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ABSTRACT With the advent of the era of intelligent Internet of Things (IoT), more and more personal
information are collected in the process of deploying IoT in various domains. This brings the problem of
data protection in IoT. To address this problem, we propose a data protection algorithm, called DynaPro,
based on differential privacy for dynamic wireless sensor networks (WSN), which is the sensor layer of
IoT. DynaPro has addressed two issues in data protection of wireless sensor networks. The first issue is
the dynamic topology of the network. In order to solve this problem, DynaPro has adopted methods like
time window, hierarchical sampling, and graph similarity to process the snapshots of the dynamic network
topology. The second issue is addition of noise in differential privacy. To address this issue, DynaPro uses
Hierarchical RandomGraph (HRG) as middleware to apply differential privacy protection. Instead of adding
noise to network data and topology directly, DynaPro adds noise to HRG. In this way, DynaPro can hide
the network topology but retain the necessary structural information to support data analysis. Theoretical
analysis and experimental results show that DynaPro can preserve the important network features of the
original network topology under the premise of the differential privacy protection model.

INDEX TERMS Differential privacy, WSN, IoT, dynamic networks, sensor layer.

I. INTRODUCTION
IoT has received more and more attention in recent years.
It is widely used and rapidly developed because it makes data
collection more convenient. The wireless sensors in IoT are
used to monitor and track various objects, such as animals,
vehicles and physical phenomena. With the development of
these wireless sensors, IoT applications have proliferated.
According to estimation of Ahmed et al [1], there will be
50 billion IoT devices in 2020 [2]. With the wide application
of IoT, more and more personal information in people’s daily
life is collected by wireless sensors and devices.

IoT takes advantage of the benefits of the Internet like data
sharing and can achieve more accurate data management [3].
It uses the Internet and other communication technologies
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to connect sensors, microcontrollers, machines, people and
objects together [4]. Generally speaking, the architecture of
IoT is divided into three layers: sensor layer, network layer
and application layer [1]. The task of the sensor layer is
to collect the environmental information. The network layer
solves the problem of transmitting the data obtained by the
sensor layer. The application layer addresses the problem of
information processing and human-machine interface. In this
layer, the data are processed by various kinds of information
systems and consumed by people through various devices.

With the development of intelligent devices, the sensor
nodes in the sensor layer are no longer simple hardware
devices. Rather they could be smart devices that are con-
trolled by their users, such as mobile phone, camera, GPS [5].
The information collected by these devices has also become
more dynamic and complex, and especially could be personal.
Therefore, how to protect these personal information in the
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dynamic and complex wireless sensor network is a serious
concern. It will affect the wide applications of IoT.

In this paper, we propose a data protection algorithm,
called DynaPro, for dynamic wireless sensor networks base
on hierarchical random graph. DynaPro has addressed two
issues in data protection of wireless sensor networks. The
first issue is the dynamic topology of the network. Since the
network topology collected by the sensor layer is dynamic,
we cannot simply treat the network topology as static graph.
In order to solve this problem, DynaPro has adopted methods
like time window, hierarchical sampling, and graph sim-
ilarity to process the snapshots of the dynamic network
topology.

The second issue is addition of noise in differential privacy.
In order to reduce the amount of added noise, we use dynamic
community detection to divide the network graph into inde-
pendent communities and add noise to each community in
order to reduce the total amount of noise. In order to achieve
differential privacy, it is common to add Laplace noise to
the data directly. However, the network data may be very
sensitive to small changes in network topology. Adding noise
directly to data often leads to excessive noise, and makes it
impossible to carry out effective data mining and analysis.
To address this issue, DynaPro uses HRG [6] as middleware
to apply differential privacy protection. Our network topology
is represented by HRG. Instead of adding noise to network
data and topology directly, DynaPro adds noise to HRG.
In this way, DynaPro can hide the network topology but retain
the necessary structural information to support data analysis.

In summary, this paper has the following contributions:
1) We proposes a differential privacy algorithm that can

balance between network dynamics, data privacy, and
data availability in the sensor layer of IoT.

2) We uses hierarchical sampling and graph similarity to
guarantee the accuracy of DynaPro as well as time
efficiency.

3) Our experimental results show feasibility and advan-
tages of DynaPro.

The rest of this article is organized as follows. Section II
introduces the related work. Section III presents the back-
ground knowledge. Section IV describes DynaPro in detail
and analyzes its privacy protection. The experimental results
are shown and discussed in Section V. Finally, Section VI
concludes the article.

II. RELATED WORK
In this section, we introduce the related work from the follow-
ing three aspects: data privacy protection in IoT, differential
privacy protection of network data and dynamic community
detection.

