
Received October 10, 2019, accepted November 6, 2019, date of publication November 15, 2019, date of current version
November 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2953698

Music-Driven Dance Generation
YU QI, YAZHOU LIU , AND QUANSEN SUN
School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Corresponding author: Yazhou Liu (yazhouliu@njust.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61672286 and Grant 61673220.

ABSTRACT In this paper, a novel model for synthesizing dance movements from music/audio sequence
is proposed, which has variety of potential applications, e.g. virtual reality. For a given unheard song,
in order to generate musically meaningful and natural dance movements, the following criteria should be
met: 1) the rhythm between the dance action and music beat should be harmonious; 2) the generated dance
movements should have notable and natural variations. Specifically, a sequence to sequence (Seq2Seq)
learning architecture that leverages Long Short-Term Memory (LSTM) and Self-Attention mechanism
(SA) is proposed for dance generation. The work in this article is interesting in the following aspects:
1) A cross-domain Seq2Seq learning framework is proposed for realistic dance generation; 2) A set of
evaluation criterion is proposed for synthetization evaluation which do not have source for reference;
3) A dance dataset that including both music and corresponding dance motions collected, and very
competitive results have been obtained against the-state-of-the-arts.

INDEX TERMS Music, dance, movement, music-driven dance generation.

I. INTRODUCTION
There aremany applications for sequence analysis based deep
learning [1], [2], including language processing [3], video
tracking [4], cross-domain analysis [5], [6], and semantic
features based sentiment analysis [7]. For sequence anal-
ysis, cross-domain sequence analysis is one of the impor-
tant branches. Cross-domain sequence analysis refers to
finding the correspondence between two different types of
sequences. There are many related applications, such as,
translating between different languages [5], [8]–[10], using
natural language to synthesize real images [11].

Audio to video analysis is a special case of cross-domain
sequence analysis [12], [13]. Comparing to the other topics,
the research on audio-video analysis is relatively few. The
main reason is that for conventional video, the correlation
between audio and video is not very strong. For example, for a
particular video scene, theremay bemultiple audio sequences
corresponding to it; for a particular audio sequence, it can also
be used as background audio for multiple video scenes.

However, the correlation between music and dance move-
ments is relatively significant compared to general audio and
video sequences. Although there is no one-to-one correspon-
dence between dance movements and music, the correlation
between the beats of dance movements and music beats is
relatively strong. This relatively strong correlation provides
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a possibility for cross-domain analysis of music and video.
For example, the harmonious of the dance movement beat
can be analysed according to a specific music sequence; or
the appropriate background music can be selected accord-
ing to the dance movement. Specifically, the target of this
work is to generate dance movement according to the music
sequence.

There are several attempts to analyse the connection
between audio and dance movements. Alemi et al. [14] use
GrooveNet to learn the relationships between low-level audio
features and dance movements. Chan et al. [15] propose a
model for achieving movement style migration between dif-
ferent human subjects. Cai et al. [16] attempts to synthesize
human motion video from noise. The limitations of the above
attempts are either not finding a strong correlation between
music and video or simply focusing on synthesizing human
motion while ignoring the association between music and
video.

In addressing the above problems, this paper proposes
a new Seq2Seq [17]–[19] framework, which is referred to
as Long Short-Term Memory Self-Attention (LSTM-SA),
to learn the correlation between music and dance movements.
Specifically, the proposed method firstly extracts features of
music and dance sequence, then uses an Encoder-Decoder
[5], [20] network to learn the correlation between music
and dance sequence. Finally, the synthetic dance sequence
was evaluated. The overall processing flow of the method is
shown in Fig. 1.

166540 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-0631-2385
https://orcid.org/0000-0001-6019-1986
https://orcid.org/0000-0002-6346-0106


Y. Qi et al.: Music-Driven Dance Generation

FIGURE 1. The overall structure of the proposed music-driven dance generation.

