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ABSTRACT We propose an Iterative Mean Filter (IMF) to eliminate the salt-and-pepper noise. IMF
uses the mean of gray values of noise-free pixels in a fixed-size window. Unlike other nonlinear filters,
IMF does not enlarge the window size. A large size reduces the accuracy of noise removal. There-
fore, IMF only uses a window with a size of 3 × 3. This feature is helpful for IMF to be able to
more precisely evaluate a new gray value for the center pixel. To process high-density noise effectively,
we propose an iterative procedure for IMF. In the experiments, we operationalize Peak Signal-to-Noise
Ratio (PSNR), Visual Information Fidelity, Image Enhancement Factor, Structural Similarity (SSIM), and
Multiscale Structure Similarity to assess image quality. Furthermore, we compare denoising results of
IMF with ones of the other state-of-the-art methods. A comprehensive comparison of execution time
is also provided. The qualitative results by PSNR and SSIM showed that IMF outperforms the other
methods such as Based-on Pixel Density Filter (BPDF), Decision-Based Algorithm (DBA), Modified
Decision-Based Untrimmed Median Filter (MDBUTMF), Noise Adaptive Fuzzy Switching Median Filter
(NAFSMF), Adaptive Weighted Mean Filter (AWMF), Different Applied Median Filter (DAMF), Adaptive
Type-2 Fuzzy Filter (FDS): for the IMAGESTEST dataset – BPDF (25.36/0.756), DBA (28.72/0.8426),
MDBUTMF (25.93/0.8426), NAFSMF (29.32/0.8735), AWMF (32.25/0.9177), DAMF (31.65/0.9154),
FDS (27.98/0.8338), and IMF (33.67/0.9252); and for the BSDS dataset – BPDF (24.95/0.7469), DBA
(26.84/0.8061), MDBUTMF (26.25/0.7732), NAFSMF (27.26/0.8191), AWMF (28.89/0.8672), DAMF
(29.11/0.8667), FDS (26.85/0.8095), and IMF (30.04/0.8753).

INDEX TERMS Salt-and-pepper noise, image denoising, noise removal, image restoration, image process-
ing, nonlinear filter.

I. INTRODUCTION
Image noise usually occurs during signal acquisition and
transmission. Image denoising is a procedure of removing
noise from an image. The primary purpose of image denois-
ing is to preserve image structures such as details, edges,
and textures. The images acquired after denoising are used
for post-processing tasks such as image segmentation, feature
extraction, image analysis, image classification, and pattern
recognition. Noise removal with image structure preservation
is vital for improving the accuracy and performance of other
post-processing tasks [1]–[9].

There are several types of noise formulated on images
[10]–[12]. Being one of the common types of noise, impulse
noise has two types: salt-and-pepper noise (SPN) [13]–[15]
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and random-valued impulse noise (RVIN) [16]. For SPN,
pixels disturbed by noise hold a maximum or a minimum
gray value. This issue causes a severe decrement of image
quality [17]–[22].

One of the well-known methods for removing SPN is
Median Filter (MF) [23]. MF uses a fixed-size window, and
the median value of the pixels in the window is assigned to
the center pixel. MF is relatively successful for low noise den-
sities, but when we employ MF to remove medium-density
and high-density SPN, MF works ineffectively [16]–[17].
To overcome the drawback, Adaptive Median Filter (AMF)
has been proposed [24]. The goal of AMF is to use a
dynamic adaptive window. The window size is enlarged
gradually until the adaptive conditions are fulfilled. For
the high-density noise, the window size needs to be large
enough. This matter reduces the accuracy and processing
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speed of the filter. Unlike AMF, Adaptive Weighted Mean
Filter (AWMF) [25] uses a weighted mean to evaluate a
new gray value for the center pixel. AWMF focuses on
decreasing the number of errors occurring in the detection
of noisy pixels of AMF. Hence, AWMF works more effec-
tively than AMF. However, AWMF still has the drawback of
AMF [26].

