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ABSTRACT To solve the problem of optimal wavelet basis function selection in feature extraction
of motor imagery electroencephalogram (MI-EEG) by wavelet packet transformation (WPT), based on
the analysis of wavelet packet transformation and wavelet basis parameters, combine with the char-
acteristics of MI-EEG, the characteristics of wavelet basis function suitable for feature extraction of
MI-EEG are summarized. On the basis of processing and analyzing of two BCI competition data sets,
signal to noise ratio (SNR), root mean squared error (RMSE), classification accuracy, and kappa value
are introduced as evaluation criteria for feature extraction effect, it is concluded that the rbio2.2 wavelet
basis function is the optimal wavelet basis function for feature extraction of MI-EEG. Finally, the
MI-EEG collected in the laboratory is processed and analyzed, further proving that the rbio2.2 wavelet basis
function is the optimal wavelet basis function for feature extraction of MI-EEG.

INDEX TERMS Motor imagery electroencephalogram, signal to noise ratio, root mean squared error,
wavelet basis function, deep belief networks.

I. INTRODUCTION
Wavelet packet transformation with good time-frequency
localization property has a good application in feature extrac-
tion of MI-EEG [1]. The frequency band range of MI-EEG is
generally 1∼30Hz, and the magnitude is on the
µV scale [2], [3], it is easily disturbed by external sig-
nals, such as electrooculogram (30∼200hz), electrocardio-
gram (0.05∼100hz), electromyogram (5∼2000hz), power
frequency interference (50Hz), etc [4]. Not all wavelet basis
functions are suitable for feature extraction of MI-EEG, and
different wavelet basis functions have different processing
results for the same signal, so the feature extraction effect
of wavelet packet transformation depends on the selection
of wavelet basis function [5]. The comparison and selection
of wavelet basis functions is always a difficult problem in
the application of wavelet packet transformation. At present,
there is no systematic method and theory to solve the problem
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of selecting the optimal wavelet basis function in feature
extraction of MI-EEG [6], [7].

Servín-Aguilar et al. applied Haar, Daubechies, and
Coiflets to wavelet transform the EEG signals, compared
of three different criteria: normalized mean square error
(NMSE), percent root mean square percentage (PRD), and
compression ratio (CR), Haar wavelet had better performance
of EEG signal processing [8]. Yan et al. in the wavelet
packet transformation extraction of EEG signal characteris-
tics, the best basis function algorithm was used to automati-
cally select the most suitable wavelet basis function, wavelet
methods used include Daubechies, Coiflets, and Symlets.
It was concluded that db4, sym6, and coif6 had better feature
extraction performance [9]. Khatun et al. compared station-
ary wavelet transform (SWT) and discrete wavelet trans-
form (DWT) with different wavelet basis functions (such as
sym3, haar, coif3, and bior4.4). The effectiveness of each
combination was measured by correlation coefficient (CC),
normalized mean square error (NMSE), time-frequency anal-
ysis, and execution time. It was concluded that coif3 and
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bior4.4 were two wavelet basis functions with relatively good
performance [10]. Lema-Condo et al. applied 18 wavelet
transforms (sym2∼10 and db2∼10) to process the EEG sig-
nals of asymptomatic volunteers, the similarity between each
filter and the average value of Daubech and Symlet was
compared. It was concluded that sym6 was the most suitable
EEG signal processing, followed by db5 [11]. Eraldemir and
Yildirim compared different wavelet types commonly used in
EEG signal analysis and classification, the feature extraction
and classification performance of BayesNet and J48 classifier
were compared by using Symlet, Coiflet and Bior wavelet.
It was concluded that the bior2.4 wavelet basis function was
the optimal wavelet basis function [12]. M. I. Al-Kadi et al.
studied 113 wavelet basis functions (Daubechies, Coiflets,
Biorthogonal, Reverse Biorthogonal, Discrete Meyer and
Symlets), looked for the function most similar to EEG sig-
nals. By determining the minimum mean square error (MSE)
and high signal to noise ratio (SNR), 57 different signals
were detected. The results showed that the denoising com-
patibility of master wavelet symbol (sym24) was the best [5].
Al-Qazzaz et al. selected Daubechies, Symlet, Coiflet
wavelet basis function to test the similarity of EEG sig-
nals recorded in the working memory task. Four evaluation
indexes (SNR, PSNR, MSE, xcoor) were used for verifica-
tion, Sym9 was the best [6]. For various details on wavelet
packets, one may see [13]–[19].

In this paper, based on the wavelet packet transformation
and the parameters of wavelet basis function, combined with
the characteristics of MI-EEG, the wavelet basis function
suitable for the feature extraction of MI-EEG is analyzed
theoretically. Two public data sets (BCI Competition II Data
set III and BCI Competition IV dataset 2b) were processed.
Firstly, the second-order moment was used for preprocessing.
Secondly, different wavelet basis functions were used for
feature extraction under wavelet packet transformation. Then,
the results of feature extraction were imported into deep
belief networks (DBN) for training [20]. Finally, softmax
classifier was used to classify imagery tasks [21]. The exper-
imental results are identical with the theoretical analysis,
and it is concluded that the rbio2.2 wavelet basis function
is the optimal wavelet basis function for feature extraction
of MI-EEG. In the processed of BCI Competition II Data
set III, replaced DBN and softmax with NN, CNN, LDA,
SVM, got the same result as DBN and softmax. It is proved
that the rbio2.2 wavelet basis is the optimal wavelet basis
for feature extraction of MI-EEG, which is applicable to
different classifiers. The MI-EEG collected in the laboratory
was processed, it is further proved that the rbio2.2 wavelet
basis function is the optimal wavelet basis function for feature
extraction of MI-EEG.

II. METHOD AND PRINCIPLE
A. WAVELET PACKET TRANSFORMATION
As a time-frequency analysis method, wavelet packet anal-
ysis is suitable for the processing of non-stationary signals,
the decomposition of low and high frequency information

FIGURE 1. Spatial structure of wavelet packet decomposition.

at the same time, it is beneficial to extract more abundant
features. Due to the zoom distance characteristic of wavelet
packet transformation, it is easy to highlight the parts with
the largest difference between categories, thus amplifying the
differences between different classes, and help to improve the
classification accuracy.

