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ABSTRACT General language model BERT pre-trained on cross-domain text corpus, BookCorpus and
Wikipedia, achieves excellent performance on a couple of natural language processing tasks through the
way of fine-tuning in the downstream tasks. But it still lacks of task-specific knowledge and domain-related
knowledge for further improving the performance of BERT model and more detailed fine-tuning strategy
analyses are necessary. To address these problem, a BERT-based text classification model BERT4TC is
proposed via constructing auxiliary sentence to turn the classification task into a binary sentence-pair one,
aiming to address the limited training data problem and task-awareness problem. The architecture and
implementation details of BERT4TC are also presented, as well as a post-training approach for addressing
the domain challenge of BERT. Finally, extensive experiments are conducted on seven public widely-
studied datasets for analyzing the fine-tuning strategies from the perspectives of learning rate, sequence
length and hidden state vector selection. After that, BERT4TC models with different auxiliary sentences and
post-training objectives are compared and analyzed in depth. The experiment results show that BERT4TC
with suitable auxiliary sentence significantly outperforms both typical feature-based methods and fine-
tuning methods, and achieves new state-of-the-art performance on multi-class classification datasets. For
binary sentiment classification datasets, our BERT4TC post-trained with suitable domain-related corpus
also achieves better results compared with original BERT model.

INDEX TERMS Natural language processing, text classification, bidirectional encoder representations from

transformer, neural networks, language model.

I. INTRODUCTION

Text classification has been a classic task and heated research
hotspot in the field of natural language processing (NLP),
aiming to assign pre-defined categories to a given text
sequence. Previous works in the past few years tried to
use various neural network models to learn text presen-
tations for classification, i.e. convolutional neural network
(CNN) models [1], [2], recurrent neural network (RNN)
models [3], attentional models [3]-[5] and adversarial
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models [6], which significantly outperform many canoni-
cal statistics-based methods. In these work, word vectors
pre-trained over large scale of unsupervised text corpus are
usually adopted as the features of sequences, which are usu-
ally trained via word2vec tool [7], [8] or Glove [9] algo-
rithm based on the assumption that the words with similar
meanings tend to appear in similar contexts. Consequently,
the semantic vector of each word is learned according to its
concurrence information with other words within a certain
window size, which makes it a kind of context-independent
representations that tends to encounter some following
challenges:
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(1) Polysemous challenge. In traditional word vector rep-
resentation, each word is assigned to a fixed vector no
matter whatever contexts it appears. However, most of the
time, a word might have completely different meanings with
respect to different contexts. For example, given two differ-
ent sentences I like eating apple” and I like using apple
phone”, the first apple” denotes a kind of fruits, while
the second “apple” refers to a famous company. For text
classification task, the precise meaning of a word might
sometimes play a crucial role for the final prediction, espe-
cially for those indicative words.

(2) Task-specific structure dependent challenge. For most
of previous neural network-based models, the classification
performance relies heavily on task-specific neural struc-
tures, which usually require elaborate designs and careful
training. At the same time, some complex syntactic
features or advanced mechanisms often need to be adopted,
i.e. dependency tree or attention.

To address the polysemous challenge, some scholars pro-
pose the notion of contextualized word vectors, i.e. CoVe [10]
and ELMo (Embeddings from Language Models) [11],
to learned multiple vectors for a word according to its dif-
ferent appearing contexts. CoVe uses a deep LSTM (Long
Short-term Memory) encoder from an attentional sequence-
to-sequence model trained for machine translation (MT) to
contextualize word vectors, and demonstrates that adding
these context vectors can improve performance over using
only unsupervised word and character vectors on a wide
variety of common NLP tasks. ELMo uses vectors derived
from a bidirectional LSTM that is trained with a coupled
language model (LM) objective on a large text corpus and
integrates these contextual word vectors with existing task-
specific supervised neural architectures. Both CoVe and
ELMo successfully generalize traditional word vectors to
contain context-sensitive features, but these learned represen-
tations are still typically used as features in a downstream
model [12].

In the past two years, in order to avoid heavily-engineered
task-specific structures and greatly decrease the parameters
to be learned from scratch, some scholars contributed along
another direction by pre-training general language model on
large-scale unsupervised text corpus and fine-tuning it for the
downstream tasks. For example, Howard and Ruder propose
an effective transfer learning method ULM-FiT (Universal
Language Model Fine-tuning) in [13] for learning common
language representations on general domain corpus, and opti-
mizes it in the downstream task with the proposed techniques
of discriminative fine-tuning and slanted triangular learning
rates (STLR). The experimental results show that ULM-Fit
significantly outperforms the state-of-the-art on six widely-
studied text classification tasks. The scholars from Open
Al group propose the Generative Pre-trained Transformer
(OpenAl GPT)in [14] by using a left-to-right multi-layer
Transformer [15] architecture to learn the general language
presentations from large-scale texts. Based on the work of
OpenAl GPT, the scholars from Google company further
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propose a new language representation model BERT
(Bidirectional Encoder Representations from Transformers)
in [12], aiming to address the unidirectional constraints in
GPT and extend the model to multi-layer bidirectional Trans-
former. They also propose two new pre-training objectives,
“masked language model” (MLM) and ’next sentence pre-
diction” (NSP) for BERT.

Currently, although BERT has already achieved many
amazing results in a couple of NLP tasks and obviously
outperforms most of feature-based representation methods,
e.g., word2vec, Glove, CoVe and ELMo, its potential has yet
to be fully explored, which at least includes:

(1) More detailed analyses about fine-tuning strategies for
pre-training BERT in text classification tasks. The authors
in [12], [16] already present some typical fine-tuning strate-
gies for BERT from different perspectives, e.g. text length,
transformer layer selection and learning rate. But they only
consider the situation of long-text dataset whose sentences
contain more than 512 tokens. So, it is necessary to fur-
ther discuss fine-tuning strategies for short-text datasets (less
than 512 tokens). Moreover, There still lack of discussions
about the selections of different hidden state vectors from
BERT encoder.

(2) Task-awareness challenge when BERT meets the lim-
ited number of fine-tuning examples in the downstream
task, which is insufficient to fine-tune BERT to ensure full
task-awareness of the model. Since large scale of high-
quality training data are usually unavailable because manual
labelling of training data is very time-consuming and human
intensive, how to make full use of the limited supervised
training data for fine-tuning BERT in the downstream task
is of great importance.

(3) Leveraging BERT along still leaves the domain chal-
lenges unresolved (as BERT is trained on the concatena-
tion of BooksCorpus and English Wikipedia articles and has
no understanding of text classification knowledge). Espe-
cially, When sufficient training data for fine-tuning are
unavailable, external domain-related corpus might provide
another effective way for alleviating the task-awareness
challenge.