Recently, two-stage filters have been designed to eliminate
the disadvantages of MF, AMF, and AWMF. In the first stage,
noisy pixels are detected, and in the second stage, only the
gray values of the detected noisy-pixels are replaced by new
gray values [27]–[29]. Based-on Pixel Density Filter (BPDF)
consists of two stages. BPDF sets a new gray value by consid-
ering the repetition of pixels in an adaptive window [30]. This
method proves highly effective in the presence of low-density
SPN, but its effectiveness tends to reduce for medium-density
and high-density noise. Decision-Based Algorithm (DBA) is
another well-operating method for low-density noise. DBA is
based on a decision-making method exploiting pixels in the
window [31]. The disadvantage of DBA is the fact that it uses
a fixed-size window.Modified Decision-Based Unsymmetric
Trimmed Median Filter (MDBUTMF) is listed among the
well-known and effective filters for removing SPN [32]. The
major disadvantage of this method is that when there are
no noise-free pixels in the window, it will use the mean of
gray values of all pixels in a window to assign a new gray
value to the center pixel. Noise Adaptive Fuzzy Switching
Median Filter (NAFSMF) uses a dynamic adaptive win-
dow [33]. For NAFSMF, a new gray value is determined by a
fuzzy decision-making method. NAFSMF works effectively
for high-density SPN removal as well. Different Applied
Median Filter (DAMF) operates competently for all SPN
densities [34]. Another common filter is Adaptive Type-
2 Fuzzy Filter (FDS, the fuzzy denoising for SPN) [35]. FDS
is developed based on the theory of fuzzy decision. Adaptive
Iterative Fuzzy Filter (AIFF) is an effective filter that is based
on a fuzzy detector and a weighted mean filter [36]. Finally,
Probabilistic Decision Based Filter (PDBF) – another profi-
cient filter – relies on the patch else trimmed median [37].

As we mentioned above, modern denoising filters use a
dynamic adaptive window to promote denoising success in
the presence of high-density noise. This practice reduces the
accuracy and processing speed. Our goal is only to use a
window with a fixed size of 3 × 3 and the mean of grey
values of noise-free pixels. This method will find out a new
gray value closer to the original gray value of the center pixel.
However, the denoising success for high noise densities will
be reduced. To overcome this drawback, we integrate the filter
by an iterative procedure.

The outline of the work is organized as follows: Section II
presents some basic mathematical notions, definitions, and
the algorithm of Iterative Mean Filter (IMF). In Section III,
we perform the image denoising experiments, compare the
obtained results with other state-of-the-art SPN denoising
methods, and discuss the efficacy of the compared methods.
Section IV offers a conclusion.

FIGURE 1. The flowchart of IMF.

II. ITERATIVE MEAN FILTER
A. DEFINITIONS AND NOTIONS
Through the article, let U :=

[
uij
]
m×n be a ground truth

(noise-free) image such that δmin ≤ uij ≤ δmax , for all pixel
locations (i, j) ∈ I = {1, 2, . . . ,m}×{1, 2, . . . , n}. Here,m is
the numbers of pixels in a row ofU , n is the numbers of pixels
in a column of U , and [δmin, δmax] is the range of gray values
of U . For example, δmin = 0 and δmax = 255, for an 8-bit
grayscale image. We note that, for natural images, the num-
ber of pixels achieving the boundary values δmin, δmax are
very small.
Definition 1: Let U :=

[
uij
]
m×n be a ground truth image.

If

bij :=

δmin, with probability p
δmax , with propability q
uij, with probability 1− (p+ q)

(1)

then B :=
[
bij
]
m×n is called a corrupted (noisy) image by

SPN of U with p + q noise level (or noise density or noise
ratio), where p, q, and p+ q ∈ [0, 1]. Here, if the value of the
noise level is even, then p = q.
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FIGURE 2. Denoising results for the House image of for a part of 140 × 140 pixel with a SPN ratio of 60%. PSNR, SSIM, VIF, IEF and MSSIM values of
the results of the method: (b) Noisy image (7.40 dB, 0.0137, 0.0462, 1, 0.9103), (c) BPDF (27.41 dB, 0.8759, 0.3544, 102.29, 0.9870), (d) DBA (30.38 dB,
0.9228, 0.4548, 203.89, 0.9810), (e) MDBUTMF (35.02 dB, 0.9452, 0.5831, 477.55, 0.9888), (f) NAFSMF (33.98 dB, 0.9387, 0.5056, 480.53, 0.9894),
(g) AWMF (37.80 dB, 0.9754, 0.7201, 1100.84, 0.9899), (h) DAMF (36.51 dB, 0.9704, 0.7005, 810.94, 0.9898), (i) FDS (29.77 dB, 0.9171, 0.4393, 167.74,
0.9780), and (j) IMF (39.77 dB, 0.9805, 0.7443, 1843.05, 0.9910).