The wavelet packet uses the binary method to subdivide
the wavelet subspace frequency to improve the frequency
resolution. The decomposition of the wavelet packet spatial
structure is shown in Fig. 1.
U r
l represents the rth wavelet packet subspace of layer l,

where r = 1, 2, 3, . . . , 2l − 1. The corresponding orthogonal
basis function of the subspace is url,k (t) = 2−l/2ur (2l t − k),
where k is the translation factor and satisfies the two-scale
formula:

url,0 =
∑
k

g0(k)url−1,k (even) (1)

url,0 =
∑
k

g1(k)url−1,k (odd) (2)

In the formula, l, k ∈ Z , r = 1, 2, 3, . . . , 2l − 1, low-
pass filter g0(k) and high-pass filter g1(k) as a set of mutu-
ally orthogonal filters, both of them satisfy the condition
g1(k) = (−1)1−kg0(1− k).
Orthogonal wavelet packet transformation is used to

decompose the signal x(t). Wavelet packet decomposition
coefficients of the l layer and the k point are obtained from
the following formulas:

d2rl (k) =
∑
k

g0(m− 2k)d rl−1(m) (3)

d2r+1l (k) =
∑
k

g1(m− 2k)d rl−1(m) (4)

After wavelet packet decomposition, the original signal is
divided into several wavelet packet subspaces according to
frequency bands. The corresponding frequency bands of each
subspace in the l layer are:

{[0,
fs

2l+1
]; [

fs
2l+1

,
2fs
2l+1

]; [
2fs
2l+1

,
3fs
2l+1

]; . . . ; [
(2l−1)fs
2l+1

,
fs
2
]}

fs is the signal sampling rate.
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TABLE 1. Comparison of parameter characteristics of common wavelet basis functions.

The reconstruction formula of wavelet packet coefficients
at the l + 1 layer and the k point is:

d rl+1(k)=
∑
m

g0(m−2k)d2rl (m)+
∑
m

g1(m−2k)d
2r+1
l (m)

(5)

According to the frequency domain characteristics of the
extracted signal, the wavelet decomposition coefficient cor-
responding to the corresponding frequency band is selected.
By using formula (5) for reconstruction, a specific frequency
band signal can be obtained [3], [22]–[25].

B. WAVELET BASIS FUNCTION PARAMETERS AND
CHARACTERISTICS ANALYSIS
Wavelet basis function has five important properties:
orthogonality (or biorthogonality), symmetry (or linear
phase), regularity, vanishing moment, and compact support.
Orthogonality reflects the perfection of wavelet basis func-
tion, describes the redundancy of data, and strict orthogo-
nality is beneficial to the exact reconstruction of wavelet
packet decomposition coefficients. Symmetry indicates that
the wavelet basis function has a linear phase, and phase
distortion can be avoided effectively in signal processing,
prevent phase distortion during signal decomposition and
reconstruction. Regularity is the embodiment of smoothness
and continuous differentiability of wavelet basis function,
the singularities in the signal can be found effectively. The
vanishing moment determines the rate of convergence when
wavelet approximates smooth function, it shows the concen-
tration degree of energy after wavelet packet transformation.
The compact support (support width) reflects the localization
ability of wavelet basis function, the smaller the support
width, the stronger the localization ability of wavelet basis
function, and the lower the computational complexity of
wavelet packet transformation [6], [8], [26]. For more details
on wavelets and their applications, one may refer [27]–[32].
Tab. 1 shows the comparison of parameters of common
wavelet basis functions.

(1) Haar wavelet basis function. It is one of the earliest
orthogonal wavelet functions with compact support, it’s also
the simplest wavelet basis function, it is a single rectan-
gular wave in the support field in the range t ∈ [0, 1].
Haar wavelet basis function is discontinuous in the time
domain [33].

(2) Daubechies (dbN) wavelet basis function. The wavelet
function ψ(t) and the scaling function ϕ(t) in the support
area are 2N − 1, the vanishing moment of ψ(t) is N .
DbN wavelet basis function has good regularity, the smooth-
ing error introduced by the wavelet as a sparse basis is not
easily detected, the signal reconstruction process is relatively
smooth. The characteristic of dbN wavelet basis function is
that the vanishing moment order increases with the increase
of order (sequence N ), the higher the vanishing moment, the
better the smoothness, the stronger the localization ability
of frequency domain, and the better the effect of frequency
band division. However, it will weaken the compact support
in the time-domain, increase the computation amount greatly,
and make the real-time performance worse. In addition,
dbN wavelet has no symmetry (nonlinear phase) except
N = 1, some phase distortion will occur when the signal
is analyzed and reconstructed. DbN has no definite expres-
sion (except N = 1, it is the Haar wavelet basis function
when N = 1) [34].
(3) Biorthogonal (bior Nr.Nd) wavelet basis function.

Although this wavelet basis function is not an orthogonal
wavelet, it is a biorthogonal wavelet, it has regularity and
compact support, the reconstructed support width is 2Nr+1,
and the decomposed support width is 2Nd + 1. The main
characteristic of bior Nr.Nd wavelet basis function is the
linear phase. In general, in order to obtain the linear phase,
the limitation of orthogonality should be reduced. Therefore,
the biorthogonal wavelet reduces the requirement of orthogo-
nality, some orthogonality of orthogonal wavelet is preserved,
and the properties of the linear phase and short branch set are
obtained [35].
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(4) Coiflets (coifN) wavelet basis function. The
2N moment of the wavelet function ψ(t) is zero, the 2n − 1
moment of the scaling function ϕ(t) is zero. The support
width of the ψ(t) and ϕ(t) are 6N −1. It has better symmetry
than dbN [36].

(5) Symlets (symN) wavelet basis function. It’s an
improvement on dbN wavelet basis function, the Symlets
wavelet system is usually expressed as symN (N = 2,
3, . . . , 8). The support width of the wavelet is 2N − 1,
the vanishing moment is N , and it also has good regularity.
Comparedwith dbNwavelet basis function, this wavelet basis
function is consistent with dbN wavelet basis function in
terms of continuity, compact support width, and filter length,
but symN wavelet has better symmetry, and it can reduce the
phase distortion during signal analysis and reconstruction to
some extent [37].

(6) Dmeyer wavelet basis function. The wavelet function
and the scaling function of Meyer wavelet are defined in the
frequency domain, it’s not compact support, but it converges
very quickly. Dmeyer is the discrete Meyer wavelet basis
function, it is Meyer wavelet based FIR approximation, for
the calculation of the fast discrete wavelet transform [38].