A. DATA PRIVACY PROTECTION IN IoT
In IoT applications, environmental information is collected
by wireless sensor networks and transmitted to the network
layer. In this process, the information is easy to leak. Due
to the increased intelligence of IoT devices, WSN collect

more and more personal information, which may result in
more leakage of personal information. How to protect these
personal information in wireless sensor networks is a great
challenge.

There are three main methods protecting data privacy in
IoT. The first is the anonymity technology [2]. By anonymiz-
ing the original data, the anonymity technology balances the
data between the privacy disclosure risk and the data preci-
sion, so as to balance the data availability and data privacy
security. The proposed k-anonymity algorithm in [7] directly
calculates the quasi-signal utility of sensitive attributes by
anonymizing the data. It can protect data privacy while
satisfying the user query service. The proposed n-source
anonymity in [3] uses the cryptographic tools to unlink the
data from its sender among n members. Although anonymity
technology has the advantages of simple calculation, small
delay and low resource consumption, it causes the loss of
original data to a certain degree and thus affects the accuracy
of data processing.

The second method is based on cryptography technology
[8], [9]. A lightweight encryption scheme is one of the most
important methods in privacy protection of IoT. It commonly
uses encryption methods like homomorphic encryption [10]
and secure multi-party computation (SMC) [11]. The invis-
ibility of the original data and losslessness of the data are
realized by the cryptography mechanism. It ensures not only
the confidentiality of the data but also the privacy of the data.
However, the computational time is long and the complexity
of the method is high.

The third method is the popular differential privacy model,
which we use in this article. Differential privacy was pro-
posed in 2006 by Dwork et al. [12]. It has two significant
advantages. Firstly, it makes the strictest definition of the
attacker’s background knowledge, ensuring an individual’s
privacy even when the attacker has access to all the rele-
vant information. Secondly, it has a rigorous mathematical
model, which facilitates quantitative theoretical analysis and
proof of privacy levels. In [13], the application of differential
privacy in data protection and data mining is demonstrated.
Differential privacy is now used in social networks, rec-
ommendation systems, network tracking analysis and many
other fields. We will discuss differential privacy in detail in
Section III.

Traditionally data privacy protection in wireless sensor
networks is mainly based on encryption technology. For
example, in [14], [15], the end-to-end data aggregation pri-
vacy protection used homomorphic encryption technology.
In [14], a data aggregation privacy protection method CDA
is proposed. The homomorphism encryption method is used
to aggregate the encrypted data by the aggregation node.
In [15], the homomorphic stream encryption algorithm based
on addition is adopted, so the aggregation node can aggregate
the encrypted data. The disadvantage of this method is that all
nodes share the same key with the base station. If any sensor
node is compromised, the attacker can obtain the key and
access the encrypted data. So it cannot guarantee the privacy
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of a single node. In addition, homomorphism encryption
method has high complexity and resource consumption.

The trust management method proposed in [16] and [17],
as one of the effective methods to defend against internal
attacks and identify malicious nodes, is widely used in wire-
less sensor networks. However, since it is based on trust
management, it has shortcomings such as slow speed to iden-
tify malicious nodes and ineffectiveness to resist malicious
attacks.

In this article, we use differential privacy protection to
protect the data in WSN, which is a novelty of our work.

B. DIFFERENTIAL PRIVACY PROTECTION OF NETWORK
DATA
Differential privacy is often used to process data mining
results to be published, but the problems we face are more
challenging than publishing specific network statistics or data
mining results. Our goal is to publish the entire network graph
in a WSN.

In [18], noise is added to the eigenvalues and eigenvectors
of the corresponding adjacent matrices. The disadvantage is
that the amount of noise added by this method is O (

√
n), so it

will add a lot of noise to large networks.
In [19], according to the value of the element in the

fixed probability transformation graph, the eigenvector is
constrained. The disadvantage of this method is that the
calculation is too complex to deal with large-scale graphs
efficiently.

In [6], a model of HRG is used to represent the network
graph, and the Laplace noise is added to the HRG in order
to achieve the purpose of privacy protection. However, this
method can only deal with static network data. In the actual
application scenario, the collected network map is dynamic,
and this method cannot handle dynamic network graphs.

In this article, we will deal with a dynamic network.

C. DYNAMIC COMMUNITY DETECTION
In this article, we use the function of dynamic community
detection to deal with network snapshot map. We divide the
map into several communities according to the sparse degree
of nodes, and add noise to each community to reduce total
noise.

Currently there are three kinds of dynamic network
community detection algorithms [20].