Definition 2: Let r ≥ 1 be an integer number and A =[
aij
]
m×n be an image. Then, in image A, the indices set of a

window with a size of (2r + 1)× (2r + 1) centered at a pixel
location (i, j), denoted by Wij (A, r), is defined as follows:{(

i∗, j∗
)
∈ I :

∣∣i∗ − i∣∣ ≤ r, ∣∣j∗ − j∣∣ ≤ r} (2)

Definition 3: Let r ≥ 1 be an integer number and A =[
aij
]
m×n be an image. Then, in image A, the strict indices

set of a window with a size of (2r + 1) × (2r + 1) centered
at a pixel location (i, j), denoted by W ∗ij (A, r), is defined as
follows:{(

i∗, j∗
)
∈ Wij (A, r) : ai∗j∗ 6= δmin, ai∗j∗ 6= δmax

}
(3)

Definition 4: Let A =
[
aij
]
m×n be an image. Then,

constrained mean of Wij (A, r), denoted by W̄mean
ij (A, r), is

defined by
aij W ∗ij (A, r) = ∅

1
card(W ∗ij (A, r))

∑
(i∗,j∗)∈W ∗ij (A,r)

W ∗ij (A, r) 6= ∅ (4)

where card (�) is the set cardinality, i.e. the number of pixels.
Definition 5: Let A :=

[
aij
]
m×n and A∗ :=

[
a∗ij
]
m×n

be
two images. Then, l1-distance (or Manhattan distance [38])
between A and A∗ is defined as follows:∣∣A− A∗∣∣1 :=∑m

i=1

∑n

j=1

∣∣∣aij − a∗ij∣∣∣ , (5)

where |�| denotes absolute value.

B. ITERATIVE MEAN FILTER ALGORITHM
The goal of IMF is based on MF. MF works effectively for
low noise densities. The processing speed of MF is very high
because it uses a fixed-size window instead of an adaptive
window as in AMF, AWMF, MDBUTMF, and NAFSMF.

For the study, we focus on two characteristics: (1) MF
is only effective in low-density noise, and (2) the weighted
mean of AWMF is better than the median of AMF. The first
characteristic can be explained as follows: because MF uses
a small fixed-size window, there are no noise-free pixels in
the window in the presence of high noise density. Hence,
MF avails of gray values of all noisy pixels to restore a
gray value for the center pixel. If all noisy pixels in the
window are only salt pixels or only pepper pixels, the center
pixel will remain to be noisy as well. The second charac-
teristic is the improved accuracy of AWMF – relying on
weighted mean – in comparison with AMF – operational-
izing median – even though both adopt the same technique
for noise detection. Inferring from a variety of comparisons
in [25], AWMF outperforms AMF, particularly for high noise
densities.

To propose IMF, first of all, we utilize the advantage of MF
by using a window with a size of 3× 3. Next, we incorporate
this advantage with the constrainedmean of a window instead
of using the median. This way will give a higher accuracy to
evaluate a new gray value for the center pixel. However, like
MF, because we only consider a fixed-size window, IMF will
work ineffectively at high noise densities. Hence, we propose
to combine the method with an iterative procedure. The iter-
ative procedure will guarantee that all noisy pixels will be
processed. The stop condition of the iterative procedure bases
on the `1-distance.
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FIGURE 3. Denoising results for the Peppers image with the size of 512 × 512 pixels with a SPN ratio of 90%. PSNR, SSIM, VIF, IEF and MSSIM values
of the results of the method: (b) Noisy image (7.40 dB, 0.0137, 0.0196, 1, 0.8078), (c) BPDF (9.21 dB, 0.1927, 0.0307, 2.14, 0.1836), (d) DBA (18.72 dB,
0.5272, 0.0699, 20.40, 0.9455), (e) MDBUTMF (16.91 dB, 0.4029, 0.0814, 12.88, 0.9568), (f) NAFSMF (23.60 dB, 0.6499, 0.1430, 60.34, 0.9848), (g) AWMF
(26.23 dB, 0.7123, 0.2013, 109.22, 0.9925), (h) DAMF (25.87 dB, 0.7049, 0.1999, 102.62, 0.9921), (i) FDS (18.15 dB, 0.5085, 0.0618, 16.97, 0.9251), and
(j) IMF (27.88 dB, 0.7700, 0.2289, 151.30, 0.9938).