(7) ReverseBior wavelet basis function. It is derived from
the Biorthogonal wavelet basis function. In order to solve the
symmetry and the incompatibility of accurate signal recon-
struction, biorthogonal wavelet is introduced, biorthogonal
wavelet is a dual wavelet used for signal decomposition and
reconstruction. Biorthogonal wavelet solves the contradiction
between linear phase and orthogonality. Because it has a
linear phase characteristic, it is mainly used in signal recon-
struction [39].

The difference between biorthogonal wavelet and orthog-
onal wavelet is that: orthogonal wavelet satisfies < 9j,k ,

9l,m >= δj,kδl,m, that is the basis function formed by the
scaling and translation of the wavelet function is completely
orthogonal, but the orthogonality of biorthogonal wavelet is
< 9j,k , 9l,m >= δj,kδl,m, that is to say, it has orthogonality
for wavelet functions with different scales, while there is no
orthogonality of the wavelet function obtained by translation
between the same scale. Therefore, the wavelet used for
decomposition and reconstruction is not the same function,
and the corresponding filter cannot be generated by the same
wavelet.

C. ONLINE RECURSIVE ESTIMATION OF THE
NORMALIZED SECOND-ORDER MOMENT
For a random signal with zero average value x(n), the normal-
ized second-order moment is defined as:

m2 = E[x2(n)] (6)

For a signal x(n) of length N , the second-order moment
defined by formula (1) is estimated by the following
formula [40]:

m2 = E ji [x
2(t)] ≈

1
N

N∑
n=1

[x ji (n)]
2 (7)

In the actual processing of MI-EEG, new samples are
constantly collected and input. Therefore, in order to reflect
the dynamic change of signal statistical characteristics in
real-time, a second-order moment recursive algorithm is
established. There are two second-order moment estimation
algorithms, one is based on sliding window length, the other
is based on variable window length.

Second-order moment estimation of sliding window: sup-
pose the window length isN , the current moment is n, the data
in the window is x(n − N + 1), . . . , x(n − 1), x(n), where
the second-order moment at a time n is m2(n), and the newly
arrived signal sample at a time n+ 1 is x(n+ 1). x(n− N +
2), . . . , x(n), x(n + 1) is the data in the window at this time,
easy to figure out:

m2(n+ 1) = m2(n)−
1
N
{x2(n− N )− x2(n+ 1)} (8)

Estimation of second-order moment cumulant with vari-
able window length: if the left end of the window is fixed,
suppose the first sample point x(1) of the data as the starting
point, the second-order moment is updated with the coming
of data, another recursion of second-order moments can be
obtained, the formula is defined as:

m2(n+ 1) =
n

n+ 1
m2(n)+

x2(n+ 1)
n+ 1

(9)

In practical application, the two algorithms can be com-
bined. At the beginning of data receiving, the data length
cannot reach the specified length, and formula (4) can be used
for online recursive estimation of the second-order moment.
Once the data length reaches the window length, the online
recursion method of the second-order moment in formula (3)
is used. It is worth noting that the above normalized second-
moment recurrence formula is established on the premise
that the average value of the input signal must be zero.
Considering that the EEG data has been processed by band-
pass filtering, and does not contain the dc component, the
recurrence formula is valid [41].

D. DBN ALGORITHM
DBN is one of the most representative network structures in
deep learning, it consists of several layers of unsupervised
restricted Boltzmannmachines (RBM) stacked on top of each
other [42]. As the core of the DBN network, RBM consists
of a visible layer and a hidden layer. The purpose of the
RBM network is to binary the input v for the visual layer,
it can generate a set of hidden layer characteristic signals h,
and make the reconstruction of v′ through the characteristic
signal h of the hidden layer, the error between v′ and v is
minimal. Let I and J be the unit number of visible layer
and hidden layer respectively, given input signal v and RBM
network parameter w, the system energy of this RBM is
calculated as follows:

E(v, h) = −
I∑
i=1

aivi −
J∑
j=1

bjhj −
I∑
i=1

J∑
j=1

vihjwij (10)
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where vi and hj represent binary states, ai and bj represent
the bias terms of visible layer neuron i and hidden layer
neuron j respectively. Based on the above definition, the joint
probability of visible layer and hidden layer elements in the
RBM network is:

p(v, h) = e−E(v,h)/
∑
v,h

e−E(v,h) (11)

Therefore, for the neuron j in the hidden layer, the proba-
bility that it is equal to 1 is:

p(hj = 1|v) = σ (bj +
I∑
i=1

viwij) (12)

where, σ () is the sigmoid function.
The likelihood function of the maximized training sam-

ple is a common method to solve such problems in pattern
recognition. In the RBM structure, the likelihood function is
defined as:

In(f ) =
∑

log p(v, h) (13)

Further, the solution of related parameters w, a, and b can
be obtained by comparing the gradient descent and the Gibbs
sampling method.

E. SOFTMAX CLASSIFIER
Softmax classifier is an extension of the logistic regression
model, often used in conjunction with DBN [21]. The sample
of m training sets is {(x(1), y(1)), . . . , (x(m), y(m))}, the label is
y(i) ∈ {1, 2, 3, . . . , k}, probability P(y = j|x) means the input
is x, the probability that the sample is defined as j, the one
has the highest probability is defined as the one. That is, for
a K class classifier, the output is a vector of k dimensions
(the sum of the elements of vectors is 1), the output is:

hθ (x) = p(y(i) = k|x(i); θ ) =
exp(θTk x(i))
k∑
j=1

exp(θTj x(i))

(14)

In the formula: θ is the model parameter, k = 1, 2, . . . ,K ,
it is obtained by minimizing the cost function J (θ ) shown in
formula (15):

J (θ )=−
1
m
[
m∑
i=1

l∑
j=0

1{y(i)= j} log p(y(i)=1|x(i); θ )] (15)

In the formula:

p(y(i) = j|x(i); θ ) =
exp(θTj x(i))
k∑
j=1

exp(θTj x(i))

(16)

By adding weight attenuating term to the cost function,
penalize parameters that have too much weight, and make the
parameters converge to the optimal.