II. RELATED WORK
Music-driven dance generation is an important research topic
in the field of computer vision because it has many potential
applications. For example, synthetic video can be used for
animation generation, choreography, virtual reality, virtual
characters and gaming. In this section, we are going to briefly
review the advances of the related works from three aspects:
dance movement generation, cross-domain sequence analysis
and Seq2Seq learning networks.

A. DANCE MOVEMENT GENERATION
A variety of deep learning models are used to learn and
generate human motion from motion capture data. Hidden
Markov Models (HMMs) [21] and its extensions have been
applied to the synthesis of dance movements. Linear Dynam-
ical System [22] relies on dynamic system models to learn
and synthesize dance movements. The system automatically
learns motion, allows for real-time synthesis, and provides
a range of methods such as key-framing and noise-driven
generation for synthesizing movements.

Recently, artificial neural networks have made great
progress in synthesizing dance movements.
Donahue et al. [23] focus on generating choreographies
for the Dance Dance Revolution game, and used the
LSTM [24], [25] network to synthesize a new step chart.
However, their approach is limited to generating discrete
sequences of step indicators rather than continuous move-
ments. Crnkovic-Friis [26] uses the Long Short-Term Mem-
ory Recurrent Neural Networks to learn how to synthesize
choreography. But this approach did not provide any methods
of controlling the generation and did not accompany any
music.

There are several models related to music-driven dance
movement generation. Ofli et al. [6] introduce a music-
driven dance avatar based on the motion synthesis method
HMMs. For training, their approach requires movement to be

manually annotated into specific patterns synchronized with
the beats. For generation, the music is segmented using beat
detection. Yet, one of the main limitations of this approach is
that it relies on the categories of input music patterns, so there
is very little opportunity to generate new motion patterns.
Alemi et al. [14] propose a GrooveNet model that could solve
the problem of relying on classification or segmentation of
the music signal. The basic principle behind GrooveNet is
to allow the model to learn continuous cross-modal mapping
from music information to motion data in an unsupervised
manner. However, the model could not generalize well to
music tracks beyond the training data.

B. CROSS-DOMAIN SEQUENCE ANALYSIS
At present, there are many interesting applications for cross-
domain sequence analysis. Dong et al. [11] propose a way to
semantically manipulate images by text descriptions. Using
the adversarial learning technique, a synthetic realistic image
generation model is trained with the given source image
and target text description. The GAN based encoder-decoder
architecture is able to disentangle the semantics contained in
both images and text descriptions, while keeping other image
features that are irrelevant to the text descriptions. Psycholog-
ical studies have provided evidence that human emotions can
be aroused by visual content, e.g. images [27]–[29]. Based
on these findings, recently computer scientists also started to
delve into this research topic and make progress in [7], [30].

Cheng et al. [31] introduce an innovative idea for generat-
ing an artistic poem from an image. Given an image, the first
is to extract a few keywords representing objections and
sentiments perceived from the image. These keywords are
then expanded to related ones based on their associations in
humanwritten poems. Finally, verses and generated gradually
from the keywords using recurrent neural networks trained
on existing poems. Nallapati et al. [32] apply the attention
encoder-decoder for the task of abstractive summarization,
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FIGURE 2. Structure of RNN cell.

and the model has very promising results of handling the
problem of abstract text summarization, which is the task
of generating a headline or a short summary consisting of a
few sentences that captures the salient ideas of an article or a
passage.

C. SEQ2SEQ LEARNING NETWORKS
The Seq2Seq framework is currently widely used for
cross-domain sequence analysis processing [10], [11], [32].
Here, we will review some of the classic network mod-
els based on Seq2Seq learning. We have chosen four
different types of Seq2Seq network models, which in
turn are RNN [8], [33], Convolution Neural Networks
(CNN) [9], [17], [34], Attention Model (AM) [35]–[37] and
Self-Attention model (SA) [38]–[40].

