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ABSTRACT Virtual Reality (VR), which brings immersive experiences to viewers, has been gaining
popularity in recent years. A key feature in VR systems is the use of omnidirectional content, which
provides 360-degree views of scenes. In this work, we study the human quality perception of omnidirectional
images, focusing on different zones surrounding the foveation point. For that purpose, an extensive subjective
experiment is carried out to assess the perceptual quality of omnidirectional images with non-uniform quality.
Through experimental results, the impacts of different zones are analyzed. Moreover, twenty-five objective
quality metrics, including foveal quality metrics, are evaluated using our database. It is quantitatively shown
that the zones corresponding to the fovea and parafovea of human eyes are extremely important for quality
perception, while the impacts of the other zones corresponding to the perifovea and periphery are small.
Besides, most of the investigated metrics are found to be not effective enough to reflect the quality perceived
by viewers. Our database has been made available to the public.

INDEX TERMS Omnidirectional content, subjective quality assessment, foveation feature, virtual reality,
image quality, image processing.

I. INTRODUCTION
In order to bring immersive experiences to viewers, virtual
reality (VR) systems employ omnidirectional content which
contains 360-degree views of scenes. Unlike traditional con-
tent displayed using a flat screen, omnidirectional content is
usually consumed using Head Mounted Displays (HMDs).
Also, only a small part of the full content (called viewport)
corresponding to the current viewing direction is actually
seen by the viewer at a moment [1].

Because omnidirectional (or 360-degree) content has very
high bitrate, a key challenge in omnidirectional content deliv-
ery is how to optimize system resources while still ensuring
satisfactory user experiences. For that, many encoding and
delivery solutions have been proposed in the literature, where
the (estimated) viewport is provided with high quality and
the remaining part with low quality [2]–[4]. Moreover, in VR
systems, foveated imaging, which decreases quality of zones
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far from the viewer’s foveation point [5], [6], can be used
to further reduce resource consumption [6], [7]. However,
the estimated viewing direction could be very different from
the actual one when the system delay is large [8]. Even the
viewer may suddenly turn to look at the back. In these cases,
the actual viewport may have low quality in the central part
and high quality in the periphery. In other words, the central
part may have higher quality (called scenario S#1) or lower
quality (called scenario S#2) than the periphery, both result-
ing in omnidirectional content with non-uniform quality.

It is well-known that human visual acuity is spatially
variable [9], [10]. In particular, when a person gazes
at a point on an image, called foveation point, a zone
closer to this point is perceived to be sharper than
the others. This is because that the human eyes have
higher sensitivities to distortions in the central than in
the periphery. Hence, the understanding of the impacts of
different zones on the perceptual quality is obviously of
indispensable necessity in the context of omnidirectional
content.
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In the literature, there are only a few existing studies
on subjective quality assessments of images/videos with
non-uniform quality [7], [11], [12]. However, most of these
studies are devoted to traditional content [11], [12]. In [11],
each image is divided into four zones of equal widths. The
quality levels of these zones are gradually decreased with a
fixed step size. It is found that, when the step size is small,
the difference of perceptual quality between the non-uniform
and uniform videos is insignificant. In addition, themaximum
value of the step size without causing significant quality
differences depends on content characteristics. In [12], each
image is divided into three zones, which are foveal, blending,
and peripheral zones. Experimental results show that partici-
pants barely notice quality decreases at the peripheral zones
of the eccentricity larger than 7.5 degrees. Also, an evaluation
of four subjective quality assessment methods is presented.
It is indicated that the Absolute Category Rating (ACR)
method is the best method for subjective quality assessments
of non-uniform images. Different from [11], [12], our study
focuses on quality perception of omnidirectional images.

In the literature, there have been some studies on subjective
quality assessments of omnidirectional content [13]–[16].
In these studies, various distortion types such as compression
and Gaussian blur are employed to generate images rated in
experiments. In particular, the authors in [13] consider 4 dis-
tortion types, namely JPEG compression, JPEG2000 com-
pression, Gaussian blur, and Gaussian noise. In [14], only
one distortion type of H.265/HEVC compression is used. The
study in [15] utilizes three distortion types of JPEG com-
pression, JPEG2000 compression, and HEVC-intra. In [16],
the distorted images are generated by down sampling and
JPEG compression. However, since the distortions are uni-
form in [13]–[16], the databases do not contain non-uniform
quality images. Also, the foveation feature of the human eyes
is not taken into account in constructing these databases.