Algorithm 1 Iterative Mean Filter (IMF)

Input: A noisy image B :=
[
bij
]
m×n

Output: A restored image A :=
[
aij
]
m×n

Initialize r := 1, k := 0,A[0] := B, ε.
Compute : δmax := max

1≤i≤m
1≤j≤n

{
bij
}
, δmin := min

1≤i≤m
1≤j≤n

{
bij
}
.

Repeat
For each pixel (i, j) of an image A[k] at a step k

If
(
a[k]ij ≥ δmax || a

[k]
ij ≤ δmin

)
Define : W ∗ij

(
A[k], r

)
.

Update : a[k+1]ij := W̄mean
ij

(
A[k], r

)
Else

Assign : a[k+1]ij := a[k]ij
End

End
Until

∣∣A[k+1] − A[k]∣∣1 ≤ ε

Details of IMF are presented in Algorithm 1. In every
iteration step, windows with a size of 3 × 3 whose center
pixel is noisy will be considered. The constrained mean of
a window will be the new gray value of the center pixel.
In the case of all pixels in the current window are noisy,
the gray value of the center pixel of the window will not
be changed. The center pixel will be processed in the next
iteration steps. This is different from the way processed by an
adaptive window of AWMF or AMF. Because enlarging the
size of an adaptive window until there is at least a noise-free
pixel will cause an issue in which gray values of very far
away from the center pixel are also used for evaluating the

gray value of the center pixel. For IMF, far pixels have lower
weights. For the way of enlarging a window, all pixels have
the same weight. In other words, the influence of far pixels
on the new gray value of the center pixel in the case of IMF
is smaller. Therefore, IMF can lead to devoid artifacts and
sharpen edges as that it will be shown in the experimental
section. The iterative procedure will be stopped if there is no
change in the Manhattan distance between the images of two
consecutive iteration steps. The corresponding flowchart is
also presented in Figure 1.

Similar to nonlinear filters such as MF, AMF, and AWMF,
IMF also uses the same condition based on the boundary
values to detect noise: aij ≥ δmax or aij ≤ δmin. This can cause
an issue for the synthetic images, in that all pixels owning
boundary values δmax , δmin will be treated as noisy pixels.
This is not only the limit of IMF, but that is also the drawback
of many other nonlinear filters for SPN. However, in the arti-
cle, we only focus on natural images that are very important
in practical applications. For natural images, the number of
noise-free pixels acquiring the boundary values is very small.
In the experimental section, we will show that IMF still works
effectively for this case.

We also must notice that, because we consider gray values
of pixels in the form of integer numbers, tolerance can be set
to zero, ε = 0. If we consider gray values of pixels in the
form of real numbers, tolerance can be set to a small enough
number, for example, ε = 10−6.

III. EXPERIMENTAL RESULTS
A. IMAGE QUALITY ASSESSMENT METRICS
In order to assess image quality after denoising, we use
common error metrics such as Peak Signal-to-Noise Ratio
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FIGURE 4. Denoising results by IMF for the Lena image with the size of 512 × 512 pixels with different SPN ratios. a) (15.43 dB, 0.1758, 0.1362, 1, 0.9910),
b) (12.42 dB, 0.0848, 0.0887, 1, 0.9789), c) (10.68 dB, 0.0533, 0.0673, 1, 0.9646), d) (9.42 dB, 0.0364, 0.0528, 1, 0.9494), e) (43.48 dB, 0.9913, 0.8974,
518.49, 1), f) (40.18 dB, 0.9796, 0.8106, 457.49, 0.9999), g) (37.05 dB, 0.9675, 0.7343, 425.55, 0.0.9999), h) (35.40 dB, 0.9541, 0.6653, 398.35, 0.9998), i)
(8.44 dB, 0.0263, 0.0422, 1, 0.9333), j) (7.65 dB, 0.0182, 0.0325, 1, 0.9141), k) (6.99 dB, 0.0139, 0.0278, 1, 0.8979), l) (6.42 dB, 0.0092, 0.0213, 1, 0.8803), m)
(33.98 dB, 0.9383, 0.5917, 357.47, 0.9997), n) (32.49 dB, 0.9183, 0.5135, 306.95, 0.9994), o) (31.23 dB, 0.8953, 0.4353, 266.22, 0.9990), p) (29.70 dB, 0.8623,
0.3445, 210.75, 0.9982).