One thing in common with the four models above is that
each model has two components: an encoder [5], [20] and
a decoder. These two parts are actually two different neural
networks, which are finally combined into a huge network by
combination. In summary, the task of the encoder network
is to understand the input sequence and create a smaller
dimensional representation of it. The low-dimensional rep-
resentation of the encoder is then forwarded to the decoder
network, and the desired output sequence is generated by the
decoder network.

Eachmodel has its own special part. RNNworkswell when
dealing with problems with short-term dependencies. RNN is
a neural network used to process sequential data, such as text,
DNA sequence, music sequence, handwriting, speech and
stocks. Compared with traditional neural networks, it takes
time and sequence into account and has a temporal dimen-
sion. For example, when people need to analyse a word based
on previous words and context, traditional neural networks
would have bad performance because it has difficulty in
remembering previous data, whereas RNN can address this
problem well, as it uses a loop to remember information.
As shown in Fig. 2, xt is an input at time t , st is the hidden
state at time t which will be passed to the next time step t+1
as part of the input. It is used to remember the previous states.
st is computed based on previous state st−1 and current input
xt . ot is the output at time step t .
However, sometimes we only need to look at recent

information to perform the present task and do not want
to remember old data. Also, due to the vanishing gradient
problem, RNN cannot effectively deal with long-term depen-
dencies. LSTM is a network model based on an RNN that
has proven successful at extracting time series of features.

FIGURE 3. Structure of LSTM cell.

Compared with an RNN, an LSTM network contains addi-
tional three gates (I.e. forget gate, input gate and output
gate, as shown in Fig. 3) to control the cell state, which
help it to perform better in Seq2Seq mapping. Therefore,
people usually use LSTM instead of RNN when dealing
with long sequence problems. One disadvantage of LSTM
model is that it compresses the entire input sequence into
a fixed representation. Compared to LSTM, CNN model
creates a fixed-size context representation. Moreover, the net-
work allows each element in the sequence to be parallelized
because the convolutional network does not rely on the cal-
culation of the previous time step. This parallelization can
greatly reduce the training time of the network. However, the
effective context size of the network can easily bemade larger
by stacking several layers on top with each other.

The attention mechanism proposed by Parikh can solve the
problem of compressing the entire input sequence into a fixed
representation. In anAMnetwork, it holds onto all states from
the encoder and gives the decoder a weighted average of the
encoder states for each element of the decoder sequence. Note
that the shortcoming of the AM model is that parallelization
is not possible, so the training time will increase. And it not
only the order of elements in input sequence, but ignores
the connection in output sequence. Self-Attention, sometimes
referred to as internal attention, is a mechanism of attention
that correlates the different positions of a single sequence
to compute a sequence representation. The SA model takes
into account the connections between the elements inside the
input sequence, which results in a more reasonable output
sequence.

III. MUSIC-DRIVEN DANCE GENERATION
This paper aims to learn the mapping between music and
dance movements, and synthesize musically meaningful and
natural dance movements driven by music. Firstly, we will
specifically describe how to extract features from music and
video. Then, the architecture of LSTM-SA is detailed.

A. MUSIC FEATURE EXTRACTION
Music has many features [41], [42], such as low-level fea-
tures (Bark bands, RMS level), spectral features (spectral
spread, spectral crest, spectral complexity), and melody fea-
tures (pitch, pitch salience and confidence, dissonance). This
paper chooses Mel Frequency Ceptral Coefficients (MFCC)
[43]–[45] as music features. In sound processing, MFCC is
the cepstrum parameter extracted in the Mel scale frequency
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domain, which is a feature widely used in automatic speech
and speaker recognition [44], [45].

The steps of MFCC feature extraction are: 1) frame the
signal into short frames; 2) take the Fourier transform (FFT);
3) map the powers of the spectrum obtained above onto the
male scale, using triangular overlapping windows; 4) take the
logs of the powers at each of the mel frequencies; 5) take
the discrete cosine transform of the corresponding music are
obtained.