The work in [7] is the only previous study on omnidirec-
tional content with non-uniform quality. In [7], the authors
focus on answering the question of how to spatially reduce
image quality without causing impacts on user perception.
For that purpose, they propose to divide an omnidirectional
image into three zones according to three regions of the
human retina, namely the macula, the near periphery, and
the far periphery. The image quality corresponding to each
region is decreased step by step until participants notice
a perceptual difference. The encoding parameters obtained
just before that point are modeled and then used as a guide
for spatially reducing image quality without perceptual loss.
It is shown that this approach could save loading time by
about 90% in comparison to a conventional approach using
uniform quality. However, the impacts of different zones are
not quantitatively quantified in [7]. In this study, we quantify
the impacts of five zones corresponding to five regions of the
human retina, namely the fovea, the parafovea, the perifovea,
the near periphery, and the far periphery. In addition, only one
scenario (i.e., S#1) of spatial quality changes is considered
in [7]. Also, there is no performance evaluation of existing

metrics conducted in [7]. In this paper, we construct a large
database consisting of not only scenario S#1 but also sce-
nario S#2. By using this database, an extensive evaluation of
twenty-five objective quality metrics is also performed.

Over several decades, a large number of objective quality
metrics have been proposed [17]–[21]. Some of these metrics
take into account the foveation feature, hereafter referred to
as foveal quality metrics [20], [21]. However, all thesemetrics
are specific to traditional content. There has been no existing
foveal quality metric for omnidirectional content so far.

In our previous study [22], a comparison between eight
state-of-the-art quality metrics has been conducted. Experi-
mental results show that PSNR turns out to be the most effec-
tive metric for quality assessment of omnidirectional videos.
However, it is worth to note that images used in that study
have uniform quality. As shown later in this paper, PSNR is
actually not effective when the quality is spatially variable.
To the best of our knowledge, no extensive evaluation of
objective quality metrics for omnidirectional images with
non-uniform quality has been conducted in the literature.

In this study, our purposes related to user perception of
omnidirectional content in VR systems include:
• Subjective study on the impacts of retina-related zones
on quality perception of omnidirectional images.

• Performance evaluation of existing objective quality
metrics, especially foveal qualitymetrics, for omnidirec-
tional images having non-uniform quality.

To that end, our major contributions are as follows. First,
we present a detailed description of a VR viewing geometry
and the human retina. This description helps in designing
subjective experiments and in calculating parameters used in
foveal quality metrics. Second, we carry out an extensive sub-
jective experiment with 512 stimuli of non-uniform quality.
The quality zones of the stimuli are designed based on five
regions of the human retina. To the best of our knowledge,
this is the first database of omnidirectional images aiming
at the impacts of the five zones related to the human retina.
Third, using a simple zone-weighted formulation, we quan-
tify, for the first time, the impacts of different zones on the
perceptual quality. It is quantitatively found that the zones
corresponding to the fovea and parafovea of the human
retina are extremely important for quality perception. Also,
the impacts of zones are strongly affected by content charac-
teristics. Fourth, we evaluate the correlation of twenty-five
objective quality metrics against subjective scores. Experi-
mental results indicate that most of these metrics, even the
foveal ones, are not very effective when the viewport quality
is spatially variable.

The remainder of the paper is organized as follows.
A description of a VR viewing geometry and the human
retina is presented in Section II. Section III presents the
details of the subjective experiment. The analysis of percep-
tual behaviors using the experimental results is provided in
Section IV. Then, an evaluation of quality metrics is pre-
sented in Section V. Section VI concludes the paper and
provides an outlook on future work.
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FIGURE 1. Typical viewing geometry in VR systems.

II. OVERVIEW
In this section, the viewing geometry in VR systems is first
presented. Then, the regions in human retina are described.

A. VIEWING GEOMETRY IN VR SYSTEMS
Fig. 1 illustrates a typical viewing geometry in VR systems.
Assume that VP is the displayed viewport, the lens in the
HMD produces a virtual viewport VP′ that is further formed
on the retina in the human eyes. Eccentricity e (degrees) is
used to measure the angular distance from the central gaze
direction to any point in the virtual viewport VP′.
Let F (units of length) be the focal length of the lens.