The Instant Optimal algorithm matches the new commu-
nity snapshot map with the old snapshot map, which can
ensure that the community structure detected at some point
must be the most relevant community to the current point
in time. This algorithm is studied in paper [21]–[23]. The
advantage of this kind of algorithm is that the traditional
static community detection technology can be reused directly
without modification, and the community detection process
on each independent snapshot can also be executed in parallel
to improve the efficiency, the community discovery process
on individual snapshot maps can also increase efficiency
through parallel execution. The disadvantage is instability,

and you can get different results even if you run it twice on
the same diagram.

The Temporal Trade-off algorithm weighs the communi-
ties found in the current snapshot with those found in pre-
vious shots. This kind of algorithm is studied in [24], [25].
The advantage of this kind of algorithm is that it can solve
the problem of instability of traditional algorithms. The dis-
advantage is that the traditional algorithm cannot be used
directly here, and the community detection process in differ-
ent snapshot images cannot be parallelized.

The Cross-time Communities algorithm takes into account
all the snapshot graphs in the dynamic network at the same
time, and finally obtains a community structure partition
scheme. This type of algorithm is studied in [26], [27].
The advantage of such an algorithm is that the problem of
instability is eliminated and the degree of polymerization of
the detected community is guaranteed. The disadvantage is
that the new snapshot cannot be processed, and the changing
dynamic network in the real world cannot be dealt with.

The idea of dynamic network community detection used in
this paper is the combination of time tradeoff and cross-time
community algorithm.

III. BACKGROUND
This section introduces the background knowledge of
DynaPro.

A. GRAPH SIMILARITY MODEL
In DynaPro, to ensure time efficiency, we use a graph simi-
larity algorithm to filter similar snapshot maps in a dynamic
network topology. Graph similarity algorithms can transform
a graph matching problem into a string matching problem by
marking the graph with a certain string. In this paper, Depth
First Search (DFS) [28] encoding is used as a string to convert
a graph into a tag. Then, the similarity between the two graphs
is calculated by String Edit Distance (SED) [29]. We use this
similarity as the basis for screening similarity graphs.

The details of the algorithm based on DFS and SED are
shown in Algorithm 1.

Algorithm 1 Graph_Similarity(G1, G2)
Input: Two graphs G1 and G2
Output: The distance between the two graphs
1. N1, N2← get the order of the node labels in G1 and G2
2. E1, E2← get the order of the edge labels in G1 and G2
3. C1← get minDFSCode(G1) by N1 and E1
4. C2← get minDFSCode(G2) by N2 and E2
5. Filter the minimum DFS Codes of C1 and C2
6. distance← calculate SED(C1, C2)
7. return distance

B. COMMUNITY DETECTION IN DYNAMIC NETWORKS
In many applications, some smart devices are closely con-
nected. As a result, in the dynamic network topology acquired
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by the wireless sensor network, some nodes are closely con-
nected, and others are sparsely connected. In the second step
of DynaPro, in order to reduce the added noise, we use a
dynamic community detection algorithm to deal with the
network snapshot graph. The goal of community detection in
the network is to find a set of nodes that are tightly connected
within the set, but the connections between the sets are sparse.
Definition 1 (Community Detection): Given graph

G= (V, E), V represents the set of nodes, E represents the set
of edges. Community detection is to find several communities
C= {C1, C2,. . . , Cn} in G, where C1, C2,. . . , Cn have disjoint
nodes and the set of nodes from C1, C2,. . . , Cn equals V.
Network community detection can be divided into dynamic

community detection and static community detection. Static
community detection was studied initially, but with the devel-
opment of various dynamic networks, dynamic community
detection becomes an important problem. We divide the
dynamic network into network snapshots and process them
as static network in DynaPro.

C. HRG
In the third step of DynaPro, we choose HRG as the middle-
ware for differential privacy data protection. HRG proposed
by Aaron Clauset et al. [30]. In order to hide the sensitive
information of the edges in the graph, HRG uses the tree
structure to represent the graph. The nodes in the tree store the
probability value and represent the connection of the edges in
the graph. For an internal node r, its left and right sub-trees
are denoted by Lr and Rr respectively. Let nLr and nRr be the
respective number of leaf nodes in Lr and Rr. Suppose er is the
number of edges connecting the leaf nodes in Lr with those
in Rr. Then pr denotes the ratio of the actual edges in Lr and Rr
to all possible edges formed by their leaf nodes.

pr =
er

nLr nRr
(1)

HRG construction method: A graph can have multiple cor-
responding HRG. We use the method mentioned in [31] to
select the optimal HRG according to Markov Monte Carlo
sampling method. A primitive graph can be divided in the
different forms, which correspond to different HRGs and
reflect the structural information of the original graph to
varying degrees. Using Bayes’ theorem [23], we measure the
restoration of the original graph by the HRG model:

0(T , {pr }) = 5
r∈T

pεrr (1− pr )
nLr nRr−εr (2)

According to the principle of maximum entropy, the larger
the value of 0(T,{pr}), the more accurately the hierarchical
random graph T can reflect the structural information of the
original graph G. According to the principle of maximum
entropy, the larger the value of0(T,{pr}), the more accurately
the hierarchical random graph T can reflect the structural
information of the original graph G. The maximum value
0(T,{pr}) is obtained when Pr approaches 0 or 1.