One point to note when performing MFCC feature extrac-
tion is that the number of frames of music and video is not
a one-to-one mapping. Because time aligned music-video
pairs are needed for training, we adjust the hop size (h) when
extracting the mel-spectrogram so that the music data has the
same frame rate as that of video. In this work, the value of the
number of video frames (S) is known. It is the total number of
images obtained through OpenPose [46]. In order to obtain a
certain length to correspond to the dancemotions, when using
Fourier transform (FFT) to calculate the number of sample
intervals (h) between adjacent frames, it is necessary to set
the size of h to be the result of the following formula:

h = wsize− ((S + 1) ∗ wsize−M) /S (1)

where wsize represents the size of the FFT window, and the
default value is 2048;M is the total number of samples of the
music. Through this processing, time aligned music MFCC
features can be obtained.

B. VIDEO FEATURE EXTRACTION
In this work, it is necessary to use the obtained dance action
information as a label for the corresponding music. Each
dance movement is actually presented in a combined pose of
different parts of the body. Therefore, as long as the estima-
tion result of the human body posture of each frame image is
obtained, the corresponding dance motion information can be
obtained. In this paper, the OpenPose [46] systemwas chosen
to obtain the results of human pose estimation.

OpenPose system takes an image of w × hw× h as input
and produces the 2D locations of anatomical keypoints for
each person in the image. The specific processing flow is as
follows. First, a feedforward network predicts a set of 2D
confidence maps S of body part locations and a set of 2D
vector fields L of part affinities; then, the confidence maps S
and the affinity fields L are parsed by greedy inference to
output 2D keypoints for all people in the image.

After getting the output of OpenPose system, the follow-
ing processing needs to be done: 1) only retain the posture
information of 18 key parts of the human body, they are nose,
neck, right shoulder, right elbow, right wrist, left shoulder,
left elbow, left wrist, right hip, right knee, right ankle, left
hip, left knee, left ankle, right eye, left eye, right ear, left
ear; 2) mark those undetected points as special character,
otherwise, the value of these abnormal points will affect the
accuracy of the training; 3) filter out the viewer and normalize
all detected points.

C. LSTM-SA NETWORK ARCHITECTURE
Mapping high-dimensional sequences such as motion is a
challenging task for deep neural networks (DNN) because
such sequences are not constrained to a fixed size. Besides,
to generate motion from music, the model under consid-
eration must map highly non-linear representation between
music and dance movements. As a preliminary attempt,
basic methods of Seq2Seq implemented with LSTM lay-
ers displayed remarkable performance and stable training.
And considering that music-driven dance generation is a
long sequence analysis problem we used an LSTM network
as the basis of our model, which is a representative and
popular cross-domain sequence analysis model. The LSTM
structure has a memory channel ct that stores useful infor-
mation from previous outputs as it passes them to subse-
quent cells. During the training process, the network not
only maintains the memory information, but also concen-
trates on the most important features. Therefore, we chose
the encoder-decoder based LSTM network as the basic
model.

There are two problems with the LSTM network. One is
that the LSTM network compresses the entire input sequence
into a fixed vector, so the semantic code ct corresponding to
each frame of the output is the same. The other problem is
to ignore the interrelationships of the elements in the music
sequence, which can result in less harmonious and natural
dance sequences. In order to solve the above mentioned
problems, we introduced the idea of attention mechanism.
As mentioned before, attention mechanism refers to the pro-
cess of focusing on importing information while filtering out
unnecessary data. After integrating the attention mechanism
the network will retain all states from the encoder and assign
a weighted average to the encoder state of each element in the
decoder sequence. Thus the semantic code ct corresponding
to each frame of the output is different, so that the problem
of compressing the entire input sequence into a fixed vector
can be solved. At the same time, the interrelationships of the
elements in the sequences can be obtained by adding attention
mechanism when processing the sequence, which referred as
self-attention.