In this paper, we proposes a BERT-based model for text
classification BERT4TC by constructing auxiliary sentence
and converting the task into a sentence-pair one, which
aims to better incorporate task-specific knowledge into pre-
training BERT and address the ask-awareness challenge.
Furthermore, we also propose a post-training approach to
utilize domain-related knowledge for addressing the domain
challenge. Extensive experiments on several widely-used text
classification datasets are conducted to validate the effective-
ness of our model. The rest of this paper is organized as fol-
lows: Section II briefly review some related work about text
classification and pre-training language model. Section III
presents the structure of BERT4TC model and its imple-
mentations, as well as the post-training approach. Section IV
gives extensive experiments over seven widely-studied text
classification datasets and in-depth analyses. The conclusions
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and the directions for the future research are summarized in
Section V.

Il. RELATED WORK

Many works have been contributed to text classification task
by using various canonical neural networks. Some typical
works include CNN-based models (e.g., VDCNN [1] and
DPCNN [2]), RNN-based models (e.g., SANN [3]) and var-
ious attention-based models (e.g., HAN [5] and DiSAN [3]).
All these works used pre-trained word embeddings ([7]-[9])
as an important component of in downstream models to offer
significant improvements over embeddings learned from
scratch. Although many state-of-the-art results have been
achieved, the polysemous and task-specific structure depen-
dent problems have brought many restrictions for further
improvement of the models’ performance. Even with the
help of recently successful application and developments of
contextualized word vectors, i.e. CoVe [10] and ELMo [11],
the model structures still need to be elaborately designed and
trained.

More recently, the method of pre-training language models
on a large network with a large amount of unlabeled data and
fine-tuning in downstream tasks has made a breakthrough in a
couple of NLP tasks, such as natural language inference, text
classification and textual entailment. Howard and Ruder [13]
propose ULMFiT and achieves state-of-the-art results in the
text classification task. Alec et al. [14] propose OpenAl GPT
by using a left-to-right multi-layer Transformer architecture
to learn the general language presentations from large-scale
texts. To address the unidirectional constraints of OpenAl
GPT and improve the power of the pre-trained represen-
tations, Jacob et al. [12] propose a new fine-tuning based
approaches BERT by enabling the pre-trained deep bidirec-
tional representations, which as a result can avoid heavily-
engineered task-specific architectures and greatly decrease
the parameters to be learned from scratch. Compared with
other previous pre-trained representations, BERT adopts a
fine-tuning approach that requires almost no specific archi-
tecture for each end task and has achieved great success in
many NLP tasks.

Based on the innovated work of BERT, many related
researches have been done from different aspects. For
example, Sun er al. [16] investigate different fine-tuning
methods of BERT on text classification tasks, including pre-
process of long text, layer selection, layer-wise learning rate,
catastrophic forgetting and low-shot learning problems. But
they only consider the long-text datasets and neglect the
situations of short-text datasets and hidden vector selection.
Xu et al. in [17] proposed a novel post-training approach
on BERT to enhance the performance of fine-tuning of
BERT for review reading comprehension. They also applied
the proposed post-training to some other review-based tasks
such as aspect extraction and aspect sentiment classifica-
tion. In this paper, we also propose a post-training approach
for further training BERT with domain-related knowledge
and consider the different conditions of training objectives.
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Sun et al. [18] propose to construct an auxiliary sentence from
the aspect and convert the aspect-based sentiment analysis
to a sentence-pair classification task. Inspired by the work
of [18], we extend it to text classification task by constructing
auxiliary sentence to address the task-awareness challenges
and conduct exhaustive experiments to illustrate its effec-
tiveness for multi-label text classification tasks. While for
binary classification tasks, we demonstrate that post-training
BERT with suitable domain-related corpus would be helpful
for addressing the domain challenge and improving the per-
formance of the classifier.

lIl. BERTATC: BERT-BASED MODEL FOR TEXT
CLASSIFICATION

Given an input text sequence x, the classification model can
be regarded as a function, i.e. f(x) = y, for measuring the
conditional probability distributions over all possible labels
in the pre-defined category sety = {y1, ..., ¥c}.

A. MODEL STRUCTURE

In this section, we propose a BERT-based model for text
classification, BERT4TC, via constructing auxiliary sentence
and incorporating domain-related knowledge. See FIGURE 1
for the structure of BERT4TC.

BERTA4TC consists of three parts as follows:

(1) Input layer. It aims to build an input sequence for
the model via constructing auxiliary sentence and turn the
task into a sentence-pair one. After that, the WordPiece [19]
embeddings with a 30,000 token vocabulary are used for
segmenting the input sequence and the split word pieces are
denoted with ##. The position embeddings, word embed-
dings and segmentation embeddings for each token are then
summed to yield the final input representations.

(2) BERT encoder. It consists of 12 Transformer blocks and
12 self-attention heads by taking an input of a sequence of no
more than 512 tokens and outputting the representations of
the sequence. The representations might be a specific hidden
state vector or a time-step sequence of hidden state vectors.

(3) Output layer. It consists of a simple softmax classifier
on the top of BERT encoder for calculating the conditional
probability distributions over pre-defined categorical labels.

B. INPUT LAYER

Let x be a token input sequence consisting of k words,
denoted as x1.x = x1x2...X;...xr, Where x;(1 < x; < k)
refers to the i word in the sequence. For BERT model,
an input sequence can unambiguously represent both a sim-
ple text sequence or a pair of text sequences in one token
sequence (i.e. [Question, Answer]), in which the first token is
always [CLS] that contains the special classification embed-
ding and another special token [SEP] is used for separating
segments or denoting the end of the sequence.

Existing BERT-based researches on text classification task
(e.g. [12], [16]) all build input sequence as a simple text
sequence and take the final hidden state vector of [CLS]
as the representations of the whole sequence. The model is
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FIGURE 1. Structure of BERT4TC model.

then fine-tuned for learning downstream task-specific knowl-
edge. Inspired by the work of [18], we propose a method of
constructing auxiliary sentence and converting the original
classification task into a sentence-pair one with a binary set
of new categorical labels. As shown in the latter experiment,
this is a necessary operation that can significantly improve the
performance of the task. To facilitate the comparisons with
other BERT-based classification models in [12], [16] whose
input only consists of a simple text sequence, we propose
several different ways of constructing auxiliary sentences in
BERTA4TC. Taking the input sequence xj.; as an example,
the BERT4TC without/with auxiliary sentence can be defined
as:

(1) BERT4TC-S. It denotes that the input is a simple
text sequence, e.g., [CLS]x; ... x;...xx[SEP]. BERT4TC-S
is just as the right canonical BERT model used in [12], [16].