S0, S1, and S2 (units of length) respectively denote the dis-
tances from the lens to the displayed viewport VP, the virtual
viewport VP′, and the eye. Based on lens equations, the dis-
tance from the lens to the virtual viewport S1 is computed by

S1 = S0 ×
F

F − S0
. (1)

Then, the distance from the eye to the virtual viewport is
calculated by

S3 = S1 + S2. (2)

Let Wp×Hp (pixels) and Wl×Hl (units of length) respec-
tively be the width and height of the displayed viewport VP in
pixels and units of length. The width of the virtual viewport
VP′ in pixels and units of length is respectively given by the
following equations.

W ′p = Wp. (3)

W ′l = Wl ×
F

F − S0
. (4)

Also, the height of the virtual viewport VP′ in pixels and units
of length is respectively calculated by

H ′p = Hp (5)

and

H ′l = Hl ×
F

F − S0
. (6)

FIGURE 2. Density of photoreceptors in the retinal [23].

Assume that the foveation point is the center O′ =
(xO′ , yO′ ) (pixels) in the virtual viewport VP′. Point O =
(xO, yO) (pixels) in the displayed viewport VP corresponding
to point O′ is determined by

xO = xO′ (7)

and

yO = yO′ . (8)

Let M be a point at the position of (xM , yM ) (pixels) in
the displayed viewport VP. The position of the virtual point
M ′ = (xM ′ , yM ′ ) (pixels) corresponding to pointM is

xM ′ = xM (9)

and

yM ′ = yM . (10)

The distance in pixels from pixelM ′ to the foveation point
O′ is

d ′ =

√√√√( (xM ′ − xO′ )×W ′l
W ′p

)2

+

(
(yM ′ − yO′ )× H ′l

H ′p

)2

.

(11)

The eccentricity e of point M ′ in the virtual viewport VP′

is given by

e(xM ′ , yM ′ ) = tan−1
(
d ′

S3

)
. (12)

It should be noted that parameters of a point on the virtual
viewport are what actually used in a foveal quality metric.
Moreover, given the knowledge of the human visual system,
the points on the virtual viewport can be divided according to
the regions of the retina.

B. REGIONS IN HUMAN RETINA
In the human retina, there are two types of photoreceptors,
namely rods and cones, each plays an important role in human
visual system. In particular, cones function most effectively
in relatively bright light and are responsible for color vision
and visual acuity. Meanwhile, rods have higher sensitivities
to light, and thus they function mainly in dim light.

Fig. 2 shows the density of photoreceptors in the human
retina. It can be seen that most cones are concentrated at
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FIGURE 3. Five regions of the retina.

the center of the retina, whereas rods are located away from
the center. Visual information from photoreceptors are then
collected by the so-called ganglion cells. The optic disk is
where axons from ganglion cells exit the retina and convey
visual information to the brain.

Based on the ganglion cell layer, the retina of the human
eyes can be divided into two main parts, namely macula
and periphery [24], as illustrated in Fig. 3. In particular,
the ganglion cell layer in the macula is several cells thick.
Meanwhile, the periphery is only one ganglion cell thick.
The macula is further divided into three regions, called
fovea, parafovea, and perifovea. The periphery is in turn
divided into two regions, namely near periphery and far
periphery [24], [25]. These five regions of the retina are
briefly described below. It is worth noting that there has been
no standard definition of boundaries between these regions so
far [26]. In our research, the boundaries are determined based
on [26]–[29].

The fovea is a small central region of the macula that
represents 5 degrees of the central visual field or an eccen-
tricity interval between 0 degree and 2.5 degrees. This region
consists of densely packed cones. In addition, it has a layer
of ganglion cells, which can be up to eight cells thick.
Therefore, the fovea vision has the highest sensitivity to fine
details.

The fovea is surrounded by the parafovea belt corre-
sponding to an eccentricity interval between 2.5 degrees and
4 degrees. In the parafovea, rods are more numerous. Mean-
while, the thickness of the ganglion cell layer decreases from
eight to four cells at its outer edge [25].