D. DIFFERENTIAL PRIVACY
In the third step of DynaPro, we also select the differential
privacy model to protect the privacy of data.

Differential privacy protection model aims to perturb the
data by random noise before it is published. Thus, even if
an attacker knows all the other records except the target
one, the individual’s private information cannot be inferred
through data mining and analysis.
Definition 2 (ε -DP): A randomized algorithm M gives

ε-DP, for any pair of neighboring datasets D1 and D2, and
for every set of outcomes SM (SM ∈Range(B)), M satisfies
equation (3):

Pr[M(D1) ∈ SM] 5 exp(ε)∗Pr[M(D2) ∈ SM] (3)

Then it is said that algorithm M provides ε-difference pri-
vacy protection. The parameter ε is called privacy protection
budget, which reflects the level of privacy protection. The
smaller the value of ε, the higher the privacy protection level.
Conversely, the greater the value of ε, the lower the level of
privacy protection [32].

Laplace mechanism [10] and exponential mechanism [33]
are two basic differential privacy protection mechanisms.
Among them, Laplace mechanism is suitable for the pro-
tection of numerical results, and exponential mechanism is
suitable for non-numerical results.

The Laplacemechanism realizes ε-differential privacy pro-
tection by adding random noise obeying Laplace distribution
to the exact query results. Note that the position parame-
ter is 0, The Laplace distribution with scale parameter b is
Lap (b), then its probability density function is

p(x) =
1
2b

exp(−
|x|
b
) (4)

Definition 3 (Laplace Mechanism): Given any query func-
tion f: D→Rd, where D is the input dataset, the sensitivity of
the function f is1f, ε is the privacy budget, f satisfies Laplace
mechanism when

L(D) = f(D)+ Lap(1f/ε) (5)

It can be seen from the Laplace distribution of different
parameters (see Fig. 1) that the smaller the ε, the greater the
noise introduced.

The main idea of the exponential mechanism is to use a
scoring function to screen the results with higher scores from
the output results.
Definition 4 (Exponential Mechanism): The scoring func-

tion U of dataset D is u(D, r)→R. If algorithm A is pro-
portional to the probability of exp( ε

∗u(D,r)
21u ) from the result

space ξ select r as the output, the algorithm A will satisfy
ε-differential privacy.

E. TRIANGULAR MATRIX
The application of triangular matrix is the fourth step of
DynaPro. In order to observe the average value of network
graph, the HRG is transformed into triangular matrix. Fig. 2 is
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FIGURE 1. Laplace distribution function with different value b.

FIGURE 2. HRG converted to triangular matrix.

a schematic diagram of the transformation of a HRG into a
triangular matrix.

The horizontal and longitudinal coordinates in the trian-
gular matrix represent the nodes of the network graph, and
the value of the transverse and longitudinal coordinates is
the connection probability of the two nodes stored in the
hierarchical random graph. Compared with other adjacent
matrices, a triangular matrix can save storage space.

IV. DynaPro
As mentioned before, DynaPro is divided into four steps:
division of dynamic network into snapshots, community
detection, HRG processing, optimization and publishing of
the network graph. In this section, we first introduce the steps
of DynaPro in detail. Then we present the privacy analysis of
DynaPro. The flowchart of DynaPro is shown in Fig. 3.

FIGURE 3. Flowchart of DynaPro.

A. THE STEPS OF DynaPro
1) DIVISION OF DYNAMIC NETWORK
This step solves the problem of how to deal with continu-
ously changing topology of a dynamic network. The dynamic
nature of the network requires continuous updates of the
graphs with added noises, otherwise the network topology
cannot be accurately represented. The real-time nature of

the dynamic network requires that the noise-added graphs be
released in a timely manner. Once a new snapshot is acquired,
it should be processed and released immediately.