(2) BERT4TC-AQ. The auxiliary sentence to generate is a
pre-defined pseudo-sentence without categorical label infor-
mation, e.g., [CLS]x; ... x;... x[SEP]a; ... a;...an[SEP],
which can be pseudo-question sentence, e.g., ”What is the
result?”’. The target categorical labels for BERT4TC-AQ are
consistent with the original task.

(3) BERT4TC-AA. The auxiliary sentence to generate
from the labels is a sequence of tokens that only consist
of a label from the original pre-defined set y = {yi,

ey Yjs oo s Yehs €.8., [CLS]xy ... x; ... x¢ [SEP]y;[SEP]. The
task also needs to be converted into a binary classification
problem for obtaining the probability distributions over the
new categorical label set {0, 1}, in which the probability value
of 1 is used as the matching score. We take the class of the
sequence with the highest matching score for the predicted
categorical label.

(4) BERT4TC-AWA. The auxiliary sentence to gen-
erate from the labels is a pseudo-sentence that con-
sists of a categorical label and some other words, e.g.,
[CLS]x; .. .. xk[SEP]ay . ..aym[SEP]. In the same
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TABLE 1. Examples of input sequence constructions.

Model Input Sequence Label
BERT4TC-S [CLS] I like this film. [SEP] {negative,
positive}
[CLS] I like this film. [SEP] Whatis | {negative,
BERTA4TC-AQ the result? [SEP] positive}
[CLS] I like this film. [SEP] positive {0.1)
BERT4TC-AA [SEP] ’
[CLS] I like this film. [SEP] negative [0, 1}
[SEP] ’
[CLS] I like this film. [SEP] The (0.1}
BERT4TC-AWA result is positive. [SEP] ’
[CLS] I like this film. [SEP] The [0, 1)
result is negative. [SEP] ’

way as BERT4TC-AA, the original classification task should
also be converted into {0, 1}.

For BERT4TC-AQ, we only construct an auxiliary sen-
tence for each training sample with the original category
information. While for BERT4TC-AA and BERT4TC-AWA,
total ¢ number of sentence-pairs would be built for each sam-
ple. We present an algorithm get_inputData for constructing
auxiliary sentence and the corresponding sentence-pair as
follows:

Given a sample, e.g. I like this film.” with a positive”
label from the set {”positive”, “negative” }, different input
sequences without or with auxiliary sentence are constructed
as shown in TABLE 1 (we boldface the correct label).

We follow the same input sequence treatments of BERT
by taking WordPiece embeddings [19] with a 30,000 token
vocabulary to segment input sequence and denote the split
word pieces with ##. Each segmented input sequence
should be no more than 512 tokens. For BERT4TC-AQ,
BERT4TC-AA and BERT4TC-AWA, if the sentence-pair
(x1:, ay:m) satisfies k+m+3>512, where 3 means one [CLS]
token plus two [SEP] tokens, then only at most 509 tokens can
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FIGURE 2. Construction of input sequence representations for BERT4TC.

Algorithm 1 get_inputData
Input: data, labels, dType and auxType
Output: examples #a BERT structure that encapsulates the
sentence-pair and the correct label
function get_inputdata(data, labels, dType, auxType)
assert dType in {’train”, “’test”, ’dev”}
assert auxType in {"AQ”, "AA”, ”AWA”}
for (i, sent) in enumerate(data):
label = labelsJi]
sents, newLabels = buildAuxSent(label, auxType)
for j in range(len(sents)):
guid=""%d-%d-%d” %(dType, i, j)
examples.append(InputExample(guid=guid,
text_a=sent, text_b=sents[j],label=newLabels[j]))
10: return examples
11:function buildAuxSent(label, auxType):#y={y; ... v¢}

1:
2
3
4
5:
6
7
8
9

12:  newSents=[]; newLabels=[]

14:  if auxType == " AQ”: # for BERT4TC-AQ

15: newSents.append(” What is the result?”’)

16: newLabels.append(label)

17:  elif auxType in ("AA”, ”AWA”):

18: for i in range(len(y)):

19: auxSent = y[i] if auxType == "AA”

else insert(y[i], auxSentMode)

# auxSentMode is a temple, e.g. The resultis {}.”,
# where {} will be replaced by yl[i].

20: newLabel = 1 if y[i] == label else 0

21: newSents.append(auxSent,)

22: newLabels.append(newLabel)

23:  return newSents, newLabels

be kept. We choose to keep the auxiliary sentence and only
shorten the original input text. The pre-treatment formula is
shown in the follow way:

[CLS]x1...x¢[SEP]aj...a;,[SEP]
if k+m <509
Cram =1 7 ()
[CLSIX1...Xk+m—509 [SEP]ay ...
a, [SEP] if k+m>509
176604

The input representation for each token E is obtained by
summing its token embeddings W, segment embeddings S
and position embeddings P. See FIGURE 2 for the visualiza-
tion of this construction.

C. BERT ENCODER

The model architecture of BERT is a multi-layer bidirec-
tional Transformer encoder based on the original implemen-
tations described in [15]. It consists of 12 layers (Transformer
blocks) and 12 self-attention heads. See FIGURE 3 for the
basic structure of Transformer.

The BERT encoder can output a hidden state vector or a
time-step sequence of hidden state vectors. In BERT4TC,
we only use the final hidden state vector Hcrs) € R" of
the special [CLS] as the aggregate representations of the
sequence, where & is the dimension with a default value
of 768.

D. OUTPUT LAYER

The output layer is a simple softmax classifier on the top of
BERT encoder. Let 0 be the set of all trainable parameters for
BERTATC, the output layer turns the vector Hicrs) into the
conditional probability distributions P(y;|H|cLs], &) over all
categorical labels y = {y1, ..., .} (ory = {0, 1}) as follows:

P(yilHicrs), 0) = softmax(Hicrs)V")
_exp(P(yilH[cLsy, )
> i—1 exp(P(GjlHices), 6))

@)

where V. € R is the trainable task-specific parameter
matrix and c is the number of labels.

Let ¢ be the true label of the input sequence x, we take
the label with the largest y, = argmax(P(y;|H|crs], 0)) value
as the predicted result and compute a standard calculation
loss J(x, 0) based on the canonical cross-entropy function as
follows:

—tInP(y,) — (1 —1)
In(1 — P(yx))
—InP(yy)

J(x,9)= [f‘C:Z

ifc > 2

3
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FIGURE 3. Basic structure of transformer.