The region next to the parafovea is the perifovea with the
corresponding eccentricity interval between 4 degrees and
9 degrees. In this region, the density of rods is higher than
that of cones. The thickness of ganglion cell layer reduces to
one cell at its peripheral edge [25].

In the periphery, the region corresponding to an eccen-
tricity interval between 9 degrees and 30 degrees is the near
periphery, and the rest is the far periphery. The dividing line
corresponding to the eccentricity of 30 degrees is selected
based on several features of visual performance. In partic-
ular, letter visual acuity decreases linearly with eccentricity

from 0 degree to 30 degrees. For eccentricities larger than
30 degrees, the decrease is much steeper [9].

Based on the above description of the viewing geometry
and the retina, stimuli used in the following subjective exper-
iment are designed so that the zones in the virtual viewports
will correspond to the five regions of the retina. It is worth
noting that, in this paper, we focus on the contributions
(or weights) of different zones in the perceptual quality, rather
than the quality-reducing trends as in [7], [11], [12].

III. EXPERIMENT DESCRIPTION
For the experiment, we used sixteen omnidirectional images,
denoted by I1–I16, as shown in Fig. 4. Two images I5 and
I7 were obtained on Flickr under of the Creative Com-
mons (CC) copyrights. Image I11 was from the Salience360
Dataset [30], [31]. The other images were selected from the
SUN 360 Database [32], [33]. The characteristics of these
images are described in Table 1. It can be seen that the
selected images cover various categories of capturing envi-
ronment and presence of human. All these images were down
sampled to the resolution of 8192×4096. We asked 10 partic-
ipants to freely observe the source images and then point out
attractive objects. Based on the obtained results, we selected
a foveation point corresponding to a viewport for each image.

In order to generate stimuli of non-uniform quality, each
image was first spatially divided into five zones, denoted
Z1,Z2,Z3,Z4, and Z5. In particular, each zone represents an
eccentricity interval as shown in Table 2. It can be seen that
zones Z1,Z2,Z3,Z4, and Z5 respectively correspond to the
fovea, parafovea, perifovea, near periphery, and far periphery
in the retina. Fig. 5 illustrates the boundaries of the zones in
the viewports used in our experiment.

As described in Section I, we consider two basic scenarios
of spatial quality changes. In the first scenario (S#1), the cen-
ter has higher quality than the periphery; and in the second
scenario (S#2), the center has lower quality than the periph-
ery. For each scenario, we used four quality variation patterns
as shown in Table 3. In patterns P1, P2, P3, and P4, which
belong to scenario S#1, the number of high quality zones
gradually increases from 1 to 4. In the remaining patterns
(i.e., P5, P6, P7, and P8), which belong to scenario S#2,
the number of high quality zones gradually reduces from
4 to 1.

In this study, we used one high quality level corresponding
to the quality level of the source images, and four low quality
levels corresponding to four blurring levels. These blurring
levels were generated using Gaussian filters with a fixed filter
size of 50 and four different standard deviations σ . For sce-
nario S#1, the four σ values are 2, 4, 8, and 12. For scenarios
S#2, the four σ values are 1, 2, 4, and 6. The difference
between the two scenarios is due to the fact that blurring in
zones close to the foveation point is easier to be perceived
than in the others. The source and blurred images were then
blended into stimuli of non-uniform quality. Specifically,
the high quality zones in the stimuli consist of pixels of
the source images, and the low quality zones are comprised
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FIGURE 4. Sixteen omnidirectional images used in our experiment.

TABLE 1. Features of source images.

TABLE 2. Eccentricity intervals of zones.

of pixels of the blurred images. Similar to [12], to prevent
noticeable boundaries between low and high quality zones,

belts with the width of 5 degrees between two adjacent zones
having a quality switch were used as transition belts. The
quality levels in these belts smoothly change using a linear
function. Totally, our database consists of 512 stimuli, which
were rated in the below tests.