III. THEORETICAL ANALYSIS OF WAVELET BASIS
FUNCTION SELECTION
There are many environmental disturbances in the acquisition
of MI-EEG, the signal has the characteristics of low SNR and
singularity. MI-EEG has a wide frequency band and interfer-
ence signals and useful signals have high frequency overlap,
so in the feature extraction of the EEG signals, we should not
only improve the SNR but also extract the singular informa-
tion in the signals, to get better features. Because of the real-
time characteristic of MI-EEG, the signal processing speed
is required to be very fast. Therefore, the parameter char-
acteristics of wavelet basis function and the characteristics
of MI-EEG are considered comprehensively when selecting
wavelet basis function, the wavelet basis function suitable
for feature extraction of MI-EEG should meet the following
requirements:

(1) Good symmetry. In order to ensure that the signal is not
distorted, the symmetry of filter banks is required, approx-
imately symmetric or symmetric wavelet basis function is
required.

(2) Good orthogonality. In order to facilitate the accurate
reconstruction of MI-EEG after wavelet packet decomposi-
tion, a wavelet basis function with better orthogonality should
be chosen, but sometimes the biorthogonal wavelets are more
effective when it comes to processing the MI-EEG. So we
can sacrifice some symmetry and replace orthogonality with
biorthogonality.

(3) High vanishing moment. When the vanishing moment
is high, the wavelet coefficients in the signal smoothness
decrease rapidly with the increase of decomposition scale.
However, the wavelet coefficient at the singularity does
not decrease rapidly, and it can quickly determine the sin-
gular point location of the signal. Therefore, the wavelet
basis function with higher vanishing moments should be
selected.

(4) Good regularity. The continuous differentiability of
wavelet basis function is a necessary condition for effec-
tively finding singularities in wavelet packet transformation,
at the same time to ensure a good time-frequency resolution,
wavelet basis function with better regularity should be cho-
sen. And the higher the regularity, the higher the vanishing
moment.

(5) Moderate compact support width. Because the regular-
ity depends on the width of the compact support, the greater
the compact support width, the better the regularity; mean-
while, the smaller the compact support width, the stronger
the localization ability of wavelet basis function, the lower the
computational complexity of wavelet packet transformation,
the faster the implementation speed. Therefore, considering
the requirement of computing speed and signal singularity,
the wavelet basis function with the proper width of compact
support is selected.

From the above requirements, none of the wavelet basis
functions can meet the requirements completely, only choose
the wavelet basis function with good comprehensive per-
formance. It is found that rbio wavelet clusters have better
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FIGURE 2. Electrode positions (a) and timing scheme (b).

performance than other wavelet clusters, more suitable for
feature extraction of MI-EEG.

IV. EXPERIMENTAL VERIFICATION OF WAVELET BASIS
FUNCTION SELECTION
A. DATASET
1) BCI COMPETITION II DATA SET III
Dataset 1 is from BCI Competition II Data set III. This is
an open dataset for BCI Competition and provided by the
Department of Medical Informatics, Institute for Biomedical
Engineering, Graz University of Technology. In the experi-
ment, a female subject (25y) controlled a feedback bar by
imagining the movement of her left and right hands. The
experiment consists of 7 runs with 40 trials each, a total
of 280 trials. The training group and the testing group each
had 140 trials. The samples were collected every 9s, when
t=0∼2s, the subject was in a ready state and did not make
any movement. Started from t=2s, voice prompt; during the
period of t=3∼9s, subjects exercised imagination. Data were
collected from the 10∼20 pilot system of the international
standard, and three bipolar EEG channels (anterior ‘+’, pos-
terior ‘−’) were measured over C3, Cz and C4. The sam-
pling frequency was 128Hz, which was filtered by 0.5∼30Hz
bandpass filter. Fig. 2 is electrode positions and timing
scheme [43]–[46]. For more information on the dataset,
please refer to the website http://bbci.de/competition/ii/.

2) BCI COMPETITION IV DATA SETS 2b
Dataset 2 is from BCI Competition IV Data sets 2b. This
is an open dataset for BCI Competition and provided by
the Institute for Knowledge Discovery (Laboratory of Brain-
Computer Interfaces), Graz University of Technology. The
data were EEG data from the left/right hand motor imagery
of 9 subjects. There were five groups of data, the first
three sessions (01-03T) were training data and the last two
sessions (04-05E) were test data. The first two sessions
(01-02T) contained 120 trails per session without feedback,
and the last three sessions (03T, 04-05E) contained 160 trails
per session with smiley feedback. Data were collected from
the 10∼20 pilot system of the international standard, and
three bipolar EEG channels were measured over C3, Cz,
and C4. The sampling frequency was 250Hz and filtered by
0.5∼100Hz bandpass filter, and 50Hz power frequency was

FIGURE 3. Timing scheme. (a) first two sessions, (b) last three sessions.

eliminated. In the first two sessions. When t=0∼3s, the sub-
ject was in a ready state, and a brief prompt (1kHz, 70ms)
on 2s. Visualize left/right hand movement cues at random
in 3∼4.25s. During 4∼7s, the subjects performed motor
imagery. Each experiment was followed by a short break
of 1.5∼2.5s. In the last three sessions.When t=0∼3s, the sub-
ject was in a ready state, and a brief prompt (1kHz, 70ms)
on 2s. Visual cue time was followed within 3∼7.5s, the feed-
back period was within 3.5∼7.5s. Subjects imagined moving
their left or right hands, the smiley face turned green when
it moved correctly and red when it moved incorrectly. Each
experiment was followed by a short break of 1.5∼2.5s. The
timing scheme of the paradigm is shown in Fig. 3 [47]–[50].
For more information on the dataset, please refer to the
website http://bbci.de/competition/iv/desc_2b.pdf.

B. COMPREHENSIVE EVALUATION INDEX
Different statistical performance indexes are used to evaluate
the performance of different wavelet basis functions in fea-
ture extraction. The first category is to measure the similarity
between the recovered signal and the original signal, the sec-
ond category is to measure the classification accuracy after
feature extraction.

The first criterion in the first category is SNR [51], which is
the ratio of signal to noise in the system. In feature extraction,
the larger SNR is, the closer the signal is to the original signal
after wavelet packet transformation, and the better the result
of wavelet packet feature extraction.