We use the parameter batch_size to denote the number of
each training batch. To avoid over-fitting, the regularization
strategy Dropout is adopted and the value is always kept
at 0.1. BERT4TC uses the default Adam optimizer with
beta; = 0.9 and beta, = 0.999. The parameter of learning rate
is denoted as Ir for short, which might vary in different situa-
tions. We fine-tune all trainable parameters from BERT4TC
as well as V jointly by maximizing the log-probability of the
correct label.

E. POST-TRAINING FOR BERT
In latter experiments, we can see that constructing aux-
iliary sentence for multi-label text classification task can
allow BERT to better utilize limited supervised training
data and address task-awareness challenge. However, since
BERT is pre-trained on the common BooksCorpus and
English Wikipedia text corpus without understanding of text
classification knowledge, only fine-tuning BERT in the
downstream task might still leave the domain challenge
unresolved. Especially, When sufficient training data for fine-
tuning are unavailable, external existing domain-related cor-
pus might provide another effective way for alleviating the
task-awareness challenge. To enhance the performance of text
classification task, we may need to reduce the bias intro-
duced by domain-unrelated knowledge (e.g., from Wikipedia
corpora) and fuse domain-related knowledge (from unsuper-
vised domain data) via post-training BERT and task-specific
knowledge (from supervised task-targeted training data but
out-of-domain data) via fine-tuning.

To post-training on domain knowledge, we continue to
use two pre-training objectives proposed in BERT: masked
language model (MLM) and next sentence prediction (NSP).
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The former tries to predict randomly masked words and the
latter tries to detect whether two sides of the input are from
the same document or not. Just as what has been pointed
out in [12] and [17], MLM is crucial for injecting domain
knowledge and for alleviating the bias of the knowledge from
Wikipedia, while NSP encourages BERT to learn contex-
tual representation beyond word-level. In the latter experi-
ments, we use domain-related corpus to further post-training
pre-trained BERT and compare these two different training
objectives.

We define the loss function of MLM as Jyzs and the loss
function of NSP as Jysp, then the total joint loss of the domain
knowledge post-training is Jpx = Jym + JInse-

Algorithm 2 Post-Training Algorithm for BER
Input: Tpg: one batch of domain knowledge training data
trainType: type of data
function post_traing_bert(Tpg, trainType)
assert trainType in {"MLM”, ”MLM-NSP”’ }
Vo Jpk < 0;u = |Tpk|
for (i, sent) in enumerate(7pg ):
if trainType == "MLM”": Jpupsiqt=Jmrm (sent)
if trainType == "MLM-NSP”’:
Jpartial=JIprm (sent) + Jysp(sent)
Vo Jok < Vg Jpk + BackProp(Zzeial)
0 < ParameterUpdates(V/, Jpk)

1:
2
3
4
5:
6
7
8
9

Algorithm 2 describes one training step by taking one batch
of data on domain knowledge Tpk to update the parameters 6
of BERT. The gradients \/, of all parameters are firstly
initialized as O to prepare gradient computation. The partial
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TABLE 2. Statistics about seven datasets.

Dataset Type Label Number Average Length Max Length Average Token Length Max Token Length Train Dev  Test

rt Sentiment 2 22 61 25 76 7676 853 2133

sstb2 Sentiment 2 10 56 12 64 67349 872 1821
imdb Sentiment 2 234 2494 250 2732 225k 2500 2.5k
sstb5 Sentiment 5 20 55 22 61 7680 854 2210
TREC Question 6 10 37 11 39 4906 546 500
AGnews Topic 4 38 172 52 1014 110k 10k 7.6k
DBPedia Topic 14 52 1588 59 3827 550k 10k 70k

loss Jpariiai is computed with different training objectives, According to whether the max tokenized length

e.g, "]MLM” and "MLM-NSP”, and accumulated, which
finally yields the gradients by backpropagation. We detail
some typical hyper-parameter settings of this algorithm in the
following experiments.

IV. EXPERIMENTS

In this section, we evaluate our model on seven
widely-studied datasets used in many related works
(e.g., [6], [12]-[14], [16]). These datasets have varying num-
bers of sequence length and can be divided into three types:

Sentiment Analysis For sentiment analysis, we evaluate
our model on the binary movie review Rotten Tomatoes
(rt for short) [20], binary and five-class versions of the Stan-
ford Sentiment Treebank (sstb2 for binary-class and sstb5 for
five-class) [21], and on the binary Internet Movie Database
(imdb for short) [22].

Question classification For question classification,
we evaluate our model on the six-class version of the
TREC dataset [23], which is a dataset for question classifica-
tion consisting of open-domain, fact-based questions divided
into broad semantic categories. TREC dataset is sentence-
level, and there are fewer training samples for it.

Topic classification For topic classification, we use large-
scale AG’s News (denoted as AGnews) and DBPedia created
by Xiang et al. [24]. AGnews is an internet news article
dataset. We choose the 4 largest classes, World, Entertain-
ment, Sports and Business, to construct the dataset, using
only the title and description fields. The number of training
samples for each class is 30,000 and testing 1900. DBPedia is
a crowd-sourced community effort to extract structured infor-
mation from Wikipedia, and is constructed by picking 14 non-
overlapping classes from DBpedia 2014. From each of these
14 ontology classes, we randomly choose 40,000 training
samples and 5,000 testing samples. The fields we used for
DBPedia come from the title and abstract of each Wikipedia
article.

Some statistic information about these seven dataset is
listed in TABLE 2, where the Average Length and Max
Length columns respectively refer to the average and max-
imum non-tokenized sequence lengths of training samples,
while the Average Token Length and Max Token Length
columns respectively refer to the average and maximum tok-
enized lengths after segmentation by WordPiece.
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exceeds 512 or not, we regard rt, sstb2, sstbS and TREC as
short-text datasets, and imdb, AGnews and DBPeida as long-
text datasets in our experimental situations.

Due to the limitation of machine resources and the insensi-
tivity to word case for text classification task, we only choose
the pre-trained uncased BERT (BERT-base) model for fine-
tuning in all later experiments. The number of Transformer
blocks is 12, the hidden layer size is 768, the number of
self-attention heads is 12, and the corpus for training is
BooksCorpus+ Wikipedia with total 3.3 billions tokens.

A. EXPERIMENT 1: FINE-TUNING ANALYSIS FOR
SHORT-TEXT DATASETS

In this section, we use BERT4TC-S as the default model
to evaluate different fine-tuning strategies on the above
short-text datasets from the perspectives of learning rate Ir,
sequence length and hidden state vector selection. The param-
eter batch_size is uniformly set to 24, and the maximum
sequence length is set to the corresponding Max Length
values given in TABLE 2.

(1) Comparisons of learning rates

The results of accuracy (Acc) and macro F1 (F1) metrics
under the conditions of different Ir are reported in TABLE 3.
For ease of comparisons, we emphasize the best results in
boldface.