To display the stimuli, we used a device set of a Samsung
Galaxy S6 smartphone and a Samsung Gear VR headset with
the 96 degree field of view. The Samsung Galaxy S6 has
the screen resolution of 2560×1440 and the display size
of 5.1 inches. For the Samsung Gear VR headset, the focal
length of the lens is F = 62mm, and the distances from
the lens to the displayed viewports and the eyes are approxi-
mately S0 = 25mm and S2 = 10mm respectively.
In the tests, we used the Absolute Category Rating

method [34], which is shown the best method in [12]. Before
doing actual tests, participants were trained to get accustomed
to the devices and the rating procedure. In addition, they
were instructed to appropriately adjust devices to obtain the
best experience. During the test process, the stimuli were
randomly displayed one at a time. Note that, for a stimulus,
the corresponding viewport displayed on HMD was fixed
during the test. Participants were asked to look straight ahead
at each viewport displayed directly in front of them to keep
focusing on the center, where has an attractive object such
as a human face or a flower vase. After stabilizing the gaze
direction, each participant verbally gave a score with the
grade scale from 1 (bad) to 5 (excellent) which was recorded
by an assistant.
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FIGURE 5. Boundaries of zones in viewports used in our experiment.

TABLE 3. Quality variation patterns (HQ: High quality and LQ: Low
quality).

For each stimulus, the viewing duration was decided by the
participants themselves to obtain more reliable rating scores.
Commonly, the participants spent about 5 seconds for rating
a stimulus and then took a break of 5 seconds. To avoid
the negative impacts of fatigue and boredom, the tests were
divided into 12 sessions conducted in different weeks. Each
participant took part in only two sessions. The duration of
each session was no more than 10 minutes. There were totally
125 participants between the ages of 20 and 30. A screening
analysis of the obtained results was performed following Rec-
ommendation ITU-T P.913 [34], and five participants were
rejected. After discarding the scores of these five participants,
each stimulus was scored by 20 valid participants. The mean
opinion score (MOS) of a stimulus is the average score of the
valid participants.

The 95% confidence intervals of the MOS values are
shown in Fig. 6. We can see that the scores cover fully the
value range from 1 to nearly 5. Generally, the confidence
intervals are smaller at the two ends of the grade scale. This is
because the participants are more confident in rating stimuli
of very high (or low) quality.

IV. ANALYSIS OF PERCEPTUAL BEHAVIORS IN ZONES
A. QUANTIFYING IMPACTS OF ZONES
In this part, we present a zone-weighted formulation which
will be used to analyze the impacts of different zones on

FIGURE 6. 95% confidence intervals of MOS values.

the perceptual quality of omnidirectional images. In gen-
eral, the virtual viewport is divided into K zones {Zk |1 ≤
k ≤ K }, each consists of Nk pixels with the corresponding
eccentricities e ∈ [ek−1, ek ). Currently, we use K = 5
as described in Section III. Each zone Zk is then assigned
a weight {wk |1 ≤ k ≤ K } representing the impact
of that zone on human perception of quality. Note that∑K

k=1 wk = 1.
Let V (xM , yM ) andG(xM , yM ) respectively be the values of

pixelM = (xM , yM ) in the displayed viewports of the original
and distorted images. The values of the corresponding pixel
M ′ = (xM ′ , yM ′ ) in the virtual viewports of the original and
distorted images are respectively calculated by the following
equations.

V ′(xM ′ , yM ′ ) = V (xM , yM ). (13)

G′(xM ′ , yM ′ ) = G(xM , yM ). (14)

The mean squared error (MSE) of pixels in zone Zk is
computed by (15), as shown at the bottom of the next page.

The zone-weighted formulation, called ZWF, is given by

ZWF = 10 log10

(
MAX2∑K

k=1(wk ×MSEk )

)
, (17)
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TABLE 4. Performance of fitting between the ZWF formulation and MOS.

FIGURE 7. Weights of zones for each source image.

where MAX is the maximum possible pixel value. Here we
set MAX to 255 as the bit depth of pixels is 8 bits in our
experiment.

In some previous studies [22], [35], it was shown that
four-parameter and five-parameter logistic functions are good
mappings between objective quality metrics andMOS. In this
work, we employed the following five-parameter logistic
function to map the ZWF values and the MOS values in our
database.

y = β1

(
1
2
−

1
1+ eβ2(x−β3)

)
+ β4x + β5, (18)

where {βi|i ∈ {1, 2, . . . , 5}} are parameters to be fit-
ted. The values of the parameters βi’s and the weights
wk ’s were determined by means of least squares fitting as
in [36].