The network architecture is shown in Fig. 4. It contains
three major modules. LSTM and Dense module are designed
to process input and output sequence and the attentionmecha-
nism is applied to change the decoding process. In the decod-
ing process, the state of the decoder network is combined
with the state of the encoder and passed to the feedforward
network. The feedforward network returns the weight of each
encoder state. The encoder inputs are then multiplied by these
weights and then the weighted average of the encoder states is
calculated. The resulting context is then passed to the decoder
network. Thus the decoder network can use different parts of
the encoder sequence as context in processing the decoder
sequence instead of using a single fixed representation of
the input sequence. This allows the network to focus on the
most important part of the input sequence, not the entire input
sequence.
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FIGURE 4. Outline of the proposed LSTM-SA for music-driven dance framework.

The input music features and pose features firstly fed into
a three-cell LSTM layers with 128 units each. Then an atten-
tion mechanism is applied to complete the structure of the
encoder. The Decoder network has a structure similar to that
of the encoder network. It comprised of an attention layer,
three LSTM layers, and a dense layer, in order of the data
flow. The LSTM layers with 128 units each and a dense layer
with 36 dimensions. The output of the network is compared
with the ground truth dance sequence by use MSEM loss as
a cost function. We used the Adam optimizer for training and
set the learning rate to 0.001.

IV. EVALUATION METHODS
There is no clear reference mapping between music and
dance movements, so it is necessary to find some criteria to
evaluate whether the generated dance sequence was natural
and whether it was produced in accordance with the music.
Considering that there are few studies on dance sequences,
this paper sets some new rules for judging the advantages and
disadvantages of the generated model. In order to ensure the
comprehensiveness of the evaluation, this paper is evaluated
from two aspects: subjective evaluation and objective evalua-
tion. Specifically, this paper proposes a manual scoring, cre-
ates a new learning based scoring model, and calculates the
correlation coefficient between the original dance sequence
and the generated dance sequence. Three evaluation methods
will be specifically described below.

A. HUMAN EVALUATION
In this section, we conduct a human evaluation to compare the
baseline methods with ours. First, we generated five dance
sequences with each of the five models (CNN, LSTM, AM,
SA, LSTM-SA). After generating the sequences, we mixed
all the videos in a random order. Then all of the synthesized
music&pose combinations were presented to the subjects
without telling them which method was used for generation
so that the subjects were blind to the method they evaluated.
And next ten subjects were recruited and asked to score the
music&pose combination generated by different methods.
Half of the 10 subjects were professional dancers which
called expert group, and the rest were ordinary people without
professional dance knowledge which called ordinary group.

FIGURE 5. Method of dividing original sequence for Learning-based
scoring model.

The subjects were required to score the combinations (0.4 for
worst, 1.0 for best) based on following criteria.

For training: 1) whether the synthesized actions keep the
original pose of the music; 2) whether the synthesized actions
are natural; 3) whether the generated sequence fit well with
music.

For testing: 1) whether the synthesized actions are natu-
ral; 2) whether the generated sequence fit well with music;
3) whether the synthesized actions have notable variations.
The specific human evaluation experimental results are
shown in Section 5.

B. LEARNING BASED SCORING MODEL
In this section, we have designed a new learning based
scoring model that automatically scores the generated dance
movements. The model includes two important parts: source
data preprocessing and training model design. Next we will
describe the implementation details.

1) SOURCE DATA PREPROCESSING
The raw data is a set of video data consisting of the
corresponding music sequence and dance sequence. In order
to get a better score model, we divide the grades interval in
[0.5, 1]. The closer the score is to 1, the higher the match
between music and dance. Fig. 5 shows how to divide the
original sequence. If the original music and dance are one-to-
one, we set the score for the corresponding dance sequence
to 1.0. If they are misplaced for a few frames (set this value
to 50 frames in our experiment.), we set the score to 0.9, and
so on, until the score is 0.5.
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FIGURE 6. The network architecture of learning based scoring model.