From the results in TABLE 3, we can see that learning
rate settings have significant impacts on the performance
of the model. In most of the cases, lower Ir value yields
better results. Especially when Ir is set to 2e-05, BERT4TC-S
achieves the highest Acc and macro F1 values on all short-text
datasets. As the value of Ir increases, the model fails to con-
verge and the performance decreases. Sun et al. in [16] also
found that a lower learning rate, such as 2e-05, is necessary
to make BERT overcome the catastrophic forgetting problem,
while aggressive learning rate of 5e-04 or 4e-04 will tend
to cause the training set fail to converge. In this experiment,
we find similar situations and come to the same conclusions.
Therefore, in all following experiments Ir is uniformly set to
2e-05 for short-text datasets without further explicit mention.

(2) Comparisons of sentence lengths

For short-text datasets, the maximum sequence length is
far lower than 512. So, we consider three kinds of different
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TABLE 3. Results of BERT4TC-S on short-text datasets with different Ir.

Datasets | Learning Rate Ir Acc F1
Se-05 0.8678  0.8674
4e-05 0.8748  0.8746

rt 3e-05 0.8659 0.8658
2e-05 0.8748  0.8747
le-05 0.8706  0.8705
5e-05 0.9325  0.9324
4e-05 0.9379  0.9379

sstb2 3e-05 0.9357  0.9357
2e-05 0.9385  0.9385
1e-05 0.9286  0.9286
5e-05 0.5394  0.5288
4e-05 0.50308  0.5212
sstb5 3e-05 0.5267  0.5192
2e-05 0.5425  0.5343
1e-05 0.5376  0.5242
5e-05 0.964 0.947
4e-05 0.966 0.9621
TREC 3e-05 0.974 0.9697
2e-05 0.974 0.9698
le-05 0.97 0.9554

TABLE 4. Results of BERT4TC-S on short-text datasets with different

sequence lengths.

Datasets | Sequence Length Acc F1
2/3*maxlen=41 0.8669  0.8668
rt maxlen=61 0.8748  0.8747
token_maxlen=76  0.8795  0.8795
2/3*maxlen=37 09319  0.9319
sstb2 maxlen=56 0.9385  0.9385
token_maxlen=64  0.9385  0.9385
2/3*maxlen=37 0.5231 0.5151
sstb5 maxlen=55 0.5425  0.5343
token_maxlen=61 0.5443 0.5379
2/3*maxlen=26 0.966  0.9401
TREC maxlen=37 0.97 0.9581
token_maxlen=39 0.976 0.9793

sequence lengths in the following experiments: maximum
sequence length (maxlen for short), maximum token length
(token_maxlen for short) and part of maximum sequence
length (e.g., two-thirds of maxlen). The Acc and macro
F1 results are shown in TABLE 4.

From the results in TABLE 4, we can see that:

(1) When using token_maxlen as the maximum sequence
length, BERT4TC-S obviously outperforms the models with
other lengths on all datasets. More smaller than token_maxlen
the maximum length is set, more worse the model will per-
form, which can be seen from the results on rt and sstb5.
Since using token_maxlen allows to preserve all tokens in
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the sequences without losing any information, as a result
the model can better capture the complete meanings of
the sequences and thus learn more task-specific knowledge,
which finally achieves better results. When the length is
smaller, the model has to discard some tokens, thus decrease
the performance of the model.

(2) For sstb2, the model achieves the same performance
under the conditions of maxlen and token_maxlen, which
implies that they make no difference for fine-tuning and
ensuring the full task-awareness of the model. According
to the statistics about sstb2, we can find that in its total
67349 training samples there are only 26 sentences with
the lengths exceeding 56. Since sstb2 has relatively large
amounts of training data, the model can be fully trained and
thus using maxlen produces minor impacts. While for rt,
sstb5 and TREC datasets, although there are also very few
samples with the lengths exceeding token_maxlen, the model
with token_maxlen yields better results due to the corre-
sponding limited training data.

(3) When only part of maxlen is considered, e.g., two-thirds
of maxlen, the performance of the model decreases quickly,
which implies that choosing suitable maximum sequence
length is of great importance. Obviously, larger maximum
length allow the BERT model to yield more complete aggre-
gated representations and better performance, especially
when sufficient training data are unavailable. Of courser,
it comes with the expense of quickly increasing trainable
parameters and training cost. However, if sufficient super-
vised training data are available, then larger maximum length
might not always guarantee better performance after exceed-
ing some certain threshold value.

B. EXPERIMENT 2: FINE-TUNING ANALYSIS FOR
LONG-TEXT DATASETS

Different from the short-text datasets mentioned above, train-
ing samples in the long-text datasets might contain more
than 512 tokens, which as a result have to be shorten so as
to meet the input length restriction of BERT. Experimental
results from [16] show that BERT performs best on imdb
when the input is built by concatenating the first 128 tokens
and the final 352 tokens. In the same way, we apply such
sequence treatment on all other long-text datasets and then
report the Acc and macro F1 results of BERT4TC-S with
different learning rates in TABLE 5.

Similarly, we can see that a lower learning rate, e.g., le-05
in this experiment, makes the model achieve the highest Acc
and macro F1 values, which are a little better than using the
setting of 2e-05. Therefore, we use Ir of 1e-05 as the default
setting in the following experiments on long-text datasets.

Since Sun et al. in [16] already compared different length
fine-tuning strategies of BERT on imdb, we only focus on
the remaining AGnews and DBPedia in the following experi-
ments. See the Acc and macro F1 results as TABLE 6 shows.

From results in TABLE 6, we can see that the numbers
of training samples with the length smaller than 100 on
AGnews and DBPedia accounts for 98% and 94.1% of the
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TABLE 5. Results of BERT4SC-S on long-text datasets with different
learning rates.

Datasets | Learning Rate Ir Acc F1
Se-05 0.9379  0.9379
4e-05 0.9398  0.9398

imdb 3e-05 0.9449  0.9448
2e-05 0.9456  0.9456
1le-05 0.9458  0.9458
Se-05 0.9404  0.9404
4e-05 0.9431  0.9421

AGnews 3e-05 0.9459  0.9459
2e-05 0.9471  0.9471
le-05 0.9475  0.9475
5e-05 0.9903  0.9903
4e-05 0.9918  0.9918

DBPedia 3e-05 0.9926  0.9926
2e-05 0.9926  0.9926
le-05 0.9932  0.9932

TABLE 6. Results of BERT4TC-S with different sequence lengths on
AGnews and DBPedia.