B. DISCUSSION
To quantify the impact of each zone taking into account
the effects of content characteristics, the weights wk ’s are
derived for each source image by fitting using the above
five-parameter logistic function with the stimuli of that image
only. The obtained values of the weights are shown in Fig. 7
and Table 5. The correlation coefficients including Pearson
Correlation Coefficient (PCC), Spearman’s rank ordered cor-
relation coefficient (SROCC), and Root Mean Square Error
(RMSE), which are used to quantify the performance of the
fitting between the ZWF formulation and theMOS, are shown

TABLE 5. Weights of zones for each source image.

in Table 4. We can see that, for all the source images, the PCC
and SROCC values are very high and the RMSE values are
very low. In particular, the lowest PCC and SROCC values are
respectively 0.969 and 0.914 while the highest RMSE value
is 0.274. This means that the fitting to obtain the weights is
reliable.

From Table 5, it can be seen that, except w1 and w2, all the
other weights are small (i.e., ≤ 0.152). That means the zones
outside the eccentricity of 4 degrees have little impacts on the
perceptual quality. Among the weights, w1 is usually highest,

MSEk =

∑W ′p
xM ′=1

∑H ′p
yM ′=1

[V ′(xM ′ , yM ′ )− G′(xM ′ , yM ′ )]2 × Rk (xM ′ , yM ′ )∑W ′p
xM ′=1

∑H ′p
yM ′=1

Rk (xM ′ , yM ′ )
, (15)

where

Rk (xM ′ , yM ′ ) =

{
1, if ek−1 ≤ e(xM ′ , yM ′ ) < ek
0, otherwise.

(16)
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FIGURE 8. Weights of zones for all source images.

which is consistent with the fact that the fovea region of the
retina has the highest cone density. Also, because w1 ≥ w2 ≥

w3 ≥ w4 ≥ w5, distortions closer to the center have more
significant effects on the perceptual quality than distortions
far from the center.

Based on Fig. 7, it is interesting that the value ofw1 actually
varies in a wide range. Also, with some images, the value
of w2 is insignificant. More specifically, with images I1, I3,
I4, I7, I9, and I11, the values of w1 are very high (i.e., ≥
0.728). This may be because the participants focus primarily
on attractive objects such as small faces at the center of
the viewports. Such phenomenon was also observed in [11].
In particular, it was found that a talking face is strongly
attractive to human attention [11]. In addition, it can be seen
that, in the viewports of images I3, I7, and I11, there are
no other interesting objects near the center. Meanwhile, with
images I1, I4, and I9, the participants may also pay some
attention to other objects near the center (e.g., another face
in image I1), so the values of w1 are slightly lower than those
of images I3, I7, and I11.
With images I5, I8, I10, I13, I14, and I16, the center’s

object is not very clear (e.g., small faces in image I8) or not
very attractive (e.g., a house in image I5), resulting in lower
values of w1. Especially, with images I2, I6, I12, and I15, the
values of w2 are comparable to those of w1. In these images,
the participants may look at a large central area rather than
zone Z1 only. The reason is that, in image I2, I12, and I15,
the objects at the center such as a lock in image I2 are larger
than zone Z1; and in image I6, the object at the center does
not stand out from the neighboring area.

From the above, we can see that the perceptual quality
is affected by two key factors. The first is the sensitivity of
the human eyes. Especially, in the considered context, zones
Z1 and Z2 are much more important than the other zones.
The second is content characteristics. In particular, the values
of w1 and w2 vary widely according to 1) the attractiveness
and 2) the size of the central object, as well as 3) the presence
of neighboring objects.

In order to better understand, the weights are obtained by
fitting using the stimuli of all the images as shown in Fig. 8.
It can be seen that the behavior of the weights are similar
to that derived for each image. In particular, w1 is highest.
w3, w4, and w5 are quite small (i.e., ≤0.017). The correlation

coefficients are respectively 0.836 for PCC, 0.800 for SRCC,
and 0.546 for RMSE. Obviously, the performance reduces
in comparison to fitting for each image. This result again
suggests that there is a significant impact of content charac-
teristics on the perceptual quality.

V. EVALUATION OF QUALITY METRICS
In this part, by using our database, we evaluate the per-
formances of twenty-five existing objective quality metrics
(OQM). The goal is to examine whether existing metrics,
especially foveal quality metrics, are effective for quality
assessments of omnidirectional images with non-uniform
quality.