In the window of feature extraction analysis, the data is
denoted as:

D = [dij]M×N (i = 1, 2, . . . ,M : j = 1, 2, . . . ,N ) (17)

where, M is the number of time sampling points in the time
window and N is the number of signal channels in the time
window. That is dij = sij + nij, sij is the signal after wavelet
packet decomposition and reconstruction, and nij is the noise
signal. The SNR of the whole time window is:

SNR = 10 log
Es
/
En

10 = 10 log

∑
d2ji∑
n2ij

10 (18)
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where Es is the source signal energy, En is the signal
energy after wavelet packet decomposition and reconstruc-
tion (In order to facilitate the graphic display, the SNR values
in all figures in this paper are the actual SNR values divided
by 100, that is Display SNR = Actual SNR

100 ).
The second criterion in the first category is RMSE [51],

which measures the deviation between the predicted value
and the real value. In feature extraction, the smaller the
RMSE is, the closer the signal is to the original signal after
wavelet packet transformation, and the better the result of
wavelet packet feature extraction.

The RMSE in the time window is:

RMSE =

√√√√ 1
N

N∑
n=1

(dij − sij)2 (19)

In the second category, the first standard is the accuracy of
classification, which is used to directly measure the accuracy
of the classification of signals after feature extraction.

In the second category, the second standard is kappa
value [52], which is also an index used to measure classifi-
cation accuracy and is often used for the consistency test of
EEG signal classification. The calculation formula of kappa
value is:

κ =
P0 − Pe
1− Pe

(20)

P0 is the total number of samples (correct classification)
divided by the total number of samples, which is the classi-
fication accuracy. Suppose the actual number of samples for
each category is a1, a2, . . . , ac, The predicted sample number
of each category is b1, b2, . . . , bc, the total number of samples
is n, there is:

Pe =
a1 × b1 + a2 × b2 + ...+ ac × bc

n× n
(21)

C. SIGNAL PROCESSING PROCESS
Hypothesis MI-EEG is expressed as:

x ji (t) = [x11 (t), x
2
2 (t), . . . , x

m
n (t)] ∈ R

N×n×m (22)

where N is the total number of sample points, n is EEG
lead number, m is the number of sampling points, x ji (t)
(the jth sampling point of lead i) is a filtered MI-EEG signal
:

x ji (t) = [x11 (t), x
2
2 (t), . . . , x

m
n (t)] ∈ R

N×n×m (23)

(1) The time-domain characteristics of MI-EEG are ana-
lyzed by the second-order moment method

The MI-EEG signal is collected through the electrode
cap and stored in the form of voltage amplitude. Therefore,
equation (24) is used to calculate the instantaneous energy.

E ji [x
2(t)] = [x ji (t)]

2 (24)

In the formula: E ji [x
2(t)] express the jth sampling point of

the lead i of the t sample, point of MI-EEG signal of transient
energy.

Suppose E ji is the average energy of the MI-EEG in the
jth sampling point of the lead i in the N experiments, and is
expressed as:

E ji =
1
N

N∑
n=1

[x ji (n)]
2 (25)

According to equation (25), the average energy of each lead
MI-EEG signal is calculated, and the MI-EEG signals with
distinct time periods are selected for feature extraction.

(2) The selected signal is analyzed by wavelet packet
transformation

For the MI-EEG signal of an obvious time period selected
in step (1) x ji (t)(i = {1, 2, . . . , n}, j = {1, 2, . . . ,m}) are
analyzed by wavelet packet transformation, extract the char-
acteristics of EEG signals. In the experimental comparison
stage, different wavelet basis functions are selected.

(3) The features extracted by wavelet packet transforma-
tion are processed by DBN network

Firstly, take F as the input to the DBN network. Then,
unsupervised initialization of all RBMs in DBN from the
bottom up.

I. Calculate P(h1|v) based on the visual layer v, so the
hidden layer h1 is P(h1|v).
II. Know the hidden layer h1, calculate F for the first RBM

visual layer v, that is v′, and v′ = p(v′|h′1).
III. Repeat calculation step I and II, and use Gibbs sam-

pling calculation vn and hn1, then the weight W1 is updated
according to the CD algorithm.

IV. Repeat step I∼III, up to the maximum number of
iterations, the first RBM pretraining is over.

V. Repeat step I∼IV, train the other RBMs in turn, get
the weight value W2,W3, . . . ,Wn, n is the number of RBMs
in DBN.

The output error C of the DBN network is calculated,
use the back-propagation (BP) algorithm to complete fine-
tuning of weights of the entire network, implement DBN
supervised training. Where, the gradient calculation formula
is ∂C

∂θ
(θ = (W , b)), θ = θ − ε ∂C

∂θ
, the weight matrix of

each layer is updated. The DBN network output is the final
MI-EEG feature.

(4) Softmax classifier is used to classify tasks
The final MI-EEG feature is imported into a softmax clas-

sifier, realizes the classification of motor imagery tasks.

D. EXPERIMENTAL VERIFICATION METHODS AND
RESULTS (BCI COMPETITION II DATA SET III)
Experimental verification methods adopted in this study are
as follows:

I. In data selection and partitioning: The 10-fold cross-
validation method was used to classify the experimental data.
The original train sets were divided into new train sets and
validation sets for classifier training, then the trained clas-
sifier was used to classify the test sets. Finally, the average
value of classification results was taken as the final classifi-
cation accuracy.
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FIGURE 4. Feature extraction results (haar).

II. In data processing: Firstly, we selected the time period
suitable for feature extraction through time-domain analysis.
Then, we extracted feature vectors through the WPT feature
extraction algorithm. Finally, we imported them into the
DBN network and softmax classifier to train the appropriate
classifier.

III. In the comparison and analysis of data results: SNR,
RMSE, classification accuracy, and kappa value were used
as evaluation criteria.

IV. In the comparison validation method: Wavelet basis
functions of seven kinds of wavelet clusters are used to verify
the data. Firstly, the optimal wavelet basis function in each
cluster is selected. Then the optimal wavelet basis function
of each cluster is compared horizontally. Finally, the optimal
wavelet basis function is determined which is suitable for
feature extraction of MI-EEG.

Experimental verification results are as follows:
(1) Haar wavelet basis function
Fig. 4 shows the results of the Haar wavelet basis function

feature extraction. As can be seen from Fig. 4:
In terms of SNR and RMSE. The SNR and RMSE results

obtained byHaar wavelet basis function processing are better,
however, the Haar wavelet basis function is discontinuous in
the time domain. Combine the time domain characteristic of
MI-EEG itself, its performance as a wavelet basis function is
not particularly good.

In terms of classification accuracy and kappa value, it can
be seen that its classification accuracy is not up to 90%, kappa
value is not up to 0.8, which is relatively average.

Therefore, it is not the choice of the optimal wavelet basis
function.