Datasets | Max Sequence Length  Percent Acc F1
52 57.60%  0.8158  0.8158
70 91.10%  0.9231  0.9231]

AGnews
100 98.00%  0.9475  0.9475
512 98.00%  0.9475  0.9475
59 50.30%  0.9928  0.9928
7 1. .992 .992

DBPedia 0 61.90% 09928  0.9928
100 94.10% 09932  0.9932
512 94.10%  0.9932  0.9932

total samples respectively. As the maximum length increases,
the Acc and macro F1 values remain unchanged even if the
length is up to 512. That means that increasing the maximum
length from 100 up to 512 makes no sense for the performance
of the model, except for more training costs. Consequently,
we use 100 as the default maximum length setting for both
AGnews and DBPedia. We also find that as the maximum
length decreases if it is smaller than 100, the performance of
the model also drops accordingly. But AGnews drops more
quickly than DBPedia. We think the main reason might be
due to the facts that the sequences in DBPedia are made up of
the title and abstract fields of the article, which as a result con-
tain more informative tokens than AGnews whose sequences
consist of the title and description fields, because the abstract
of the article is usually more concise and informative than the
description part.

C. EXPERIMENT 3: COMPARISONS OF HIDDEN STATE
VECTOR SELECTIONS

To further extend the work of [16] that only focuses
on layer selection and imdb, we compare the impacts
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TABLE 7. Results of BERT4TC-S with different hidden state vectors.

Datasets Models Acc F1
BERT4TC-S 0.8795  0.8795
" BERT4TC-S-last 0.8725 0.8725
BERT4TC-S-mean  0.8776  0.8776
BERT4TC-S-max 0.8753  0.8753
BERT4TC-S 0.9385  0.9385
sstb2 BERT4TC-S-last 0.9379  0.9379
BERT4TC-S-mean  0.9374  0.9374
BERT4TC-S-max 0.9368  0.9368
BERT4TC-S 0.9364 0.9364
imdb BERT4TC-S-last 0.934 0.934
BERT4TC-S-mean  0.9308  0.9308
BERT4TC-S-max 0.9319 0.9311
BERT4TC-S 0.5443  0.5379
sstbs BERT4TC-S-last 0.5285  0.5228
BERT4TC-S-mean  0.5348  0.5291
BERT4TC-S-max 0.5389  0.5291
BERT4TC-S 0976  0.9793
TREC BERT4TC-S-last 0970  0.9659
BERT4TC-S-mean  0.974 0.969
BERT4TC-S-max 0970  0.9592
BERT4TC-S 0.9475  0.9475
AGnews BERT4TC-S-last 0.9468  0.9468
BERT4TC-S-mean  0.9467  0.9467
BERT4TC-S-max 0.9471  0.9471
BERT4TC-S 0.9932  0.9932
DBPedia BERT4TC-S-last 0.9918  0.9918
BERT4TC-S-mean  0.9929  0.9929
BERT4TC-S-max 0.9926  0.9926

of selecting different hidden state vectors of BERT’s last
layer on all datasets in this section. Let BERT4TC-S and
BERT4SC-S-last respectively denote the conditions that the
sequences are represented as the hidden state vectors of
the [CLS] and [SEP] tokens, and BERT4TC-S-mean and
BERT4TC-S-max respectively denote the situations that
sequences are presented as the average and maximum values
of all outputs from the last layer. See TABLE 7 for the Acc
and macro F1 results.

From TABLE 7, we can see that BERT4TC-S achieves
highest Acc and macro F1 values on all datasets, which
implies that the hidden vector of the [CLS] can better catch
the semantics of the corresponding sequence. When selecting
other hidden state vectors, e.g., last, average or maximum
ones, the model performs differently and unsteadily, but all
not as good as BERT4TC-S.

D. EXPERIMENT 4: COMPARISONS OF DIFFERENT
AUXILIARY SENTENCES.

In this section, we compare BERT4TC-S with other
BERTA4TC models that contain auxiliary sentence. We report
the Acc, macro F1 and Precision (P) metrics in TABLE 8.
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TABLE 8. Comparisons of BERT4TC without/with auxiliary sentence.

Datasets Models Acc F1 P

BERT4TC-S 0.8795 0.8795 0.8797

it BERT4TC-AQ 0.8701 0.8701  0.8701
BERT4TC-AA 0.8683  0.8683  0.8683
BERT4TC-AWA  0.8654 0.8654  0.8654
BERT4TC-S 0.9385 0.9385 0.9397
ssth? BERT4TC-AQ 0.9352  0.9351 0.9368
BERT4TC-AA 0.9357 0.9357 0.9357
BERT4TC-AWA  0.9344  0.9344 0.9344
BERT4TC-S 0.9364 0.9364 0.9364

imdb BERT4TC-AQ 0.9301 0.9301 0.9301
BERT4TC-AA 0.9285 0.9285 0.9284
BERT4TC-AWA 09276 09276  0.9276
BERT4TC-S 0.5443  0.5379  0.5395
ssthS BERT4TC-AQ 0.543 0.5349  0.5423
BERT4TC-AA 0.8294 0.7274  0.7395
BERT4TC-AWA  0.8256  0.7257  0.7331
BERT4TC-S 0.976 0.9793  0.9819

TREC BERT4TC-AQ 0.974 0.9685 0.98
BERT4TC-AA 0.991 0.9838 0.9834
BERT4TC-AWA 0.99 0.982 0.9813
BERT4TC-S 0.9475 0.9475 0.9475
AGnews BERT4TC-AQ 0.9405 0.9405 0.9403
BERT4TC-AA 0.9612  0.9612 0.961
BERT4TC-AWA  0.9607 0.9607  0.9607
BERT4TC-S 0.9932  0.9932  0.9932

DBPedia BERT4TC-AQ 0.9901  0.9901  0.9901
BERT4TC-AA 0.9987  0.9987  0.9987
BERT4TC-AWA  0.9981 0.9981 0.9981

From the results in Table 8, we can see that:

(1) For all datasets, BERT4TC-AQ with question auxil-
iary sentence doesn’t bring any performance improvements
to the model, but decreases it on the contrary. The main
reason according to our analyses is because the auxiliary sen-
tence doesn’t introduce any informative messages or relation
semantics to the original target input sequence. Although the
model can still learn the representations of each sentence-
pair sequence via fine-tuning, the performance is decreased
slightly due to the newly added meaningless and noisy auxil-
iary sentence.