A. DESCRIPTION OF METRICS
Table 6 shows the notations and descriptions of the twenty-
five metrics considered in this study. In this table, the PW
column indicates whether a metric differentiates the con-
tributions of different pixels; and the FF column indicates
whether a metric takes into account the foveation feature of
the human eye. Because the implementations of the FWQI,
FWSNR, FPSNR, and F-SSIMmetrics are not publicly avail-
able, we implemented them based on the corresponding
publications [20], [21], [47], [48]. For the remaining met-
rics, we used the implementations provided by the original
authors.

It is worth noting that, except the W-VPSNR metric, all
of the other metrics were proposed to calculate for all pixels
in a traditional image. In this study, these metrics and the
W-VPSNR metric were calculated for viewports only (i.e.,
visible pixels) of the omnidirectional images to reflect what
is actually watched by viewers. To extract the viewports,
we used 360Lib software developed by Joint Video Experts
Team (JVET) [50]. In addition, geometric parameters in these
metrics were calculated based on the equations presented in
Subsection II-A.

Obviously, (17) can be used to build an objective quality
metric. In our recent study [49], an objective quality metric
(called W-VPSNR) is proposed based on this formulation.
In this metric, the weights wk ’s are obtained by curve-fitting
using theMOS values of training stimuli generated from three
source images. Three other images are used to generate test
stimuli. The selection of the training and test images among
six source images is repeated 20 times. The weights wk ’s
corresponding to the selection having the highest PCC value
is recommended to use in the W-VPSNR metric. Note that,
since the three images I1, I2, and I6 are used in [49] to obtain
the recommended weights, these three images are not used
in this part for fairness in the performance evaluation of the
metrics.

In order to evaluate the performances of the OQM met-
rics, we used three performance metrics of Pearson Corre-
lation Coefficient (PCC), Spearman’s rank ordered corre-
lation coefficient (SROCC), and Root Mean Square Error
(RMSE). Similar to [35], a nonlinear regression was applied
to map the OQM values to the MOS values using the
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TABLE 6. Descriptions of objective quality metrics tested in this study. PW: Whether or not the metric differentiates pixels’ contributions. FF: Whether or
not the metric takes into account the foveation feature.

FIGURE 9. Performances of objective quality metrics calculated with all the stimuli (except I1, I2, and I6).

five-parameter logistic function (i.e., (18)) mentioned in
Subsection IV-A.

B. DISCUSSION
Fig. 9 and the last columns of Table 7, Table 8, and Table 9
show the PCC, SROCC, and RMSE values of the OQM
metrics when fitting with all the MOSs of the stimuli. It can
be seen that all the metrics have low performances (i.e., PCC
≤ 0.784, SROCC ≤ 0.751, and RMSE ≥ 0.616). Even
the foveal quality metrics (namely FWQI, WSNR, FWSNR,
FPSNR, F-SSIM, andW-VPSNR) have low PCC values (i.e.,
from 0.082 to 0.784). This means that the investigatedmetrics
are not very effective to assess the perceptual quality of
omnidirectional images with non-uniform quality.

Similar to the previous analysis related to the ZWF formu-
lation, it is important to understand the performances of the

metrics for each source image. Table 7, Table 8, and Table 9
show the performances of the metrics when fitting with the
stimuli of each source image. It can be seen that, for most
of the metrics, the PCC and RMSE values are drastically
variable across different source images. The bold numbers
show the metrics having the highest performance for each
source image.

Among the investigated metrics, the W-VPSNRmetric has
the highest PCC and SROCC values and the lowest RMSE
values for nine source images (i.e., I3, I4, I5, I7, I8, I9, I10,
I11, and I12). In addition, its performance for the remaining
images is quite good (i.e., PCC ≥ 0.947, SROCC ≥ 0.881,
and RMSE ≤ 0.259). This result means that the W-VPSNR
metric is rather effective to compare the perceptual quality
between stimuli of the same source image.

Regarding the FPSNR metric, its performance is quite
good for eight source images I5, I8, I10, I12, I13, I14, I15,
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TABLE 7. PCC values of metrics calculated with all the stimuli and with the stimuli of each source image (except I1, I2, and I6). The bold numbers show
the metrics having the highest performance for each source image.