2) TRAINING MODEL DESIGN
The network architecture of scoring model is shown in Fig. 6.
This network consists of two sub-networks. One is used to
process music sequences and the other is used to process
dance sequences. The subnet is first processed through three
layers of LSTM and then through a fully connected layer.
And then the two sub-networks are connected through the full
connection layer for joint training.

In theory, the score of the generated dance sequence can be
obtained by inputting the music and the corresponding dance
sequence into the scoring model. The higher the score means
that the better the performance of the corresponding model.
In order to ensure the accuracy of the experiment, we have
verified the generated scoring model, and the specific results
are shown in the Section 5.

C. COSINE-BASED SIMILARITY EVALUATION
Another processing strategy is to find the correlation
between the original dance sequence and the generated dance
sequence. This paper chooses cosine similarity [47], [48] as
the final score of the generated dance sequence. Below we
will first describe the relevant content of cosine similarity,
and then describe how we get the final score.

1) COSINE SIMILARITY
Cosine similarity is a measure of similarity between two non-
zero vectors of an inner product space that measures the
cosine of the angle between them. The cosine of 0

◦

is 1, and
it is less than 1 for any angle in the interval (0, π ] radians.
It could give a useful measure of how similar two documents
are likely to be in terms of their subject matter. In fact, two
vectors with the same orientation have a cosine similarity
of 1, two vectors oriented at 90

◦

relative to each other have a
similarity of 0, and two vectors diametrically opposed have a
similarity of -1, independent of the magnitude.

Given two vectors of attributes, A andB, the cosine similar-
ity, cos(θ), is represented using a dot product and magnitude
as:

similarity = cos (θ) =
A.B
‖A‖ ‖B‖

(2)

The value of similarity ranges from -1 means exactly
opposite, to 1 meaning exactly the same, with 0 indicating

FIGURE 7. Comparisons of different values of lookback in our method on
train datasets.

orthogonality or decorrelation, while in-between values indi-
cate intermediate similarity or dissimilarity.

2) SIMILARITY CALCULATION
Before performing the cosine similarity calculation, we used
two processing methods to extract the features of the original
dance sequence and the generated dance action sequence.
The reason for feature extraction is that this can eliminate
the interference of individual data, so the experiment can
pay more attention to the overall change of the sequence.
One method (M1) is to calculate the average distance value
from each point to the center point. Another method (M2)
is to calculate the positional change of each point in two
consecutive frames.
M1 indicates the extent to which the overall sequence

deviates from the center point. M2 recorded some special
movement changes, such as repeating kicks, spinning, twist-
ing the hips, and often moving the arm up and down. In exper-
iment, the two methods are combined in different proportions
to extract the features of the sequence. After extracting the
features, the cosine similarity between them is taken as the
score of the generated dance sequence.

In order to prove the feasibility of calculating the cosine
similarity between the original dance sequence and the
generated dance sequence, we verified the experimental
results. We calculated the cosine similarity between all music
sequences and all generated dance sequences.CosA is used to
represent the sum of cosine similarities between the original
dance sequence based on the same music and the generated
dance sequence. CosB is used to represent the sum of cosine
similarities between the original dance sequence based on
different music and the generated dance sequence. Finally,
we use scoreRatio to represent the ratio of cosA to cosB.
The value of scoreRatio indicates the performance of the
corresponding model. The experimental results are shown in
Section 5.

V. EXPERIMENTS
In this section, we evaluate the proposed LSTM-SA on
our private dataset. Firstly, we introduce the implementation
details. Then, we analyse performance of evaluation methods
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TABLE 1. Average Human evaluation results of private dataset obtained by CNN, LSTM, AM, SA, and the proposed method LSTM-SA. The red and blue
markers indicate the highest score given by the expert group and the ordinary group respectively under the corresponding criteria.

proposed in this paper. Finally, to show processed LSTM-SA
synthesis scoring results, we compare it with four baselines.

