714

2 0.728 10.728 [0.577 |10.728 |0.728

TABLE 5. I (i, j, 0) of social network status k = 0.

j i 1 2 3 4 5
0 0.230 | 0.230 | 0.230 | 0.230 | 0.230
1 0.097 | 0.097 | 0.104 | 0.097 | 0.097
2 0.161 | 0.161 | 0.173 | 0.161 | 0.161

TABLE 6. Icje(i,j, 1) of social network status k = 1.

iNGi| 1 2 3 4 5
0 0 0 0 0 0
1 |0278 0278 | 0.247 | 0278 | 0.278
2 | 0222]0222]0251 | 02220222

5) STEP (5): RESULTS ANALYSIS

According to the results of the sensitivity index S(i, k), for
the social network state k = 0, the sensitivity index is sorted
as follows:

S(1, 0) = S(2, 0) = S(4, 0) = S(5, 0) > S(3, 0).

When the system is in state 0, the sensitivities of e1, ez, e
and es are equal, and the largest, e3, has the smallest value.
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TABLE 7. I¢je (i, j, 2) of social network status k = 2.

PG| 2 3 4 5
0 0 0 0 0 0
1 0 0 0 0 0
2 | 0.750 | 0.750 | 0.333 | 0.750 | 0.750

For the social network state k = 1, the sensitivity index is
sorted as follows:

S(1, D=S2, H=S4, 1)=55, 1)>S3, 1.

For the social network state k = 2, the sensitivity index is
sorted as follows:

S(1, 2) =82, 2) =S4, 2) =S5, 2) > SG3, 2).

For the social network state k = 0, the importance index is
sorted as follows:

C1,0=C2, 0=C4, 0)=C(5, 0)>C@3, 0).

In other words, when the system state is 0, the importance
of ey, ez, e4 and es is equal, and the largest, e3, has the
smallest value.

For the social network state k = 1, the importance index is
sorted as follows:

C3, )>C(, H)=C@2, H)=C@, 1)=CG5, 1).

For the social network state k = 2, the importance index is
sorted as follows:

Cc1, 2)=C2, 2)=C@, 2)=C(5, 2)>C@3, 2).

As described in [2], in a two-state social network, the
results of these two indicators are not always the same but are
slightly different. The data in Tab. 4 and Tab. 8 are satisfied.

TABLE 8. Values of C(i, k).

k i 1 2 3 4 5
0 0.094 | 0.094 | 0.089 | 0.094 | 0.094
1 0.223 | 0.223 | 0.243 | 0.223 | 0.223
2 0.728 | 0.728 | 0.426 | 0.728 | 0.728

B. MULTIPARTY MULTISTATE SOCIAL NETWORK

For the multiparty multistate social network shown in Fig. 8,
assume that all links have 3 trust levels 0, 1, 2, where state O
indicates “‘complete distrust”, state 1 means ‘““doubtful”’, and
state 2 means ““full trust”. The entire social network system
also has three states: 0, 1, and 2.

167721



IEEE Access

X. Song et al.: Sensitivity Analysis of Multi-State Social Network System Based on MDD Method

FIGURE 8. Multiparty multistate social network diagram.

Fig. 8 can be decomposed into the following two
subgraphs:

FIGURE 9. Subgraph 1.

First, in Fig. 9, there are four edges: e, ez, es, eg, and the
order of the edges is: e] < e5 < e2 < .

There are three states of the social network, 0, 1, and 2, and
each of the states has the following definition. In the link path
from the source node to the end node, excluding the edge in
state 0, for all remaining edges, if none of the edges are in
state 2, then the social network is in state 0; if there is only
one edge in state 2, then the social network is in state 1; if
there are at least two sides in state 2, then the social network
is in state 2. The path is shown below:

eies, €266

Ifj =0, e? is the e; in the above path, else if j = 1, 2, ei is
e; in the above path. Based on the definition of the state of
social network, all paths at each state can be calculated.

For social network state 0, all the paths are shown below:

02
Paz‘h2 = eles, Paz‘h3 = ejes,

Path(l) = e?eg,
Pathg = e}eg,

0o _ 0.1
Path; = e;eg,

0o _ 20
Pathi, = e5eq.

Path5 = eles, Path? = egeg,

Paz‘h8 = 6‘266, Path9 = eéeg,

For social network state 1, all the paths are shown below:
Path{ = e{eé, Pathé = e{e%, Pathé = e%eé,
Pathi = eéeé, Path5 = 6‘266, Path6 = e%eé
For social network state 2, all the paths are shown below:
Pathl = e%eg, Path2 = 626‘6
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FIGURE 10. Subgraph 2.