We analyze the dynamic network topology according to a
time window. In order to ensure the time efficiency, we use
stratified sampling when processing the data in each time
window: select the snapshot graph from each layer time win-
dow according to the corresponding sampling ratio. At this
point, we simplify the dynamic network diagram into a col-
lection of extracted static snapshots. This approach saves time
while ensuring data availability. We notice that the snapshots
generated by the adjacent time windows have a similar struc-
ture. To save time while ensuring accuracy, we use the graph
similarity model to remove similar snapshot graphs, and then
output the snapshot graphs.

2) COMMUNITY DETECTION OF DYNAMIC NETWORK
Before protecting the dynamic network topology, we use
community detection to control the amount of noises added.
As can be seen from Fig. 4, in a network graph, there are
often some sets the nodes of which are tightly connected
inside each set, but the nodes crossing the sets are sparsely
connected. We use this feature to add different noises to the
edges inside a set and the edges between the sets to control
the amount of noises added. Community detection like the
PHASR approach [35] is used to find the aforementioned sets.

FIGURE 4. Communities in a network graph.

3) HRG PROCESSING
The third step of DynaPro is to use the HRG model and the
differential privacy to process the communities returned by
the second step. Our privacy protection of graph structure is
divided into two parts: the first part is the privacy protection
of the edge between the community, and the second part is
the privacy protection of the edges within the community.

In the process of privacy protection within the community,
if we add noises to the nodes, it will lead to significant
changes in the structure of the network graph [36]. Therefore,
as a novelty, we use HRG [6] as the middleware for data
privacy protection in our differential privacymodel. Using the
community found in the second step, the HRG is constructed
and noises are added to the internal nodes using the Laplacian
mechanism. The internal nodes in the HRG represent the
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probability values of the connected edges between the leaf
nodes in the left and right subtrees. Therefore, adding noise
to the probability values stored by the nodes of HRG can
protect the sensitive information of the edges of the network.
Comparing Fig. 4 with Fig. 5, it can be found that in a
better HRG, nodes within the same community tend to be
concentrated in the same subtree.

FIGURE 5. Figure 4 communities corresponding HRG.

4) OPTIMIZATION AND PUBLISHING OF NETWORK GRAPH
In the process of constructing HRG sampling, the exponential
mechanism is used to provide differential privacy protection
between communities. At the end of the step, we merge the
child HRGs to facilitate the next step.

Through the previous steps, we get a number of HRGs for
each time window, and we are looking for an overall network
feature in the time window. In order to extract the average
value of multiple HRGs, we use triangular matrix [20] by
which the average characteristics are obtained and the final
published network graph is reduced.

B. GENERATION OF SNAPSHOTS
Algorithms 2-3 present our approach for generating the snap-
shots of the dynamic network topology. InAlgorithm 2, a time
window is denoted as W, and contains the snapshot graph
of1t. In order to reduce the time complexity of the algorithm
andmore accurately reflect the latest structure of the network,
we further divide a W into k layers in accordance with the
time stamps. The newer the time stamp is, the higher the
proportion of layered sampling is. So we can achieve the goal
of accurately reflecting the latest structure of the network. R is

Algorithm 2 Stratified_Sampling(W, k, r)
Input: TimewindowW , number of strata k , basic sampling
rate r
Output: Set of the chosen snapshots S
1. Initialize an empty set S = {}
2. for j from 1 to k do
3. for each snapshot s in the stratum W [j] do
4. if rand(0, 1) > = j/k∗r then
5. append s to S
6. end if
7. end for
8. end for
9. return S

the basic sampling ratio. The proportion of stratified sampling
in layer j is j/k∗r (1≤j≤k).
Next we carry out similarity filtering in Algorithm 3, which

traverses the set S output by Algorithm 2 and filters the
elements with low similarity to the filtered snapshot set S’
until the traversal is complete.

Algorithm 3 Similar_Graph_Filtering(S, x)
Input: Set of the chosen snapshots S, threshold of similar-
ity x
Output: Filtered set of the snapshots S′

1. Initialize an empty set S′ = {}
2. i = 1
3. while true do
4. if i >= len(S) then
5. break
6. end if
7. append S[i] to S′

8. j = i+ 1
9. while j < len(S) and Graph_Similarity(S[i], S[j]) < x
do
10. j++
11. end while
12. i = j
13. end while
14. return S′

C. COMMUNITY DETECTION
The community detection algorithm PHASR is divided into
three steps, as shown in Algorithm 4. First, we compute
composite bounds of individual intervals and attempt to prune
them (Line 1-4 in Algorithm 4). Second, we use Hash func-
tion to find neighborhoods N t

u (Line 5-11). Finally, we main-
tain and report multiple top communities (Line 12-20).

D. HRG PROCESSING
The hierarchical random graph is constructed with the
Markov Monte Carlo sampling method [30]. Algorithm 5
shows this process.