A. IMPLEMENT DETAILS
1) DATASET PREPARATION
Few motion capture datasets include music & dance move-
ment data. To our knowledge, no dataset of synchronized
music and motion capture data is currently available online.
In order to realize the generation model of music-driven
dance movements, we construct our own music and dance
data sets. We have made our dataset openly available to
facilitate related research. 1 The data set is a relatively high
quality of dance video collected from the internet. The music-
dance dataset contains videos for one type (jazz) of dance,
totalling 120,000 frames of dancemotions and accompanying
music. These data record the positions of 18 skeleton joints in
each frame and 28dimensional music features in each frame.

2) VALUE OF LOOKBACK
Lookback is the number of previous time steps used to predict
the input variables for the next time period. The value of dif-
ferent lookbacks has a great influence on the synthetic dance
movements. So we tested the values of multiple lookbacks to
find the best value. As shown in Fig. 7, 30 or 15 is a good
choice. Considering that the smaller the value, the shorter the
training time, we choose 15 as the final lookback value.

3) LOSS FUNCTION
Undetected key points in the pose sequence should not be
used to calculate training loss, otherwise the accuracy of the
model will be affected. To solve this problem, we construct
a new loss function, the mean square error mask (MSEM)
function. The MSEM function is based on a mean squared
error (MSE) function, which corresponds to the expected
value of the squared error loss. Undetected points are marked
with special characters when performing pose extraction.
If the special character is encountered, the loss value is set
to 0.

B. PERFORMANCE OF EVALUATION
In this section, we show the verification results of
the three evaluation models proposed in this paper.

1https://github.com/njustqiyu/Music-Driven-Dance-Generation-dataset

FIGURE 8. Scoring model verification of private dataset obtained by
LSTM-SA.

We evaluate LSTM-SA on our private dataset and com-
pare with other four state-of-the-art sequence generation
methods.

1) HUMAN EVALUATION RESULTS
Table 1 presents the results of human evaluation. It shows that
the scoring results of the two groups are basically the same,
and each score of the expert group is basically lower than the
ordinary group. This is understandable. The expert group will
pay more attention to the details between dance and music,
while the ordinary group paysmore attention to visual effects.
And it shows that our method outperformed baseline methods
on following aspects:

a: KEEPING THE ORIGINAL MOVEMENTS
In the similarity column, our proposed method scores higher,
indicating that our method is able to maintain the original
pose better than baseline methods.

b: FITTING THE MUSIC
The results of user ranking indicate that our method can
synthesize natural dance sequences fitting music better than
baseline methods.

c: HAVING A RICH SET OF ACTIONS
Our expectation for the training model is that the generated
dance movements should have notable variations. Obviously,
our method performs better than baseline methods on this
point.
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FIGURE 9. The trend of M1 method based on Cosine-based similarity evaluation. (a), (b) Average distance from the center point on training
data. (c) and (d) Average distance from the center point on testing data (only the first 60 frames have been intercepted).

FIGURE 10. The trend of M2 method based on Cosine-based similarity evaluation. (a), (b) Variation in the adjacent frames on training data.
(c) and (d) Variation in the adjacent frames on testing data (only the first 60 frames have been intercepted).

TABLE 2. Cosine similarity verification of private dataset obtained by CNN, LSTM, AM, SA, and the proposed method LSTM-SA. The number marked in red
indicates the highest score for each item.

FIGURE 11. Synthesis dance movements of private train dataset obtained by CNN, LSTM, AM, SA, and the proposed method
LSTM-SA.