(PSNR) [39], Visual Information Fidelity (VIF) [40],

Image Enhancement Factor (IEF) [41], Structural Similarity
(SSIM) [39], and Multiscale SSIM (MSSIM) [42].

PSNR is defined as [39]:

PSNR(U ,V ) := 10 log10

(
2552

MSE(U ,V )

)
(6)
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TABLE 1. PSNR results of the methods for three traditional images with different SPN ratios.

where MSE stands for Mean Square Error defined as:

MSE (U ,V ) :=
1
mn

m∑
i=1

n∑
j=1

(
uij − vij

)2 (7)

U :=
[
uij
]
is a ground truth, V :=

[
vij
]
is an evaluated image.

V can be a restored image A or a noisy image B.
VIF is defined as [40]:

VIF (U ,V ) :=

∑
j∈subbands I

(
ECN ,j
; EFN ,j|sN ,j

)
∑

j∈subbands I
(
ECN ,j; EEN ,j|sN ,j

) (8)

where

I
(
ECN ,j
; EEN ,j|sN ,j

)
: =

1
2

N∑
i=1

M∑
k=1

log2

(
1+

s2i λk
σ 2
n

)
(9)

I
(
ECN ,j
; EFN ,j|sN ,j

)
: =

1
2

N∑
i=1

M∑
k=1

log2

(
1+

g2i s
2
i λk

σ 2
u +σ

2
n

)
(10)

where I ( ECN ,j
; EEN ,j|sN ,j) and I ( ECN ,j

; EFN ,j|sN ,j) represent the
information that can ideally be extracted by the brain from
a particular subband in the reference image (ground truth)
U and the evaluated image V , respectively; EEN ,j is a vector
of N components of the visual signal for the j-subband at
the output of the Human Visual System (HVS) of a ground
truth U ; EFN ,j is a vector of N components of the visual
signal for the j-subband at the output of HVS of an evaluated
image V ; ECN ,j is a vector of N components of the random
field from the j-subband in a ground truth U ; σ 2

n is the
variance of visual noise; σ 2

u is the variance of Gaussian noise
of the distortion model; λk are eigenvalues of a covariance
matrix; gi is deterministic scalar field and sN is the maxi-
mum likelihood estimate of SN (or a realization of SN for
a particular reference image), SN is a vector of N elements
of a random field of positive scalars, sN ,j is the j-subband
of sN . The random field used is Gaussian scale mixtures
(GSMs). Wemust notice that the subbands are extracted from
the Natural Scene Statistics (NSS) model by the wavelet
decomposition.
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TABLE 2. SSIM results of the methods for three native images of the MATLAB library with different SPN ratios.

IEF is defined as [41]:

IEF (U ,V ,B) :=

∑m
i=1

∑n
j=1

(
bij − uij

)2∑m
i=1

∑n
j=1

(
vij − uij

)2 (11)

where, U := [uij] is a ground truth, V := [vij] is an evaluated
image, and B := [bij] is a noisy image.

SSIM is defined as [39]:

SSIM (U ,V ) :=
(2µUµV + C1)+ (2σUV + C2)

(µ2
U + µ

2
V + C1)+ (σ 2

U + σ
2
V + C2)

(12)

where µU , µV , σU , σV , and σUV are the average intensities,
standard deviations, and cross-covariance of a ground truth
imageU and an evaluated image V , respectively. Also,C1 :=

(K1L)2 and C2:= (K2L)2 are two constants such that K1 :=

0.01,K2 := 0.03 and L := 255 for 8-bit grayscale images.
The MSSIM is defined as [42]:

MSSIM (U ,V ) := (lM (U ,V ))αM
M∏
j=1

(
cj (U ,V )

)βj
×
(
sj (U ,V )