In Algorithm 5, Tt−1 is the current state of the Markov
chain, and multiple T’ of the next state is generated by
replacing an internal node n. We use the exponential mech-
anism to screen the final T’, and the scoring function of
the exponential mechanism is exp( ε121u log0(T

′)), the trans-

fer probability of Markov chain is min(
exp( ε121u log0(T

′))

exp( ε121u log0(Tt−1))
, 1).

In this step, we use the exponential mechanism to make
differential privacy protection on the edges that are between
the communities. The privacy protection budget is ε1. The
output is Tt.

Next, we use Algorithm 6 to add noise to the inside com-
munity, mainly using the Laplace mechanism in the differ-
ential privacy. If the privacy budget of the root node is set
to ε2, the number of layers is 1, α is the total number of

VOLUME 7, 2019 167759



S. Li et al.: DynaPro: Dynamic WSN Data Protection Algorithm in IoT via Differential Privacy

Algorithm 4 PHASR
Input: S’, α, LSH rows r, bands b, pruning res. l
Output: Communities of each snapshot
1. Compute bounds 8 at scales li, i = 0 ... d log(T)
2. Compute an estimate φ∗ using 8
3. Prune intervals [t, t’] ∈ τ based on ϕc(Gτ ) ≥ ϕ∗
4. Prune remaining intervals [t, t’] based on ϕc (G[t,t’]) ≥
ϕ∗

5. for all (u, t) ∈ (V, [1 ...T]) do
6. for all scales s ∈ 1 ...T/2 do
7. if ∃ an unpruned [l, r] ∈ [t − s, t + s], then
8. Hash(Nt

u, k∗(s), r, b)
9. end if
10. end for
11. end for
12. for ∀ Buckets B sorted by fill-factor do
13. [l, r] = interval of B
14. if ϕc(G[l,r]) < ϕ∗ then
15. (C, t, t’ ) =Refine(B)
16. ϕ∗ = min(ϕ∗, ϕ(C, t, t’ ))
17. add (C, t, t’) to C
18. end if
19. end for
20. RETURN C

layers of the hierarchical random graph, and β is the number
of layers where the node is located, the privacy budget of a
node is α−β

α−1 ε2.
After adding noises, we use Algorithm 7 to merge self-

hierarchical random graphs:

E. OPTIMIZATION AND PUBLISHING OF NETWORK
GRAPH
Algorithms 8-9 show the last step of DynaPro. For N hier-
archical random graphs obtained in the same time window,
we convert them into N trigonometric matrices Ai(1≤i≤N).
By finding the average value of N matrices, the average
value of triangular matrix corresponding to time window is
recorded as Aavg(Algorithm 8).
Finally, the trigonometric matrix is converted into the net-

work diagram to be published (Algorithm 9).

F. PRIVACY ANALYSIS OF DynaPro
DynaPro mainly uses differential privacy protection in pro-
cessing HRG. We discuss and analyze the privacy budget in
this section.

In the third step of DynaPro, we have differential privacy
protection between the communities, and the privacy budget
is ε1. The differential privacy protection is carried out by
using Laplace mechanism to protect the nodes and edges
within a community, and the privacy budget is ε2. We set
ε = ε1 + ε2, and ε1 < ε2,because the community’s internal
edges are more tightly connected and can take more noise;

Algorithm 5 Construct_HRG(G,ε1)
Input: Subgraph G, privacy budget ε1
Output: HRG T
1. initialize the Markov chain by generating an HRG T0

according to
G randomly

2. set t = 1
3. while the Markov chain is not converged do
4. choose an internal node n in Tt−1 randomly
5. generate T′ by replacing nwith its neighboring HRG in
Tt−1
6. if accept the transition with the probability of

min(
exp( ε121u log0(T

′))

exp( ε121u log0(Tt−1))
, 1) then

7. Tt = T ′
8. else
9. Tt = Tt−1
10. end if
11. t = t + 1
12. end while
13. return T = Tt

Algorithm 6 Add_Noise(T, ε, n, α, β)
Input: HRG T , privacy budget ε, internal node n, total
layers count α, number of layer β
Output: HRG T′ with noise
1. T′ = T
2. ε’ =

α−β
α−1 ε

3. Pn = min{ en+Lap(1/ε
′)

nLr nPr
, 1}

4. if n’s left sub-tree is not null then
5. Add_Noise(T′, ε2, n’s left child, α, β+1)
6. end if
7. if n’s right sub-tree is not null then
8. Add_Noise(T′, ε2, n’s right child, α, β+1)
9. end if
10. return T′

the edges between the communities are more sparse and can
withstand less noise.