2) LEARNING-BASED SCORING MODEL RESULTS
As described in Evaluation Methods, we create a new
learning based scoring model that automatically scores the

generated dance movements. When verifying this model,
we find it can produce appropriate scores for the training
data, but it currently falls short in generalizing beyond those
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FIGURE 12. Synthesis dance movements of private test dataset obtained by CNN, LSTM, AM, SA, and the proposed method
LSTM-SA and corresponding scoring results.

training samples. As shown in Fig. 8, for the training set,
the score trend of the original data is basically consistent
with the predicted score. But for the test set, no matter how
the score of the original data changes, the predicted score
is basically around 0.76. This shows that our scoring model
has been over-fitting, and we suspect that this may be due
to the small training data set. Since the model is somewhat
over-fitting, the predicted scores are not shown here.

3) COSINED-BASED SIMILARITY RESULTS
In Section IV, we propose two methods (M1 and M2) to
extract the features of the original dance sequence and the
generated dance action sequence. In order to prove the ratio-
nality of this, we have statistically calculated the results.
Fig. 9 plots trend curve of M1 method based on Cosine-
based similarity evaluation. It represents average distance
values from each point to the center point. Fig. 10 plots

166548 VOLUME 7, 2019



Y. Qi et al.: Music-Driven Dance Generation

trend curve of M2 method based on Cosine-based similarity
evaluation. It represents positional change of each point in
two consecutive frames. It can be clearly seen that both the
predicted value and the ground truth value fluctuate within a
certain range. And the curve of the original dance sequence
and the synthetic dance sequence are basically the same.

We have calculated the value of scoreRatio for different
methods to verify feasibility of calculating the cosine simi-
larity between the original dance sequence and the generated
dance sequence. Table 2 shows scoreRatio results on different
methods. We mark the best methods in bold-red and runner-
ups in bold-blue. Although the scoreRatio of the test set is less
than 1, the main reason may be that different dance sequences
can match multiple pieces of music. It can be observed that
our method gets better ratio values than baseline methods.

C. QUALITATIVE RESULTS
In this section, we show the synthesis dance sequence scoring
results of different models on private dataset. Fig. 11 shows
the results of the train dataset dance movements synthesized
by five different generation methods. The blue stickman indi-
cates the action synthesized by the music, and the green indi-
cates the original action of the corresponding music. From
left to right, their corresponding models are in turn CNN,
LSTM, AM, SA, LSTM-SA. It can be seen from the training
results that the two methods of LSTM and LSTM-SA have
the highest coincidence with the original action.

Fig.12 shows examples of scoring evaluation results on test
dataset of two different evaluation methods on five models.
From top to bottom, their corresponding models are in turn
CNN, LSTM, AM, SA, LSTM-SA. Each model shows the
generated dance movements and two scoring results. The test
result in Fig. 11 shows that the generated dance movements
of LSTM-SA has notable variations and has higher ratings.

It can be seen from the above evaluation results that
LSTM-SA gets comparable results compared with baseline
methods. Moreover, the results of the models based on dif-
ferent evaluation indicators are basically the same. The order
of performance from high to low is: LSTM-SA, LSTM, AM,
CNN, SA. Human evaluation is mainly subjective visual eval-
uation, and there are many limitations: personal preference,
professional or not, and time consumption. The similarity
evaluation is an objective evaluation, but it does not represent
the human criteria.

VI. CONCLUSION
This paper proposed a new method for synthesizing dance
movements from music sequence. The proposed LSTM-SA
adopts a Seq2Seq network to train the generation model,
which is capable of synthesizing natural and richness dance
sequences that are in harmony with corresponding music.
In addition, in order to evaluate the generated model, three
new evaluation criterions were proposed in this paper. The
evaluation results demonstrated that our approach achieved
the desired requirements and outperforms the baseline meth-
ods. Our future work will focus on three major objectives:

1) acquiring more different type data to continuously enhance
our dataset, 2) finding more criterions to evaluate the gen-
erated models, and 3) leveraging our model to build various
applications.
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