)γj (13)

where

lM (U ,V ) : =
2µUµV + C1

µ2
U + µ

2
V + C1

on scale M ,

cj (U ,V ) : =
2σUσV + C2

σ 2
U + σ

2
V + C2

on each scale j = 1, ..,M ,

sj (U ,V ) : =
σUV + C3

σUσV + C3
on each scale j = 1, . . . ,M ,

C1:= (K1L)2 ,C2:= (K2L)2,C3 :=
C2
2 ,K1 := 0.01, K2 :=

0.03 and L = 255 for 8-bit grayscale images; j repre-
sents a resolution scale after each low-pass filtering and
downsampling, and M represents the total number of scales;
α, βj, γj are used to adjust the relative importance of dif-
ferent components. In the experiments, we use five scales
as in [42], i.e., M = 5. MSSIM is better than SSIM
in terms of its correlation with a human judgment of the
images [42].

Note that, values of SSIM, VIF, MSSIM are in the range of
[0, 1]. A higher value of PSNR, IEF, SSIM, VIF or MSSIM
indicates a better image quality.
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TABLE 3. PSNR, SSIM, VIF, IEF and MSSIM values of denoising results for the 20 traditional test images with different SPN ratios.
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TABLE 4. PSNR, SSIM, VIF, IEF and MSSIM values of denoising results for the TESTIMAGES dataset with different SPN ratios.
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TABLE 5. PSNR, SSIM, VIF, IEF and MSSIM values of denoising results for the berkeley image dataset with different SPN ratios.

B. DATASETS AND TEST CASES
We implement IMF algorithm on MATLAB R2019a.
To assess denoising quality of the proposed method, we use

20 native images with the same size of 512 × 512 pixels
of the MATLAB Library: Lena, Cameraman, Barbara,
Baboon, Peppers, Living Room, Lake, Plane, Hill, Pirate,

167856 VOLUME 7, 2019
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TABLE 6. Execution time comparison of the methods.

Boat, House, Bridge, Elaine, Flintstones, Flower, Parrot,
Dark-Haired Woman, Blonde Woman, Einstein; 40 images
with the same size of 600× 600 pixels of the TESTIMAGES
dataset [43] and 200 images of the BSDS dataset: https://
www2. eecs. berkeley. edu/research/projects/CS/vision/bsds/
BSDS300/html/DataSet/images.html of the UC Berkeley. All
images of three datasets are grayscale. The images of the
MATLAB library and the TESTIMAGES dataset are stored
in the PNG format. For the BSDS dataset, the images are
stored in the JPEG format. The size of the images of the BSDS
dataset is 481 × 321 or 321 × 481. All images are published
for use under a free license.

We use PSNR, SSIM, VIF, IEF, and MSSIM to assess
image quality after denoising. We compare denoising results
with ones of the following state-of-the-art denoisingmethods:
BPDF [30], DBA [31], MDBUTMF [32], NAFSMF [33],
AWMF [25], FDS [35], and DAMF [34]. We also must notice
that AWMF works more effective than MF and AMF [18],
so we do not need to compare denoising results with ones of
MF and AMF.

We consider three test cases: evaluate denoising results of
the methods by intuition; evaluate denoising results based on
qualitative metrics for three datasets: the MATLAB library,
the TESTIMAGES dataset, the BSDS dataset; and evaluate
execution time of the methods.

C. DISCUSSION
1) THE FIRST TEST CASE
We test on three images of the MATLAB library: the house
image, the peppers image, and the Lena image. We focus
on the intuitive results assessment and qualitative assessment
based on the metrics.
Firstly, we consider the house image. We added SPN with

a noise level of 60%. Denoising results of the methods are
shown in Figure 2. We cropped an image part with the size
of 140 × 140 pixels to make it easy to distinguish. From
the results, we can see that BPDF and DBA were unable to
preserve structures and edges of images. FDS worked better,