Moreover, DynaPro is also in line with the constraints
of the differential privacy model. The proof is as follows.
At the end of the second step, the edge set E in graph G is
divided into the edge between the community (E1) and the
edge within the community (E2). We use privacy budget ε1
to process E1, and use privacy budget ε1 and ε2to process E2.
On the processing of E2, according to the sequence combi-
nation property of the differential privacy model, these two
stages satisfy ε-difference privacy (ε = ε1 + ε2). Because
E=E1+E2, and according to the parallel combination prop-
erty of differential privacy, the algorithm generally satisfies
ε-differential privacy between the community (E1) and the
edge within the community (E2). We use privacy budget ε1to
process E1, and use privacy budget ε1 and ε2to process E2.
On processing E2, according to the sequence combination
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Algorithm 7 Aggregate_HRG(H, ε2)
Input: HRG set H , privacy budget ε2
Output: HRG T
1. initialize the Markov chain by generating an HRG T0
according to root nodes in H randomly.
2. set t = 1
3. while the Markov chain is not converged do
4. choose an internal node n in Tt−1 randomly
5. generate T ′ by replacing n with its neighboring HRG
in Tt−1
6. if accept the transition with the probability of

min(
exp( ε121u ·log0(T

′))

exp( ε121u ·log0(Tt−1))
, 1) then

7. Tt = T ′

8. else
9. Tt = Tt−1
10. end if
11. t = t + 1
12. end while
13. return T = Tt

Algorithm 8 HRG_to_Tri_Matrix (T1, T2, . . . , TN )
Input: N HRGs, T1, T2, . . . , TN
Output: The average triangular matrix Aavg
1. for i from 1 to N do
2. initialize matrix, Ai[j][j] = 0
3. for every two leaf nodes m and n (m < n) in Ti do
4. find the lowest common ancestor of m and n
5. get the value of the ancestor in HRG, denoted as pmn
6. set the matrix element Ai[m][n] = pmn
7. end for
8. end for
9. calculate the average matrix of A1, A2, . . . , AN , denoted
as Aavg
10. return Aavg

property of the differential privacy model, these two stages
satisfy ε- differential privacy (ε = ε1 + ε2). Because
E=E1+E2, according to the parallel combination prop-
erty of differential privacy, the algorithm generally satisfies
ε-differential privacy (max (ε, ε2) = ε).

V. EXPERIMENTAL EVALUATION
In this section, wewill use experiments to verify the effective-
ness of DynaPro. It includes experimental setup and design,
evaluation metrics, and analysis of results.

A. EXPERIMENTAL SETUP
The configuration of our computing system is shown in
TABLE 1.

In order to show the effectiveness of DynaPro, we select
two real dynamic network graphs from the SNAP graph
database [19]. There are two reasons to choose these two
datasets. First, Both AS-Internet and AS-Caida have a certain

Algorithm 9 Reconstruct_Graph (G, Aavg)
Input: Original graph G, average triangular matrix Aavg
Output: Sanitized graph G′

1. initialize G′ by putting all vertices of G in it
2. for each pair of vertices i, j ∈ G′ do
3. find the value pij of Aavg[i][j] in Aavg
4. place an edge between i and j in G′ according to the
probability stored in pij
5. end for
6. return G′

TABLE 1. Configuration of computing system.

number of dynamic network snapshot graphs, which meet the
requirements of this paper. Second, from TABLE 2, we can
see that the two datasets are very different in the number of
nodes, the number of edges, the number of snapshot graphs
and so on, which is convenient for us to do comparative
experiments and test the processing ability and stability of the
algorithm. The information about the two datasets is shown
in TABLE 2.

TABLE 2. Dataset summary.

B. EXPERIMENTAL DESIGN
We set two sets of comparative experiments.

In the first step of DynaPro, we use hierarchical sampling
and graph similarity model to ensure the time efficiency.
In order to show DynaPro is effective, we set up a set of
comparative experiments. We choose AS-Internet dataset to
observe the results of privacy protection with DynaPro and
a DCP algorithm. The DCP (Dynamic Network Community
Discovery Protection) algorithm only uses steps two, three
and four of DynaPro to protect data directly.

In the second group of our comparative experiments,
we compare DynaPro with DPDHRG [37] and PrivHRG [6]
using datasets AS-Internet and AS-Caida.

C. EVALUATION METRICS
Three evaluation metrics are introduced in our evaluation.

1) Degree Distribution: The degree of a node is the num-
ber of edges between a node and the nodes connecting
to it. It can reflect the structural information of the
network.
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2) Shortest Path Length Distribution: It calculates the
length of the path between each node in the original
graph and the publishing diagram, and gives the distri-
bution of several shortest paths.