The corresponding multivalued decision diagrams are gen-
erated for each social network state in subgraph 1, as shown
in Figs. 11 and 12.

e1 states of social network
@ state0
@ state1
@ state2

es es es
A\
o/o\o ®00 Qﬂo\o

FIGURE 11. The multivalued decision graph for a social network state
of e; e5 in subgraph 1.

states of social network

€2 Q state 0
M\) state 1
@ state 2

€6 €6 e6
//\\ A\\ / N
o0 e ©00 ©0e

FIGURE 12. The multivalued decision graph for a social network state
of e, eg in subgraph 1.

First, calculate Ipy (i, j, k, G1,1) of system state k. When
k=0,

Trust(S1, Ty, 0) = p(el)p(e5)+p(el)p(65)+ +P(€2)P(€6)

= 0.72.

Then
oTrust(S1, T1, 0) .

ap(ed)

daTrust(S1, Ty, O
IBM(la 1’ 0’ G],]) = M =0.2
8p(6‘1)

Ipy(1, 0, 0,Gy1) =

daTrust(Sy, Ty, O
I 6, 2, 0,Gry) = T CLTL D5
319(@6)
For any i and j, Ipy (i, j, 0, G1,1) can be indicated by the
following Tab. 9:
Whenk =1,

Trust(S1, Th, 1) = plehp(ed)+p(ehp(ed)+- - -+p(e3)plet)
= (0.78.
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TABLE 9. Igy (i, j, 0, Gy 1) of social network status k = 0 in subgraph 1.

then
dTrust(S1, Ty, 1)
IBM(17 07 17Gl,1) = —0 =0
ap(ey)
dTrust(Sy, Ty, 1
I (1, 1, 1,Grpy = ORI D
ap(e;)
OTrust(Sy, Ty, 1
Ipy (6, 2, 1,G11) = M =0.8.

ap(eg)

For any i and j, Ipy (i, j, 1, G1,1) can be indicated by the
following Tab. 10:

TABLE 10. Igy(i,j, 1, Gy 1) of social network status k = 1 in subgraph 1.

When k£ = 2:

Trust(S1, Th, 2) = p(eDp(ed) + p(e3)p(ed)
=0.5

Then, for any i and j, Ipy(i,j, 2, G1,1) can be indicated by
the following Tab. 11:

TABLE 11. Igy(i,j, 2, Gy ;) of social network status k = 2 in subgraph.

1
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TABLE 12. Igy(i,j, 0, G ;) of social network status k = 0 in subgraph.

2

1 02]02]02]02

2 02]02]02]02

TABLE 13. Igy(i,j, 1, G ;) of social network status k = 1 in subgraph 2.

PGl 35|46

0 0 0 0 0

1 0.8 108081038

2 03(103]03]03

TABLE 14. Igy (i, j, 2, G 1) of social network status k = 2 in subgraph.

2

TABLE 15. Igy (i, j, 0) of social network status k = 0.

Similarly, subgraph 2 in Fig. 10 can also obtain results
similar to Tab. 9-11. The Iy (i, j, k, G2,1) values obtained
for each social network state k of subgraph 2 are shown in
Tab. 12-14.

Next, as subgraph 1 and subgraph 2 both contain edges es
and eg, after combining Fig. 8 to Fig. 12, the index values
of es and eg need to be added. Finally, the indicator values
in different social network states of the multiparty social
network are obtained in Fig. 8:
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TABLE 16. Igy(i,j, 1) of social network status k = 1.

2 03](03]03(03]0.6]0.6

TABLE 17. Igy(i,j, 2) of social network status k = 2.

TABLE 18. Values of S(i, k).

0 0.63 10.63 (0.63 [0.63 0.85 |0.85

1 0.50 0.50 10.50 [0.50 0.76 (0.76

2 0.58 10.58 10.58 [0.58 (0.82 (0.82

Finally, the multiparty social network’s indicated values
S(i, k) of Fig. 8 are shown in Tab. 18:

According to the results of the sensitivity index S(i, k), for
the social network state k = 0, 1, 2, the sensitivity index is
sorted as follows:

S, k)=8S2, k)=S8@G, k)=54, k) <SG, k)=S(, k).

That means, whether the system is in state 0, state 1 or
state 2, the sensitivities of es and eg are equal, and the largest,
e1, 2, e3 and e4 are equal and have the smallest value.

VI. CONCLUSION

Social networks are usually very complex and may consist
of multiple parties. Additionally, trust always has proper-
ties of being diversified and asymmetric. Binary and sym-
metrical system models are inadequate for modeling and
analyzing some social networks exhibiting multiple states.
This paper generalizes the research object from two-state
social networks to multiple states since the trust grades
for people in real may have multiple levels, including the
research for importance and sensitivity of two-sided and mul-
tisided multistate social networks. Trust sensitivity indexes
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are derived for two classes of social network systems, includ-
ing two-party multistate and multiparty multistate social
networks. As demonstrated through numerical examples,
the formulas derived in this work can be used to evaluate
trust sensitivity and identify which direct link in the social
network contributes the most to a party trust relationship or
which direct link is the weakest link.

As one possible direction of future work, we will extend
the proposed model to consider large relational networks and
other types of social network structures.
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