but the denoising result contains some defects, especially for
the bottom-right region of the image. MDBUTMF, AWMF,
and DAMF removed noise very well, but they created arti-
facts and made edges sharpen. The artifacts are visible on
edges. NAFSMF also removed noise very well and avoided
creating artifacts. However, the denoising result of NAFSMF
was lost many details. IMF removed noise excellently. All
noises were removed. No artifacts remain, and edges are
smoothed naturally. On the other hand, IMF preserved the
edges, details and other image structures very well. The
PSNR, SSIM values (and VIF, IEF, MSSIM) of denoising
result of IMF are the highest: BPDF (27.41 dB, 0.8759),
DBA (30.38 dB, 0.9228), MDBUTMF (35.02 dB, 0.9452),
NAFSMF (33.98 dB, 0.9387), AWMF (37.80 dB, 0.9754),
DAMF (36.51 dB, 0.9704), FDS (29.77 dB, 0.9171), IMF
(39.77 dB, 0.9805).
Secondly, we consider the pepper image. For this case,

we add SPN with a noise level of 90%. Denoising results
are presented in Figure 3. For this very high noise level,
BPDF cannot work correctly. BPDF destroyed image struc-
tures, and we cannot see anything on the image. MDBUTMF
removed noise completely, but it created many defects like
ink. DBA and FDS removed noise completely, but they
also created defects: a raindrop effect for DBA and a
windblown-dust effect for FDS. A little noise remains on
the results of the NAFSMF and DAMF. Besides, edges in
the denoising results of AWMF and DAMF are very sharp-
ened. IMF removed noise completely. Edges are smoothed
naturally. By the PSNR, SSIM values (as well as VIF, IEF,
MSSIM), denoising result of IMF is the best: BPDF (9.21 dB,
0.1927), DBA (18.72 dB, 0.5272), MDBUTMF (16.91 dB,
0.4029), NAFSMF (23.60 dB, 0.6499), AWMF (26.23 dB,
0.7123), DAMF (25.87 dB, 0.7049), FDS (18.15 dB, 0.5085),
IMF (27.88 dB, 0.7700).
Thirdly, we consider the Lena image. In this case, we do not

compare to other methods.We only consider the effectiveness
of noise removal for various noise levels of IMF. We consider
eight noise levels: 10%, 20%, 30%, 40%, 50%, 60%, 70%
and 80%. Denoising results are shown in Figure 4. As we
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can see, IMF can remove noise excellently and can preserve
image structures very well even for very high noise levels.
PSNR and SSIM values of denoising results with various
noise levels of three above images are given in Table 1 and
Table 2, respectively. It is easy to see that the quality of
denoising results by both PSNR and SSIM of IMF are better
than those of other methods.

2) THE SECOND TEST CASE
We assess denoising quality by the metrics. The assessments
base on the average values of all images of the datasets.
Tables 3, 4, 5 show the average PSNR value, the average
SSIM value, the average VIF value, the average IEF value
and the average MSSIM value of denoising results of the
methods for all images of the MATLAB library (Table 1),
the TESTIMAGES dataset (Table 2) and the UC-Berkeley
dataset (Table 3), respectively. According to the acquired
results, we can see that the denoising results of IMF are
always better than those of the other compared methods.

3) THE THIRD TEST CASE
We assess the processing performance (i.e., execution time)
of the denoising methods. Table 6 presents the execution
time of the methods. The execution time depends on noise
levels too much. DAMF is the fastest. FDS is the slowest.
The difference in execution time of IMF, BPDF, and DBA
is very small. IMF can work faster than FDS, NAFSMF and
MDBUTMF. It must be noted that for noise levels up to 30%,
IMF can remove noise very fast. It is only slower than DAMF.

As mentioned above, IMF is designed to remove noise in
natural images, where dark and bright regions are usually not
entirely black or completely white. As in the above test cases,
even when there are some profoundly dark/bright regions
in natural images (e.g., the Lena image, the Peppers image)
containing some pixels of boundary values, IMF still removed
noise very effectively and did not create any defects.

IV. CONCLUSION
An iterative mean filter (IMF) for SPN removal has been
proposed. In IMF, we only consider a fixed-size window
of 3 × 3 pixels, and we use the constrained mean of the
window instead of median to evaluate new gray value for
the center pixel. Hence, IMF works more effectively than
the methods using dynamic adaptive windows. An iterative
procedure has also been provided to integrate the power of
removing high-density noise for IMF. From a vast number of
tests, it is seen that IMF could remove noise excellently, and
it can preserve image structures, edges, and details very well.
We also can confirm that IMF outperforms other state-of-the-
art compared SPN denoising methods.

For future work, we focus on study for an extensive IMF
to remove the random-valued impulse noise (RVIN).
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