(2) Daubechies wavelet basis function
Fig. 5 shows the results of Daubechies wavelet basis func-

tions feature extraction. As can be seen from Fig. 5:
In terms of SNR and RMSE. From db5 to db45 wavelet

basis functions, with the increase of filter length, the compact
support width increases gradually. Although the smoothness
of the wavelet is guaranteed, the width of the compact support
increases, which leads to the locality decrease and the RMSE
presents a steady rise. Db1∼db4 wavelet basis functions are
the four with higher SNR and lower RMSE in db wavelet

clusters. Where, when N=1, dbN is the Haar wavelet basis
function, because of the Haar wavelet basis function in (1),
db1 is not selected as the optimal wavelet basis function.
Compare db4 with db3, SNR of db4 is slightly lower, RMSE
of db4 is slightly higher, so db4 is not considered as the best
choice. Compare db2 with db3, although SNR and RMSE of
db2 are better, db2 is not considered as the best choice due to
its smaller support width, less smoothness, smaller vanishing
moment order, and less concentrated reconstruction energy.

In terms of classification accuracy and kappa value,
the classification accuracy and kappa value of db1∼db3 grad-
ually increase, reaching a maximum value of 90.71% and
0.8142 at db3. After that, classification accuracy and kappa
value begin to decline but keep at about 90% and 0.8, reaching
the highest value of 90.71% and 0.8142 at some wavelet
basis functions. Therefore, considering the perspective of
classification accuracy and kappa value, the wavelet basis
function up to 90.71% and 0.8142 can be considered as the
alternative of the best choice.

Therefore, combine with SNR, RMSE, classification accu-
racy, and kappa value, in db wavelet clusters, db3, which
can better take into account the compact support width and
smoothness of wavelet, and has better SNR, RMSE, classi-
fication accuracy, and kappa value results, is selected as the
optimal wavelet basis function.

(3) Biorthogonal wavelet basis function
Fig. 6 shows the results of Biorthogonal wavelet basis

functions feature extraction. As can be seen from Fig. 6:
In terms of SNR and RMSE. From bior2.4 to

bior6.8 wavelet basis functions, with the increase of fil-
ter length, the compact support width increases gradually.
Although the smoothness of the wavelet is guaranteed,
the RMSE is large, which indicates that the width of com-
pact support increases, leading to the locality decrease.
Bior1.1∼bior2.2 wavelet basis functions are the four with
higher SNR and lower RMSE in bior wavelet clusters.
Bior1.1 is not selected as the best because of its small
vanishing moment order and insufficient concentration of
reconstruction energy. Compare bior1.5 with bior2.2, SNR of
bior1.5 is slightly lower, RMSE of bior1.5 is slightly higher,
so bior1.5 is not considered as the best choice. Compare
bior1.3 with bior2.2, SNR and RMSE of bior1.3 are better,
but its compact support width and smoothness are not enough,
so bior1.3 is not considered as the best choice.

In terms of classification accuracy and kappa value,
the classification accuracy and kappa value of bior1.1∼
bior2.2 gradually increase, reaching a maximum value
of 90.71% and 0.8142 at bior2.2. After that, classification
accuracy and kappa value begin to decline, except for bior3.5,
all other classification accuracies are below 90%, and kappa
values are below 0.8. Therefore, considering the classification
accuracy and kappa value, the bior2.2 wavelet basis function
is the best choice.

Therefore, combine with SNR, RMSE, classification accu-
racy, and kappa value, in bior wavelet clusters, bior2.2, which
can better take into account the compact support width and
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FIGURE 5. Feature extraction results (db N).

FIGURE 6. Feature extraction results (bior Nr.Nd).

FIGURE 7. Feature extraction results (coif N).

smoothness of wavelet, and has better SNR, RMSE, classi-
fication accuracy, and kappa value results, is selected as the
optimal wavelet basis function.

(4) Coiflets wavelet basis function
Fig. 7 shows the results of Coiflets wavelet basis functions

feature extraction. As can be seen from Fig. 7:

In terms of SNR and RMSE. In coif1∼coif5, SNR grad-
ually decreases and RMSE gradually increases. Therefore,
the optimal wavelet basis function is selected from the two
wavelet basis functions with better results, coif1 and coif2.
Coif1 is not selected as the best because of its small vanishing
moment order and insufficient concentration of reconstruc-
tion energy.

In terms of classification accuracy and kappa value,
the classification accuracy and kappa value of coif1∼coif2
gradually increase, reaching a maximum value of 90.66%
and 0.8132 at coif2. Classification accuracy and kappa value
of coif3∼coif5 is about 90% and 0.8, both are lower than
coif2. Therefore, considering the classification accuracy and
kappa value, the coif2 wavelet basis function is the best
choice.

Therefore, combine with SNR, RMSE classification accu-
racy, and kappa value, in coif wavelet clusters, coif2, which
can better take into account the compact support width and
smoothness of wavelet, and has better SNR, RMSE, classi-
fication accuracy, and kappa value results, is selected as the
optimal wavelet basis function.

(5) Symlets wavelet basis function
Fig. 8 shows the results of Symlets wavelet basis functions

feature extraction. As can be seen from Fig. 8:
In terms of SNR and RMSE. From sym5 to sym30 wavelet

basis functions, with the increase of filter length, the compact
support width increases gradually. Although the smoothness
of the wavelet is guaranteed, the RMSE is large, it indicates
that the local decrease is caused by the increase of the width
of compact support. Sym2∼sym4 wavelet basis functions are
the three with higher SNR and lower RMSE in sym wavelet
clusters. Sym2 is not selected as the best because of its small
vanishing moment order and insufficient concentration of
reconstruction energy. Compare sym4 with sym3, SNR of
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FIGURE 8. Feature extraction results (sym N).

sym4 is slightly lower, RMSE of sym4 is slightly higher,
so sym4 is not considered as the best choice.

In terms of classification accuracy and kappa value,
the classification accuracy and kappa value of sym2∼sym3
gradually increase, reaching amaximum value of 90.71% and
0.8142 at sym3. After that, classification accuracy and kappa
value begin to decline but keep at about 90% and 0.8, reaching
the highest value of 90.71% and 0.8142 at some wavelet
basis functions. Therefore, considering the perspective of
classification accuracy and kappa value, the wavelet basis
function up to 90.71% and 0.8142 can be considered as the
alternative of the best choice.