TABLE 8. SROCC values of metrics calculated with all the stimuli and with the stimuli of each source image (except I1, I2, and I6). The bold numbers show
the metrics having the highest performance for each source image.

and I16 (i.e., PCC ≥ 0.874, SROCC ≥ 0.892, and RMSE
≤ 0.508). Especially, with images I13, I14, I15 and I16,
its SROCC values are higher than those of the W-VPSNR
metric (i.e., 0.916 vs. 0.881, 0.953 vs. 0.881, 0.957 vs. 0.934,
and 0.968 vs. 0.905). However, its performance is very low for
two images I3 and I7 (i.e., PCC< 0.70, SROCC< 0.70, and
RMSE> 0.90), even lower than that of the MSE metric (i.e.,
PCC: 0.610 vs. 0.758 and 0.500 vs. 0.609; SROCC: 0.608 vs.
0.759 and 0.458 vs. 0.575; RMSE: 0.917 vs. 0.754 and
0.903 vs. 0.827), which is the simplest metric in practice.

As for the other quality metrics, their performances are
mostly low. Even the other foveal quality metrics (i.e., except
the FPSNRandW-VPSNRmetrics) have lower performances

than the non-foveal and simple metrics for some source
images.

To understand the actual behaviors of the foveal quality
metrics that cause low performances, Fig. 10 shows the scat-
ter plots of the values of these metrics versus the MOS values
for images I3, I7, I13, and I16. In this figure, we use different
legends to differentiate the stimuli of scenario S#1, where the
center has higher quality, and the stimuli of scenario S#2,
where the center has lower quality. It is well-known that
higher values of these metrics mean higher MOS values and
better perceptual quality. From Fig. 10, we can see that the
MOS values in scenario S#1 are generally higher than those in
scenario S#2. However, for theWSNR, FWSNR, and F-SSIM
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TABLE 9. RMSE values of metrics calculated with all the stimuli and with the stimuli of each source image (except I1, I2, and I6). The bold numbers show
the metrics having the highest performance for each source image.

FIGURE 10. Scatter plots of the values of the foveal quality metrics versus the MOS values for images I3, I7, I13, and I16: (a)-(f) Image I3; (g)-(l) Image
I7; (m)-(r) Image I13; (s)-(x) Image I16.

metrics, most of their values in scenario S#1 are significant
lower than those in scenario S#2. For the FWQI metric, with
the same MOS value, their corresponding values vary in a
wide range. These result in the low performances of these

foveal quality metrics. Meanwhile, it can be observed that
the higher the MOS values are, the larger the W-VPSNR
values become in general. Hence, the W-VPSNR metric
achieves quite good performances. Also, the performance of
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the FPSNR metric is high with images I13 and I16, but low
with images I3 and I7.
From the above analysis, we can see that among the inves-

tigated metrics, the W-VPSNR metric is rather effective to
evaluate omnidirectional images with non-uniform quality,
although in some cases its performance is lower than that
of the FPSNR metric. The FPSNR metric has very high
performances in certain images, it performs even worse than
the simple MSE metric in some other images. Moreover,
the performances of all the quality metrics are not good across
different images. This suggests that it is necessary to integrate
content characteristics in these quality metrics.

VI. CONCLUSION
In this paper, we have conducted subjective and objec-
tive quality assessments of omnidirectional images with
non-uniform quality focusing on foveation feature of the
human eyes. Based on the obtained results and discussions,
some findings can be summarized as follows.
• The perceptual quality is affected by two key factors,
which are the sensitivity of the human eyes and content
characteristics.

• The zones of an image corresponding to the fovea and
parafovea of the human eyes are extremely important for
the perceptual quality.

• Content characteristics including the attractiveness and
the size of central object, as well as the presence of
neighboring objects affect the quality perception.

• Most of the twenty-five objective quality metrics con-
sidered in this study are not effective to evaluate omni-
directional images with non-uniform quality. However,
the foveal metrics are very promising and could be fur-
ther improved.

• In general, the performances of the investigated metrics
vary drastically across different contents.

It is expected that the presented database can help
researchers to build effective objective quality metrics which
are essential to evaluate encoding and delivery solutions. For
future work, further investigations with more content types
and quality variation patterns will be conducted to derive
better understanding of viewers’ perceptual behaviors as well
as the performances of existing metrics.
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