(2) For binary datasets, e.g., rt, sstb2 and imdb, all
BERT4TC models with auxiliary sentences perform worse
than BERT4TC-S, no matter whether the auxiliary sentence
contains categorical label information or not. The new objec-
tive of the sentence-pair task is converted to judge whether
two sentences are relevant or not. As a result, the reasons of
worse performance might be mainly due to the lost of some
semantic information during the process of conversion, since
it forces the model to learn the relation between the sentence
pair, instead of the target sentiment polarity for the sentence
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directly. More importantly, the model can’t learn more task-
specific knowledge because of the not increasing number of
training data.

(3) For multi-class datasets, e.g., sstb5, TREC, AGnews
and DBPedia, both BERT4TC-AA and BERT4TC-AWS
significantly outperform BERT4TC-S and BERT4TC-QA.
Especially, BERT4TC-AA achieves the accuracy improve-
ments by 28.64%, 1.5%, 1.37% and 0.51% respectively over
BERT4TC-S that the input sequence is a single sentence. This
definitely illustrates the effectiveness of auxiliary sentence.
For sstb5 and TREC, the numbers of training samples are
relatively limited with respect to each label, which as a result
might not be insufficient for fine-tuning BERT to ensure
full task-awareness of the model. However, by constructing
auxiliary sentences and converting the multi-class classifica-
tion task into the binary one, we can make full use of the
limited supervised training data and increase them several
times, which as a result allows the model to be more fully
trained and learn more task-specific knowledge. Additionally,
the new binary objectives might also be helpful for reducing
the uncertainties caused by some easily confusing labels
in the multi-class situations, e.g., very negative and negative
in sstb5, or World and Business in AGnews.

(4) On all multi-class datasets, BERT4TC-AA obviously
outperforms BERT4TC-AWA. Different from the auxiliary
sentence proposed in [18] in which both aspect and label
might vary with respect to different sentence-pairs, the exper-
imental results of BERT4TC-AA and BERT4TC-AWA on
various multi-class datasets demonstrate that only includ-
ing the categorical label in the auxiliary sentence would be
enough, since other meaningless tokens might bring noisy
information on the contrary.

E. EXPERIMENT 5: COMPARISONS TO PREVIOUS MODELS
In this section, we compare our method to some recently
typical works, especial some famous baseline models such as
ELMo [11], GPT [14], ULM-FiT [13] and BERT-base [12].
See TABLE 9 for the accuracy results on the above seven
datasets. The results of these baselines come from their orig-
inal works and -’ means not reported.

As what is shown in TABLE 9, we can see that:

(1) BERT4TC-S outperforms various feature-based mod-
els, including Virtual Adversarial, DPCNN and ELMo,
on almost all datasets except for sstbS with a slightly
lower results, which confirms the effectiveness of pre-
training BERT and fine-tuning approach. Compared with
GPT, the accuracy on sstb2 is improved by 2.2% for
BERT-base and 2.55% for BERT4TC-S due to their different
training parameter settings. It is evident that bidirectional
Transformer encoder provides better capability to capture the
semantic of sequence than the one-way left-to-right Trans-
former encoder.

(2) Both BERT4TC-S and ULM-FiT adopt pre-trained
general language models and fine-tune them in the down-
stream task, which is proved to be effective from the
better results compared with those feature-based models.
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TABLE 9. Accuracies on seven datasets.

Models rt sstb2 sstb5 TREC AGnews DBPedia

Virtual Adversarial [6] 0.809 - 0.9409 - - - 0.9924
DPCNN [2] - - - - 0.9313 0.9912
ELMo [11] - - 0.547 - - -

GPT [14] - 0913 - - - B

ULM-FiT [13] - - 0.954 - 0.964 0.9499 0.992
BERT-base [12] - 0.935 0.946 - 0.972 0.9475 0.9929
BERTA4TC-S 0.8795 0.9385 09458 0.5443 0.976 0.9475 0.9932
BERT4TC-AA 0.8683  0.9357 09285 0.8294  0.991 0.9612 0.9987
BERT4TC-AWA 0.8654 0.9344 09276  0.8256 0.99 0.9607 0.9981

The performance of BERT4TC-S and ULM-FiT are
comparable due to their different training mechanisms and
fine-tuning methods. More concretely, ULM-FiT propose
discriminative fine-tuning, slated triangular learning rates
and gradual unfreezing techniques to retrain previous knowl-
edge and avoid catastrophic forgetting during fine-tuning,
which are quite different from MLN and NSP. They also
have different pre-training corpus. Both BERT4TC-S and
BERT-base have the same model structures except for differ-
ent fine-tuning parameter settings and their results are very
close.

(3) Although BERT4TC-AA and BERT4TC-AWA don’t
perform as well as BERT-based or BERT4TC-S on rt and
sstb2, they gain much better results than Virtual Adver-
sarial and GPT. However, they perform worse than Vir-
tual Adversarial and ULM-FiT on imdb, which we think
is mainly due to the lack of sentence segmentations
in imdb and the using of different length pre-treatment
methods.

(4) Both BERT4TC-AA and BERT4TC-AWA outperform
significantly than all other models on sttb5, TREC, AGnews
and DBPedia, including both feature-based methods and fine-
tuning methods. Typically, BERT4TC-AA pushes the current
state-of-the-art result on sstb5 from 0.547 up to 0.8294 with
an absolute improvement by 0.2824. It also achieves state-of-
the-art results on other multi-class datasets. Plus the results
from Experiment IV-D, we can conclude that constructing
auxiliary sentence with label information is indeed effective
for multi-class classification task, which not only signifi-
cantly improves the classification performance by increasing
the number of supervised training data to more fully pre-train
BERT and ensure task-awareness of the model, but also sim-
plifies the task by converting it into a binary one for directly
learning the relations between the target text sequence and the
corresponding categorical label with the help of NSP training
objective.

F. EXPERIMENT 6: POST-TRAINING

From Experiment I'V-E, we found that constructing auxiliary
sentence for binary classification task is not helpful. As a
result, in this section we conduct experiments to discuss
whether post-training BERT with domain-related knowledge
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TABLE 10. Information about post-training corpus.

Post-training Corpus | Sample Number | Training Objective
rt 10662 MLM
sstb2 70042 MLM
imdb 50000 MLM
sstb5 10742 MLM
scaledata 301358 MLM+NSP
scaledata_mlm 1087540 MLM

can provide another effective way for addressing domain
challenge or not. In the following experiment, we only focus
on binary classification tasks for simplification.