Therefore, combine with SNR, RMSE, classification accu-
racy, and kappa value, in sym wavelet clusters, sym3, which
can better take into account the compact support width and
smoothness of wavelet, and has better SNR, RMSE, classi-
fication accuracy, and kappa value results, is selected as the
optimal wavelet basis function.

(6) Dmeyer wavelet basis function
Fig. 9 shows the results of Dmeyer wavelet basis function

feature extraction. As can be seen from Fig. 9:
In terms of SNR and RMSE. The SNR and RMSE result of

dmey is better, although it is not compact support, it converges
quickly. It is an approximation of the Meyer wavelet basis
function based on FIR.

In terms of classification accuracy and kappa value,
its classification accuracy is 90.71%, and its kappa value
is 0.8142.

Combine with SNR, RMSE, classification accuracy, and
kappa value, dmey can be used as the optimal wavelet basis
function.

(7) ReverseBior wavelet basis function
Fig. 10 shows the results of ReverseBior wavelet basis

functions feature extraction. As can be seen from Fig. 10:

FIGURE 9. Feature extraction results (dmey).

FIGURE 10. Feature extraction results (rbio Nr.Nd).

In terms of SNR and RMSE. From rbio2.4 to
rbio6.8 wavelet basis functions, with the increase of fil-
ter length, the compact support width increases gradually.
Although the smoothness of the wavelet is guaranteed,
the RMSE is large, it indicates that the locality decrease
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FIGURE 11. Comparison table of SNR, RMSE, classification accuracy, and
kappa value of 6 wavelet basis functions (BCI competition II data set III).

is caused by the increase of the width of compact support.
Rbio1.1∼rbio2.2 wavelet basis functions are the four with
higher SNR and lower RMSE in rbio wavelet clusters.
Rbio1.1 is not selected as the best because of its small
vanishing moment order and insufficient concentration of
reconstruction energy. Compare rbio1.5 with rbio2.2, SNR of
rbio1.5 is slightly lower, RMSE of rbio1.5 is slightly higher,
so rbio1.5 is not considered as the best choice. Compare
rbio1.3 with rbio2.2, although SNR and RMSE of rbio1.3 are
better, its compact support width and smoothness are not
enough, so rbio1.3 is not considered as the best choice.

In terms of classification accuracy and kappa value,
the classification accuracy and kappa value of rbio1.1∼
rbio2.2 gradually increase, reaching a maximum value
of 91.29% and 0.8258 at rbio2.2. After that, classification

accuracy and kappa value begin to decline but keep
at 88.57%∼90.71% and 0.7714∼0.8142. Therefore, con-
sidering the classification accuracy and kappa value,
the rbio2.2 wavelet basis function is the best choice.

Therefore, combine with SNR, RMSE, classification accu-
racy, and kappa value, in rbio wavelet clusters, rbio2.2, which
can better take into account the compact support width and
smoothness of wavelet, and has better SNR, RMSE, and clas-
sification accuracy results, is selected as the optimal wavelet
basis function.

Through the analysis of seven kinds of wavelet clusters,
the optimal wavelet basis function of each cluster is obtained,
Fig. 11 is the comparison table of SNR, RMSE, classification
accuracy, and kappa value of 6 wavelet basis functions. It can
be seen that the rbio2.2 wavelet basis function has the best
SNR, RMSE classification accuracy, and kappa value, and it
is the optimal wavelet basis function for feature extraction
of MI-EEG.

E. FURTHER VERIFICATION OF OPTIMAL WAVELET BASIS
FUNCTION SELECTION (BCI COMPETITION II
DATA SET III)
In order to further verify that the rbio2.2 wavelet basis
function is the optimal wavelet basis for feature extraction
of MI-EEG. In the experimental methods, only DBN and
softmax are replaced by NN, CNN, LDA, and SVM respec-
tively, other items remain unchanged, the optimal wavelet
basis function of each cluster is obtained, the Fig. 12 is the
comparison table of the SNR, RMSE, classification accuracy,
and kappa value of the optimal wavelet basis in each wavelet
cluster.

FIGURE 12. Comparison table of SNR, RMSE, classification accuracy, and kappa value of different classification methods (BCI competition II
data set III).
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FIGURE 13. Comparison table of SNR, RMSE, classification accuracy, and kappa value of 6 wavelet basis functions (BCI competition IV data
sets 2b).
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As can be seen from Fig. 12:
In NN, CNN, LDA, and SVM classification methods, the

optimal wavelet basis function in the six wavelet clusters are
db3, bior2.2, coif2, sym3, dmey, and rbio2.2. The optimal
wavelet basis function of each cluster are compared horizon-
tally, it can be seen that rbio2.2 wavelet basis function is
optimal in SNR, RMSE, classification accuracy, and kappa
value. It can be seen that in different classification methods,
the rbio2.2 wavelet basis function has the best values. It is
further proved that the rbio2.2 wavelet basis is the optimal
wavelet basis for feature extraction of MI-EEG.

F. EXPERIMENTAL VERIFICATION METHODS AND
RESULTS (BCI COMPETITION IV DATA SETS 2b)
Experimental verificationmethods adopted in this part are the
same as D:

I. In data selection and partitioning: a 10-fold cross-
validation method was used to classify the experimental data.
The original train sets (01-03T) were divided into new train
sets and validation sets for classifier training, then the trained
classifier was used to classify the test sets (04-05E). Finally,
the average value of classification results was taken as the
final classification accuracy.

II∼IV are the same as in D.
Experimental verification results are shown in Fig. 13:
I. In Subject 2, the optimal wavelet basis function in

the six wavelet basis clusters are db3, bior2.4, coif2, sym3,
dmey, and rbio2.2. The optimal wavelet basis function of
each cluster are compared horizontally, it can be seen that
bior2.4 wavelet basis function is optimal in SNR, RMSE,
classification accuracy, and kappa value.

II. In Subject 4, the optimal wavelet basis function in the
six wavelet clusters are db3, bior2.2, coif3, sym3, dmey, and
rbio2.4. The optimal wavelet basis function of each cluster
are compared horizontally, it can be seen that rbio2.4 wavelet
basis function is optimal in SNR, RMSE, classification accu-
racy, and kappa value.

III. In Subject 1, 3, 5∼9, the optimal wavelet basis function
in the six wavelet clusters are db3, bior2.2, coif2, sym3,
dmey, and rbio2.2. The optimal wavelet basis function of
each cluster are compared horizontally, it can be seen that
rbio2.2 wavelet basis function is optimal in SNR, RMSE,
classification accuracy, and kappa value.