3) Overlap of Top-K Vertices: The central performance
of the nodes reflects the propagation characteristics
of the network. The centrality of nodes is judged by
eigenvector centrality [6].

For the first group of experiments, we select AS-Internet
dataset, and take the number of snapshot graphs processed as
independent variables to verify the influence of hierarchical
sampling and graph similarity algorithm on the time and
accuracy of the results. The dependent variables referenced
are the distribution of time and node degree.

For the second set of experiments, we will verify the
effectiveness of the proposed algorithm on AS-Internet and
AS-Caida datasets by verifying the influence of the overall
budget of differential privacy on the results. The other vari-
ables used in the experiment are shown in Table 3.

TABLE 3. Parameter settings.

D. ANALYSIS OF RESULTS
The first set of experimental results is shown in Fig. 6 and
Fig. 7. For comparison, we take the average relative error
between the experimental results and the original graph on
the degree distribution nodes.

FIGURE 6. Comparison of algorithm efficiency (AS-Internet).

As can see from Fig. 6, DynaPro is superior to DCP at
any stage in the figure in terms of completion time, because
DynaPro filters similar snapshots and saves time for later
processing.

FIGURE 7. Comparison of algorithm accuracy (AS-Internet).

From Fig. 7, in the index of node degree distribution,
the node degree distribution of DCP is lower than that of
DynaPro in most cases. It shows that the network structure of
DCP is better retained than DynaPro after adding irritability,
because DCP retains more dynamic network snapshot dia-
grams. However, the error is within an acceptable range.

In the second set of experiments, because the PrivHRG
algorithm has no processing strategy for the dynamic net-
work, it processes all snapshot graphs in a time window
one by one, and finally finds the average value as the result
for publishing. In order to facilitate the comparison, we use
the MRE between the result and the original graph in the
display of the first two indices. Fig. 8 and Fig. 9 are the
comparison results of three algorithms on node degree distri-
bution. Fig. 10 and Fig. 11 are the comparison results of three
algorithms on the shortest path length distribution. Fig. 12 and
Fig. 13 are the comparison results of three algorithms on
Overlap of Top-K Vertices.

FIGURE 8. MRE of degree distribution (AS-Internet).

Degree Distribution: It can be seen from Fig. 8 and Fig. 9,
the MRE of the results obtained by DynaPro is lower than the
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FIGURE 9. MRE of degree distribution (AS-Caida).

FIGURE 10. MRE of shortest path length distribution(AS-Internet).

FIGURE 11. MRE of shortest path length distribution (AS-Caida).

PrivHRG algorithm, and slightly lower than the DPDHRG
algorithm, in both AS-Internet and AS-Caida datasets.

Shortest Path Length Distribution: As you can see from
Fig. 10 and Fig. 11, the MRE of the results obtained by

FIGURE 12. Coverage of Top-K center nodes (AS-Internet).

FIGURE 13. Coverage of Top-K center nodes(AS-Caida).

DynaPro is lower than that of the PrivHRG algorithm on
the two datasets, It is not much different from the DPDHRG
algorithm.

Overlap of Top-K Vertices: On the two datasets, the
Top-K center point coverage of DynaPro is higher than that
of PrivHRG, and slightly higher than that of DPDHRG. This
shows that our algorithm is more effective in retaining the
structural features of the original graph.

From the above experimental results, it can be seen that
DynaPro is feasible and efficient in terms of node degree
distribution, shortest path length distribution, and Overlap of
Top-K Vertices.

VI. CONCLUSION
In the deployment of the Internet of things, in order to meet
the privacy protection requirements for the dynamic network
topology of WSN, we propose DynaPro, a data protection
algorithm based on differential privacy for dynamic wireless
sensor networks, i.e., the sensor layer of IoT. DynaPro has
adopted methods like time window, hierarchical sampling,

VOLUME 7, 2019 167763



S. Li et al.: DynaPro: Dynamic WSN Data Protection Algorithm in IoT via Differential Privacy

and graph similarity to process the snapshots of the dynamic
network topology. It uses Hierarchical RandomGraph (HRG)
as middleware to apply differential privacy protection.
Instead of adding noise to network data and topology directly,
DynaPro adds noise to HRG. In this way, DynaPro can hide
the network topology but retain the necessary structural infor-
mation to support data analysis. We have done experimental
evaluation with two real datasets, AS-Internet and AS-Caida.
We show that the DynaPro is feasible and efficient in terms
of running time, accuracy, and structural preservation of the
dynamic network of WSN.
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