We select the multi-class movie review dataset scaledata
from [20] as a post-training corpora because it is a paragraph-
level dataset consisting of multiple consecutive sentences
and different from the above sentence-level datasets, e.g.,
rt, sstb2, imdb and sstb5. As a result, we can compare the
different effects of MLM and NSP training objectives. Before
post-training, we use spaCy tool to split each paragraph of
scaledata into independent sentences and keep their original
orders in the paragraph. Let scaledata and scaledata_mlm
denote that the post-training objective is MLM~+NSP and
MLM respectively. For scaledata, each training sample con-
sists of a couple of sentences with their original sequence
orders, which also allows the NSP training objective to learn
each sentence and its contexts. While for scaledata_mlm,
each training sample only includes a simple sentence and
neglects its relations with the previous or next sentence in the
paragraph. In addition, since rt, sstb2, imdb and sstb5 are all
datasets for movie review texts, we can also use them as the
cross post-training corpus. The information about the training
sample numbers and the corresponding objectives is listed
in Table 10.

We take the above corpus to respectively post-train the
public pre-trained uncased BERT model, and then use it
to continue to fine-tune BERT4TC in the downstream task
with the same settings as the previous experiments. When
post-training, we use the maximum sequence length of 128,
the learning rate Ir of 5e-05, and the training epoch number
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TABLE 11. Experiments results of BERT4TC on binary sentiment classification without/with post-training corpus.

Dataset | Post-training Corpus BERT4TC-S BERT4TC-AA

Acc F1 P Acc F1 P
It - 0.8795 0.8795 0.8749 | 0.8683 0.8683  0.8683
sstb2 - 0.9385 09385 0.9397 | 0.9357 0.9357 0.9357
imdb - 0.9364 09364 0.9364 | 0.9285 0.9285  0.9285
sstb2 0.8678 0.8678 0.8678 | 0.8626 0.8626  0.8626
" imdb 0.8801 0.8807 0.8801 | 0.8705 0.8705  0.8705
scaledata 0.8823 0.882 0.883 0.8712  0.8712  0.8713
scaledata_mlm 0.8847 0.8847 0.8848 | 0.8708 0.8708  0.8708
rt 0.9396  0.9396 0.9396 0.936 0.936 0.936
ssth2 sstb5 0.9407 0.9407 0.9418 | 09336 0.9336  0.9336
scaledata 0.9412 09412 0.9414 | 09349 0.9349 0.9349
scaledata_mlm 0.9395 09395 0.9395 | 0.9327 0.9327 0.9327
rt 0.9296 09296 0.9297 | 0.9281 0.9281  0.9280
imdb sstb2 0.9213 09213 09213 | 09210 0.9210 0.9210
scaledata 0.9316 09316 09316 | 09315 09315 0.9315
scaledata_mlm 0.9351 09351 09351 | 0.9348 0.9348  .0.9348

of 3. For easy to compare, we also include the previous results
of BERT4TC-S and BERT4TC-AA on rt, sstb2 and imdb.
The Acc, macro F1 and P (precision) results are reported
in Table 11, where ”’-” in the "’Post-training Corpus’’ column
means no post-training.

From the results in Table IV-F, we can see that:

(1) For rt, when using sstb2 as the post-training corpora,
the performance isn’t increased as we expected, but decreases
on the contrary. According to our analysis, we find that the
main reason might be due to the relatively low quality of
samples in sstb2. There are more than 67% of training data
in sstb2 have the lengths of no more than 5 tokens (including
the meaningless punctuation symbol). As a result, the post-
training with sstb2 will bring noisy data and decrease the
performance of the model. When post-training with imdb,
the performance of the model is only slightly improved,
which might be due to the lack of structure and segment infor-
mation in imdb. When post-training with scaledata or scale-
data_mlm datasets, the performance of the model is improved
obviously, since the review texts in rt and scaledata or scale-
data_mlm are highly related, which as a result can offer
more domain-related knowledge and better address domain
challenge.

(2) For sstb2, the performance of the model is improved
no matter using rt, sstb5, scaledata or scaledata_mlm as post-
training corpora. Different from the post-training impacts of
sstb2 on rt, the performance is improved because of the high
quality of training data in rt, most of which contain com-
plete sentence meanings, instead of several tokens. Although
sstb5 is a five-class version dataset, the performance is still
improved because of their highly related domain and task
knowledge between sstb2 and sstb5. When post-training
with scaledata or scaledata_mlm, the performance is also
improved obviously.
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(3) For imdb, the performance of both BERT4TC-S and
BERT4TC-AA decreases after post-training with each cor-
pora. We believe that the main reason mainly lies in imdb
itself. Each sample in imdb is a text sequence that covers a
couple of sentences without any segment information and is
also pre-processed by only considering part of the sequence,
which as a result constrains the model to better utilize the
sentence-level domain knowledge in the post-training corpus,
as well as to learn the complete semantics or meanings for the
sequence.

(4) No matter using post-training approach or not,
BERT4TC-S outperforms BERT4TC-AA with similar rea-
sons as what we have discussed in Experiment IV-D. Accord-
ing to the results of scaledata and scaledata_mlm on rt and
sstb2, both BERT4TC-S and BERT4TC-AA perform bet-
ter when post-training with scaledata, since scaledata uses
MLM+NSP as the training objective, which as a result allows
to utilize the additional relationship between sentences for
enhancing the understandings of the target sentence. Since
imdb lacks of explicit sentence segmentation information,
post-training with scaledata_mlm would perform better than
that of scaledata by simply considering the word-level mean-
ings and relationships.

V. CONCLUSION

Using general language model BERT pre-trained on large
scale of unlabeled corpus and fine-tune it in the downstream
tasks has achieves many state-of-the-art results in multiple
NLP tasks. In this paper, we propose a BERT-based text
classification model by constructing auxiliary sentence to
turn the task into a sentence-pair one, aiming to incorporate
more task-specific knowledge and address task-awareness
challenge. We also propose a post-training approach to uti-
lize domain-related corpus for addressing domain challenge.

176611



IEEE Access

S. Yu et al.: Improving BERT-Based Text Classification With Auxiliary Sentence and Domain Knowledge

Extensive experiments over seven widely-used text classifi-
cation datasets are firstly conducted to analyze some typical
fine-tuning strategies for BERT from the perspectives of
learning rate, sequence length and hidden state vector selec-
tion, which can provide a supplement to the existing work.
After that, we analyze our model with different auxiliary
sentences and post-training objectives in detail, as well as to
other recently typical works. The experimental results show
that BERT4TC with suitable auxiliary sentence significantly
outperforms both typical feature-based methods and fine-
tuning methods, and achieves new state-of-the-art perfor-
mance on multi-class classification datasets. While for binary
classification datasets, our BERT4TC post-trained strategy
on suitable domain-related corpus also achieves better results
compared with original BERT model.

In the future, we would like to further explore the bet-
ter ways of incorporating task-specific and domain-related
knowledge into BERT with in-domain and cross-domain pre-
training. We also try to design more effective neural networks
on the top of BERT encoder instead of a single softmax
classifier.
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