As can be seen from the above results. In Subject 2,
the optimal wavelet basis function is in the bior wavelet clus-
ters (bior2.4). In Subject 4, the optimal wavelet basis function
is in the rbio wavelet clusters (rbio2.4). Among the other
7 subjects, the optimal wavelet basis function is rbio2.2. This
further proves that the rbio2.2 wavelet basis function is the
optimal wavelet basis function suitable for feature extraction
of MI-EEG.

G. EXPERIMENTAL VERIFICATION METHODS AND
RESULTS (LABORATORY DATA)
In order to further verify that the rbio2.2 wavelet basis func-
tion is the optimal wavelet basis for feature extraction of

FIGURE 14. Electrode positions (a) and timing scheme (b) of laboratory
data.

MI-EEG, the experimental data set of Beijing Aerospace
Measurement & Control Technology Co. Ltd. R&D center.

1) DATASET
The experimental data set was collected from 10 subjects,
subjects were 22∼43 years old, each of whom conducted
20 experiments, a total of 200motor imagery experiments, the
left/right hand motor imagery experiments were conducted
100 times each. The samples were collected every 9s, when
t=0∼2s, the subject was in a ready state and did not make
any movement. Started from t=2s, voice prompt; during the
period of t=4∼9s, subjects exercised imagination. Experi-
mental data were collected through a 64-channel Neuroscan,
the sampling frequency is 128Hz, filtered by a bandpass filter
of 0.5∼30Hz, C3, Cz, and C4 were selected. The sequence
diagram of the experiment as shown in Fig. 14. Compared
with the BCI Competition II Data set III, the prompt stage
is extended to 2s, and the effective signal acquisition stage
is 4∼9s.

2) EXPERIMENTAL VERIFICATION METHODS
Experimental verification methods adopted in this study are
the same as D:

I. In data selection and partitioning: The 10-fold cross-
validation method was used to classify the experimental data.
The original train sets were divided into new train sets and
validation sets (validation sets are also test sets) for classifier
training, then the trained classifier was used to classify the
test sets. Finally, the average value of classification results
was taken as the final classification accuracy.

II∼IV are the same as in D.

3) EXPERIMENTAL VERIFICATION RESULTS
Experimental verification results are shown in Fig. 15:

I. In Subject 8, the optimal wavelet basis function in
the six wavelet basis clusters are db3, bior2.4, coif2, sym3,
dmey, and rbio2.2. The optimal wavelet basis function of
each cluster are compared horizontally, it can be seen that
sym3 wavelet basis function is optimal in SNR, RMSE, clas-
sification accuracy, and kappa value.

II. In Subject 1∼7,9,10, the optimal wavelet basis function
in the six wavelet clusters are db3, bior2.2, coif2, sym3,
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FIGURE 15. Comparison table of SNR, RMSE, classification accuracy, and kappa value of 6 wavelet basis functions (laboratory data).
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dmey, and rbio2.2. The optimal wavelet basis function of
each cluster are compared horizontally, it can be seen that
rbio2.2 wavelet basis function is optimal in SNR, RMSE,
classification accuracy, and kappa value.

As can be seen from the above results. In Subject 8,
the optimal wavelet basis function is in the sym wavelet
clusters (sym3). Among the other 9 subjects, the optimal
wavelet basis function is rbio2.2. This further proves that the
rbio2.2 wavelet basis function is the optimal wavelet basis
function suitable for feature extraction of MI-EEG.

V. DISCUSSION
As a relatively mature algorithm, wavelet packet transfor-
mation has been widely used in the analysis of biomedical
signals such as ECG, EEG, and EMG. It overcomes the
limitation of Fourier transformation and becomes a good
time-frequency local signal analysis method due to multi-
resolution. Compared with Fourier transformation, the disad-
vantage of wavelet packet transformation is that the wavelet
basis function is not unique. Therefore, one of the difficulties
in the practical application of wavelet packet analysis is the
selection of the best wavelet basis function.

There is still no uniform standard for choosing a wavelet
basis function. In the past, researchers usually choose the best
wavelet basis function suitable for MI-EEG by experiment or
experience. In the class of wavelet basis function: use several
common ones, such as db, coif, and sym wavelet basis func-
tion. In the experimental data: use standard competition data
sets or data sets from the researcher’s lab. In the evaluation
criteria: SNR, RMSE, and other indicators are usually used
to measure the signal similarity. Compared with previous
studies, this study has made corresponding improvements in
the above three aspects. In the class of wavelet basis func-
tion: a total of 111 commonly used wavelet basis functions
of 7 classes were compared and analyzed. In the experimental
data: use standard competition data sets and data sets from
the researcher’s lab. In the evaluation criteria: include SNR,
RMSE, classification accuracy, and kappa value, this set of
indicators not only makes a comparative analysis on the
similarity of signals but also reflects the difference of wavelet
basis function from the result of the task.

Our next step of research faces several important questions:
how to better relate the wavelet basis parameters and charac-
teristic theory with the experimental results, and summarize
the wavelet basis function theoretically. How to establish a
suitable and generalized wavelet basis function to process
more extensive data. How to design a kind of wavelet base
function according to own demand, and realize better signal
processing. These important questions are our next research
objectives.

VI. CONCLUSION
Aimed at the problem of optimal wavelet basis function
selection in feature extraction of MI-EEG by wavelet packet
transformation, based on the analysis of the basic parameters
and characteristics of wavelet basis function, according to the

characteristics of the MI-EEG, the requirements of wavelet
basis function suitable for the feature extraction of MI-EEG
are summarized. It is concluded that ‘‘The rbio wavelet basis
function of a certain order is suitable for feature extraction
of MI-EEG’’. Then, SNR, RMSE, classification accuracy,
and kappa value are introduced as evaluation criteria for
wavelet basis function selection, 7 kinds of wavelet clusters
are used to process and analyze the data (BCI Competition II
Data set III, BCI Competition IVData sets 2b, and Laboratory
data). Finally, the rbio2.2 wavelet basis function is the opti-
mal wavelet basis function in line with the feature extraction
of MI-EEG. In the future, we hope to test more data sets,
it is verified that this wavelet basis is the optimal wavelet
basis for feature extraction of MI-EEG by wavelet packet
transformation, more comprehensively verify the validity of
the conclusion.
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